Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Circulation ; 149(13): 1033-1052, 2024 03 26.
Article in English | MEDLINE | ID: mdl-38527130

ABSTRACT

The use of venoarterial extracorporeal membrane oxygenation (VA-ECMO) for temporary mechanical circulatory support in various clinical scenarios has been increasing consistently, despite the lack of sufficient evidence regarding its benefit and safety from adequately powered randomized controlled trials. Although the ARREST trial (Advanced Reperfusion Strategies for Patients with Out-of-Hospital Cardiac Arrest and Refractory Ventricular Fibrillation) and a secondary analysis of the PRAGUE OHCA trial (Prague Out-of-Hospital Cardiac Arrest) provided some evidence in favor of VA-ECMO in the setting of out-of-hospital cardiac arrest, the INCEPTION trial (Early Initiation of Extracorporeal Life Support in Refractory Out-of-Hospital Cardiac Arrest) has not found a relevant improvement of short-term mortality with extracorporeal cardiopulmonary resuscitation. In addition, the results of the recently published ECLS-SHOCK trial (Extracorporeal Life Support in Cardiogenic Shock) and ECMO-CS trial (Extracorporeal Membrane Oxygenation in the Therapy of Cardiogenic Shock) discourage the routine use of VA-ECMO in patients with infarct-related cardiogenic shock. Ongoing clinical trials (ANCHOR [Assessment of ECMO in Acute Myocardial Infarction Cardiogenic Shock, NCT04184635], REVERSE [Impella CP With VA ECMO for Cardiogenic Shock, NCT03431467], UNLOAD ECMO [Left Ventricular Unloading to Improve Outcome in Cardiogenic Shock Patients on VA-ECMO, NCT05577195], PIONEER [Hemodynamic Support With ECMO and IABP in Elective Complex High-risk PCI, NCT04045873]) may clarify the usefulness of VA-ECMO in specific patient subpopulations and the efficacy of combined mechanical circulatory support strategies. Pending further data to refine patient selection and management recommendations for VA-ECMO, it remains uncertain whether the present usage of this device improves outcomes.


Subject(s)
Extracorporeal Membrane Oxygenation , Myocardial Infarction , Out-of-Hospital Cardiac Arrest , Percutaneous Coronary Intervention , Humans , Extracorporeal Membrane Oxygenation/methods , Myocardial Infarction/etiology , Out-of-Hospital Cardiac Arrest/therapy , Out-of-Hospital Cardiac Arrest/etiology , Shock, Cardiogenic/diagnosis , Shock, Cardiogenic/therapy , Clinical Trials as Topic
2.
Lancet ; 402(10410): 1338-1346, 2023 10 14.
Article in English | MEDLINE | ID: mdl-37643628

ABSTRACT

BACKGROUND: Venoarterial extracorporeal membrane oxygenation (VA-ECMO) is increasingly used in patients with cardiogenic shock despite the lack of evidence from adequately powered randomised clinical trials. Three trials reported so far were underpowered to detect a survival benefit; we therefore conducted an individual patient-based meta-analysis to assess the effect of VA-ECMO on 30-day death rate. METHODS: Randomised clinical trials comparing early routine use of VA-ECMO versus optimal medical therapy alone in patients presenting with infarct-related cardiogenic shock were identified by searching MEDLINE, Cochrane Central Register of Controlled Trials, Embase, and trial registries until June 12, 2023. Trials were included if at least all-cause death rate 30 days after in-hospital randomisation was reported and trial investigators agreed to collaborate (ie, providing individual patient data). Odds ratios (ORs) as primary outcome measure were pooled using logistic regression models. This study is registered with PROSPERO (CRD42023431258). FINDINGS: Four trials (n=567 patients; 284 VA-ECMO, 283 control) were identified and included. Overall, there was no significant reduction of 30-day death rate with the early use of VA-ECMO (OR 0·93; 95% CI 0·66-1·29). Complication rates were higher with VA-ECMO for major bleeding (OR 2·44; 95% CI 1·55-3·84) and peripheral ischaemic vascular complications (OR 3·53; 95% CI 1·70-7·34). Prespecified subgroup analyses were consistent and did not show any benefit for VA-ECMO (pinteraction ≥0·079). INTERPRETATION: VA-ECMO did not reduce 30-day death rate compared with medical therapy alone in patients with infarct-related cardiogenic shock, and an increase in major bleeding and vascular complications was observed. A careful review of the indication for VA-ECMO in this setting is warranted. FUNDING: Foundation Institut für Herzinfarktforschung.


Subject(s)
Extracorporeal Membrane Oxygenation , Shock, Cardiogenic , Humans , Shock, Cardiogenic/etiology , Shock, Cardiogenic/therapy , Extracorporeal Membrane Oxygenation/adverse effects , Intra-Aortic Balloon Pumping , Logistic Models , Hemorrhage/etiology , Retrospective Studies , Randomized Controlled Trials as Topic
3.
Crit Care ; 28(1): 80, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38491468

ABSTRACT

Despite increasing therapeutic options and disposable resources, cardiogenic shock (CS) remains a formidable condition with high mortality. Today, veno-arterial extracorporeal membrane oxygenation and microaxial flow devices (Impella, Abiomed, Danvers, USA) are established forms of mechanical circulatory support (MCS) in CS, with increasing application over the years. Despite this trend, incorporation into current ESC (Class IIa, evidence C) and AHA/ACC (Class IIa, evidence B-NR) guidelines is based nearly exclusively on observational results. Despite these recommendations and increasing application, current evidence from randomized controlled trials has not provided clear mortality benefit. Thus, reflection on current evidence is hereby justified.


Subject(s)
Extracorporeal Membrane Oxygenation , Heart-Assist Devices , Humans , Shock, Cardiogenic/therapy , Treatment Outcome , Extracorporeal Membrane Oxygenation/methods , Hospital Mortality
4.
Circulation ; 145(16): 1254-1284, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35436135

ABSTRACT

The Impella device (Impella, Abiomed, Danvers, MA) is a percutaneous transvalvular microaxial flow pump that is currently used for (1) cardiogenic shock, (2) left ventricular unloading (combination of venoarterial extracorporeal membrane oxygenation and Impella concept), (3) high-risk percutaneous coronary interventions, (4) ablation of ventricular tachycardia, and (5) treatment of right ventricular failure. Impella-assisted forward blood flow increased mean arterial pressure and cardiac output, peripheral tissue perfusion, and coronary blood flow in observational studies and some randomized trials. However, because of the need for large-bore femoral access (14 F for the commonly used Impella CP device) and anticoagulation, the incidences of bleeding and ischemic complications are as much as 44% and 18%, respectively. Hemolysis is reported in as many as 32% of patients and stroke in as many as 13%. Despite the rapidly growing use of the Impella device, there are still insufficient data on its effect on outcome and complications on the basis of large, adequately powered randomized controlled trials. The only 2 small and also underpowered randomized controlled trials in cardiogenic shock comparing Impella versus intra-aortic balloon pump did not show improved mortality. Several larger randomized controlled trials are currently recruiting patients or are in preparation in cardiogenic shock (DanGer Shock [Danish-German Cardiogenic Shock Trial; NCT01633502]), left ventricular unloading (DTU-STEMI [Door-To-Unload in ST-Segment-Elevation Myocardial Infarction; NCT03947619], UNLOAD ECMO [Left Ventricular Unloading to Improve Outcome in Cardiogenic Shock Patients on VA-ECMO], and REVERSE [A Prospective Randomised Trial of Early LV Venting Using Impella CP for Recovery in Patients With Cardiogenic Shock Managed With VA ECMO; NCT03431467]) and high-risk percutaneous coronary intervention (PROTECT IV [Impella-Supported PCI in High-Risk Patients With Complex Coronary Artery Disease and Reduced Left Ventricular Function; NCT04763200]).


Subject(s)
Cardiology , Extracorporeal Membrane Oxygenation , Heart-Assist Devices , Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction , Extracorporeal Membrane Oxygenation/adverse effects , Heart-Assist Devices/adverse effects , Humans , Percutaneous Coronary Intervention/adverse effects , Prospective Studies , ST Elevation Myocardial Infarction/complications , Shock, Cardiogenic , Treatment Outcome
5.
Circ Res ; 126(4): 486-500, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31859592

ABSTRACT

RATIONALE: A reduced rate of myocardial infarction has been reported in patients with atrial fibrillation treated with FXa (factor Xa) inhibitors including rivaroxaban compared with vitamin K antagonists. At the same time, low-dose rivaroxaban has been shown to reduce mortality and atherothrombotic events in patients with coronary artery disease. Yet, the mechanisms underlying this reduction remain unknown. OBJECTIVE: In this study, we hypothesized that rivaroxaban's antithrombotic potential is linked to a hitherto unknown rivaroxaban effect that impacts on platelet reactivity and arterial thrombosis. METHODS AND RESULTS: In this study, we identified FXa as potent, direct agonist of the PAR-1 (protease-activated receptor 1), leading to platelet activation and thrombus formation, which can be inhibited by rivaroxaban. We found that rivaroxaban reduced arterial thrombus stability in a mouse model of arterial thrombosis using intravital microscopy. For in vitro studies, atrial fibrillation patients on permanent rivaroxaban treatment for stroke prevention, respective controls, and patients with new-onset atrial fibrillation before and after first intake of rivaroxaban (time series analysis) were recruited. Platelet aggregation responses, as well as thrombus formation under arterial flow conditions on collagen and atherosclerotic plaque material, were attenuated by rivaroxaban. We show that rivaroxaban's antiplatelet effect is plasma dependent but independent of thrombin and rivaroxaban's anticoagulatory capacity. CONCLUSIONS: Here, we identified FXa as potent platelet agonist that acts through PAR-1. Therefore, rivaroxaban exerts an antiplatelet effect that together with its well-known potent anticoagulatory capacity might lead to reduced frequency of atherothrombotic events and improved outcome in patients.


Subject(s)
Arteries/metabolism , Blood Platelets/drug effects , Factor Xa/pharmacology , Receptor, PAR-1/agonists , Rivaroxaban/pharmacology , Thrombosis/prevention & control , Animals , Arteries/pathology , Blood Platelets/metabolism , Factor Xa Inhibitors/pharmacology , Fibrinolytic Agents/administration & dosage , Fibrinolytic Agents/pharmacology , Humans , Mice, Inbred C57BL , Platelet Activation/drug effects , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/pharmacology , Receptor, PAR-1/metabolism , Rivaroxaban/administration & dosage , Thrombosis/metabolism
6.
J Interv Cardiol ; 2022: 9915247, 2022.
Article in English | MEDLINE | ID: mdl-35360094

ABSTRACT

Background: The impact of devices for vessel closure on the safety and efficacy of cannula removal in VA-ECMO patients is unknown. Methods: We retrospectively analyzed 180 consecutive patients weaned from VA-ECMO after cardiac arrest or cardiogenic shock from January 2012 to June 2020. In the first period (historical technique group), from January 2012 to December 2018, primary decannulation strategy was manual compression. In the second period (current technique group), from January 2019 to June 2020, decannulation was performed either by a conventional approach with manual compression or by a suture-mediated closure device technique. Results: A femoral compression system was necessary in 71% of patients in the historical group compared to 39% in the current technique group (p < 0.01). Vascular surgery was performed in 12% in the historical cohort and 2% in the current technique cohort, which indicated a clear trend, albeit it did not reach significance (p = 0.07). Conclusion: We illustrated that a suture-mediated closure device technique for VA-ECMO decannulation was feasible, safe, and may have reduced the need of surgical interventions compared to manual compression alone.


Subject(s)
Extracorporeal Membrane Oxygenation , Extracorporeal Membrane Oxygenation/methods , Femoral Artery/surgery , Humans , Retrospective Studies , Suture Techniques , Sutures
7.
Platelets ; 33(3): 371-380, 2022 Apr 03.
Article in English | MEDLINE | ID: mdl-33941008

ABSTRACT

While previous reports showed ADP-induced platelet reactivity to be an independent predictor of bleeding after PCI in stable patients, this has never been investigated in patients with cardiogenic shock. The association of bleeding events with respect to ADP-induced platelet aggregation was investigated in patients undergoing primary PCI for acute myocardial infarction complicated by cardiogenic shock and with available on-treatment ADP-induced platelet aggregation measurements. Out of 233 patients, 74 suffered from a severe BARC3 or higher bleed. ADP-induced platelet aggregation was significantly lower in patients with BARC≥3 bleedings (p < .001). Multivariate analysis identified on-treatment ADP-induced platelet aggregation as an independent risk factor for bleeding (HR = 0.968 per AU). An optimal cutoff value of <12 AU for ADP-induced platelet aggregation to predict BARC≥3 bleedings was identified via ROC analysis. Moreover, the use of VA-ECMO (HR 1.972) or coaxial left ventricular pump (HR 2.593), first lactate (HR 1.093 per mmol/l) and thrombocyte count (HR 0.994 per G/l) were independent predictors of BARC≥3 bleedings. In conclusion, lower on-treatment ADP-induced platelet aggregation was independently associated with severe bleeding events in patients with AMI-CS. The value of platelet function testing for bleeding risk prediction and guidance of anti-thrombotic treatment in cardiogenic shock warrants further investigation.


Subject(s)
Adenosine Diphosphate/metabolism , Blood Platelets/metabolism , Hemorrhage/etiology , Myocardial Infarction/complications , Shock, Cardiogenic/etiology , Acute Disease , Aged , Female , Hemorrhage/physiopathology , Humans , Male , Myocardial Infarction/pathology , Shock, Cardiogenic/physiopathology
8.
Eur Heart J ; 41(38): 3753-3761, 2020 10 07.
Article in English | MEDLINE | ID: mdl-33099278

ABSTRACT

Cardiogenic shock is still a major driver of mortality on intensive care units and complicates ∼10% of acute coronary syndromes with contemporary mortality rates up to 50%. In the meantime, percutaneous circulatory support devices, in particular venoarterial extracorporeal membrane oxygenation (VA-ECMO), have emerged as an established salvage intervention for patients in cardiogenic shock. Venoarterial extracorporeal membrane oxygenation provides temporary circulatory support until other treatments are effective and enables recovery or serves as a bridge to ventricular assist devices, heart transplantation, or decision-making. In this critical care perspective, we provide a concise overview of VA-ECMO utilization in cardiogenic shock, considering rationale, critical care management, as well as weaning aspects. We supplement previous literature by focusing on therapeutic issues related to the vicious circle of retrograde aortic VA-ECMO flow, increased left ventricular (LV) afterload, insufficient LV unloading, and severe pulmonary congestion limiting prognosis in a relevant proportion of patients receiving VA-ECMO treatment. We will outline different modifications in percutaneous mechanical circulatory support to meet this challenge. Besides a strategy of running ECMO at lowest possible flow rates, novel therapeutic options including the combination of VA-ECMO with percutaneous microaxial pumps or implementation of a venoarteriovenous-ECMO configuration based on an additional venous cannula supplying towards pulmonary circulation are most promising among LV unloading and venting strategies. The latter may even combine the advantages of venovenous and venoarterial ECMO therapy, providing potent respiratory and circulatory support at the same time. However, whether VA-ECMO can reduce mortality has to be evaluated in the urgently needed, ongoing prospective randomized studies EURO-SHOCK (NCT03813134), ANCHOR (NCT04184635), and ECLS-SHOCK (NCT03637205). These studies will provide the opportunity to investigate indication, mode, and effect of LV unloading in dedicated sub-analyses. In future, the Heart Teams should aim at conducting a dedicated randomized trial comparing VA-ECMO support with vs. without LV unloading strategies in patients with cardiogenic shock.


Subject(s)
Extracorporeal Membrane Oxygenation , Heart-Assist Devices , Humans , Prospective Studies , Pulmonary Circulation , Shock, Cardiogenic/therapy
9.
Eur Arch Otorhinolaryngol ; 278(12): 4855-4861, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33837835

ABSTRACT

PURPOSE: It has been established that the infection with SARS-CoV-2 may cause an impairment of chemosensory function. However, there is little data on the long-term effects of SARS-CoV-2 infection on chemosensory function. METHODS: Twenty three SARS-CoV-2-positive patients diagnosed in spring 2020 with subjective hyposmia (out of 57 positive patients, 40.3%) were compared to SARS-CoV-2-positive patients without hyposmia (n = 19) and SARS-CoV-2-negative patients (n = 14). Chemosensory function was assessed by the Brief Smell Identification Test (BSIT), Taste Strips (TS), Visual Analogue Scales (VAS), and the SNOT-22. The initial cohort with hyposmia were also examined at 8 weeks and 6 months after initial examination. RESULTS: There were no differences between the SARS-CoV-2-positive cohort without hyposmia and negative controls in terms of BSIT (8.5 ± 2.6 vs. 10.2 ± 1.8), TS (3.4 ± 0.6 vs. 3.9 ± 0.3) or VAS (2.1 ± 1.3 vs. 1.1 ± 0.5); yet the SNOT-22 was significantly elevated (27.7 ± 11.2 vs. 16.4 ± 10.8). The SARS-CoV-2-positive group with hyposmia performed significantly poorer in BSIT (4.0 ± 1.7 vs. 8.5 ± 2.6/10.2 ± 1.8), TS (2.6 ± 1.3 vs. 3.4 ± 0.6/3.9 ± 0.3), and VAS (7.9 ± 2.2 vs. 2.1 ± 1.3/1.1 ± 0.5) compared to both control groups. At week 8 and month 6 control, six and five patients, respectively, still suffered from subjectively and objectively impaired chemosensory function. The other patients had recovered in both respects. CONCLUSION: SARS-CoV-2 patients with subjectively impaired chemosensory function regularly perform poorly in objective measurements. About 70% of patients suffering from olfactory dysfunction in SARS-CoV-2 quickly recover-the rest still suffers from considerable impairment 6 months after infection.


Subject(s)
COVID-19 , Olfaction Disorders , Follow-Up Studies , Humans , Olfaction Disorders/diagnosis , Olfaction Disorders/etiology , SARS-CoV-2 , Smell , Taste Disorders
10.
Int Heart J ; 61(2): 364-372, 2020 Mar 28.
Article in English | MEDLINE | ID: mdl-32132319

ABSTRACT

Atherosclerosis is a chronic inflammatory disease with multiple characteristic facets, including vascular inflammation, endothelial dysfunction, plaque development, impaired blood flow, and cholesterol deposition through dyslipidemia. Toll-like receptors (TLRs) of the innate immune system have been closely linked to the development of atherosclerotic lesions. TLR7 recognizes viral or endogenous single-stranded RNA, which is released during vascular apoptosis and necrosis. The role of TLR7 in vascular disease remains controversial, and therefore, we sought to investigate the effects of TLR7 stimulation in mice.Intravenous injection of a ligand for TLR7 (R848) induced a significant pro-inflammatory cytokine response in mice. This was associated with impaired reendothelialization upon acute denudation of the carotid artery, as measured by Evan's blue staining, and increased numbers of circulating endothelial microparticles (EMPs) and circulating Sca1/Flk1 positive cells as a marker for increased endothelial damage. Chronic subcutaneous stimulation of TLR7 in apolipoprotein E-deficient (ApoE-/-) mice increased aortic production of reactive oxygen species (ROS), the number of circulating EMPs, and most importantly, augmented the formation of atherosclerotic plaque when compared with vehicle-treated animals.Systemic stimulation of TLR7 leads to impaired reendothelialization upon acute vascular injury and is associated with the production of pro-inflammatory cytokines and increased levels of circulating EMPs and Sca1/Flk1 positive cells. Importantly, ApoE-/- mice chronically treated with R848 displayed increased atherosclerotic plaque development and elevated levels of ROS in the aortic tissue. In addition, TLR7-activation-induced apoptosis and impaired migration in human coronary artery endothelial cells and showed significant upregulation of the signaling cascade of IL-1 receptor-associated kinase (IRAK) 2 and IRAK4. Our data highlight the importance of fully understanding the pathomechanisms involved in atherogenesis, and further studies are necessary to identify the ligand-specific effects of TLR7 for possible therapeutic targeting.


Subject(s)
Atherosclerosis/etiology , Membrane Glycoproteins/metabolism , Toll-Like Receptor 7/metabolism , Animals , Apoptosis , Atherosclerosis/metabolism , Cell Movement , Cell-Derived Microparticles/metabolism , Cells, Cultured , Cytokines/metabolism , Endothelial Cells/physiology , Humans , Imidazoles , Interleukin-1 Receptor-Associated Kinases/metabolism , Mice, Knockout, ApoE
16.
Eur Heart J Acute Cardiovasc Care ; 13(4): 347-353, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38306600

ABSTRACT

AIMS: Studies have shown a so-called off-hour effect for many different diseases, but data are scarce concerning cardiogenic shock. We therefore assessed the association of off-hour vs. on-hour intensive care unit admission with 30-day mortality in patients with cardiogenic shock. METHODS AND RESULTS: In total, 1720 cardiogenic shock patients (666 admitted during off-hours) from two large university hospitals in Germany were included in retrospect. An admission during off-hours was associated with increased 30-day mortality compared to an admission during on-hours [crude mortality 48% vs. 41%, HR 1.17 (1.03-1.33), P = 0.017]. This effect remained significant after propensity score matching (P = 0.023). Neither patients with a combined SCAI stage D and E (P = 0.088) or C (P = 0.548) nor those requiring cardiopulmonary resuscitation (P = 0.114) had a higher mortality at off-hour admission. In contrast, those without veno-arterial extracorporeal membrane oxygenation [HR 1.17 (1.00-1.36), P = 0.049], without acute myocardial infarction [HR 1.27 (1.02-1.56), P = 0.029] or a with combined SCAI stage A and B [HR 2.23 (1.08-4.57), P = 0.025] had an increased mortality at off-hour admission. CONCLUSION: Our study showed an increased mortality in patients with cardiogenic shock admitted during off-hours, especially in those with a milder onset of disease. This stresses the importance of a thorough workup of each patient, especially at times of limited resources, the menace of underestimating the severity of cardiogenic shock, and the need for an improved 24×7 available risk stratification.


Subject(s)
Hospital Mortality , Intensive Care Units , Shock, Cardiogenic , Humans , Shock, Cardiogenic/mortality , Shock, Cardiogenic/therapy , Male , Female , Retrospective Studies , Intensive Care Units/statistics & numerical data , Aged , Hospital Mortality/trends , Germany/epidemiology , Time Factors , Middle Aged , Patient Admission/statistics & numerical data , Survival Rate/trends , Propensity Score
17.
Heliyon ; 10(5): e26773, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38444470

ABSTRACT

Objective: Acute cardiogenic shock is a life-threatening condition with mortality rates of up to 50%. If conventional therapy fails, veno-arterial extracorporeal membrane oxygenation (VA-ECMO) therapy has emerged to a promising alternative for temporary cardiac and respiratory support in specialized centers. However, it is only a bridge to recovery, final decision, heart transplantation or the permanent implantation of a left ventricular assist device. Therefore, the identification of the optimum weaning time point is challenging, and standardized weaning protocols are rare. Methods: In this explorative pilot study, we evaluated the potential benefit of blood flow measurements in the aortic arch using an ultrasonic cardiac output monitor (USCOM) for the primary endpoint of successful VA-ECMO weaning. 12 patients under VA-ECMO therapy for acute cardiogenic shock and a hemodynamic condition which qualified for a stepwise weaning process were included in this study. Main exclusion criterion was the presence of additional venting therapy for left ventricular unloading, e.g. Impella. Statistical comparisons were performed using the Mann-Whitney test and corrected for multiple testing by the Holm-Sidak method. Results: Peak velocity of flow in the aortic arch showed a positive correlation with weaning success independent of ECMO flow (weaning success vs. failure: 0.75 vs. 0.35 m/s (low ECMO support), p = 0.049), whereas we identified only a trend for mean pressure gradient, minute distance and stroke volume index. Conclusion: We hypothesize, that USCOM might provide an additive benefit to conventional strategies in its ability to predict successful VA-ECMO weaning and prevent pulmonary congestion. Larger upcoming trials are required to address this relevant topic and provide standardized treatment protocols for optimized weaning in the future.

18.
Clin Res Cardiol ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587564

ABSTRACT

BACKGROUND AND AIMS: Candidate selection for lung transplantation (LuTx) is pivotal to ensure individual patient benefit as well as optimal donor organ allocation. The impact of coronary artery disease (CAD) on post-transplant outcomes remains controversial. We provide comprehensive data on the relevance of CAD for short- and long-term outcomes following LuTx and identify risk factors for mortality. METHODS: We retrospectively analyzed all adult patients (≥ 18 years) undergoing primary and isolated LuTx between January 2000 and August 2021 at the LMU University Hospital transplant center. Using 1:1 propensity score matching, 98 corresponding pairs of LuTx patients with and without relevant CAD were identified. RESULTS: Among 1,003 patients having undergone LuTx, 104 (10.4%) had relevant CAD at baseline. There were no significant differences in in-hospital mortality (8.2% vs. 8.2%, p > 0.999) as well as overall survival (HR 0.90, 95%CI [0.61, 1.32], p = 0.800) between matched CAD and non-CAD patients. Similarly, cardiovascular events such as myocardial infarction (7.1% CAD vs. 2.0% non-CAD, p = 0.170), revascularization by percutaneous coronary intervention (5.1% vs. 1.0%, p = 0.212), and stroke (2.0% vs. 6.1%, p = 0.279), did not differ statistically between both matched groups. 7.1% in the CAD group and 2.0% in the non-CAD group (p = 0.078) died from cardiovascular causes. Cox regression analysis identified age at transplantation (HR 1.02, 95%CI [1.01, 1.04], p < 0.001), elevated bilirubin (HR 1.33, 95%CI [1.15, 1.54], p < 0.001), obstructive lung disease (HR 1.43, 95%CI [1.01, 2.02], p = 0.041), decreased forced vital capacity (HR 0.99, 95%CI [0.99, 1.00], p = 0.042), necessity of reoperation (HR 3.51, 95%CI [2.97, 4.14], p < 0.001) and early transplantation time (HR 0.97, 95%CI [0.95, 0.99], p = 0.001) as risk factors for all-cause mortality, but not relevant CAD (HR 0.96, 95%CI [0.71, 1.29], p = 0.788). Double lung transplant was associated with lower all-cause mortality (HR 0.65, 95%CI [0.52, 0.80], p < 0.001), but higher in-hospital mortality (OR 2.04, 95%CI [1.04, 4.01], p = 0.039). CONCLUSION: In this cohort, relevant CAD was not associated with worse outcomes and should therefore not be considered a contraindication for LuTx. Nonetheless, cardiovascular events in CAD patients highlight the necessity of control of cardiovascular risk factors and a structured cardiac follow-up.

19.
Eur J Heart Fail ; 26(2): 432-444, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37940139

ABSTRACT

AIMS: Heart failure-related cardiogenic shock (HF-CS) accounts for a significant proportion of CS cases. Whether patients with de novo HF and those with acute-on-chronic HF in CS differ in clinical characteristics and outcome remains unclear. The aim of this study was to evaluate differences in clinical presentation and mortality between patients with de novo and acute-on-chronic HF-CS. METHODS AND RESULTS: In this international observational study, patients with HF-CS from 16 tertiary care centres in five countries were enrolled between 2010 and 2021. To investigate differences in clinical presentation and 30-day mortality, adjusted logistic/Cox regression models were fitted. Patients (n = 1030) with HF-CS were analysed, of whom 486 (47.2%) presented with de novo HF-CS and 544 (52.8%) with acute-on-chronic HF-CS. Traditional markers of CS severity (e.g. blood pressure, heart rate and lactate) as well as use of treatments were comparable between groups. However, patients with acute-on-chronic HF-CS were more likely to have a higher CS severity and also a higher mortality risk, after adjusting for relevant confounders (de novo HF 45.5%, acute-on-chronic HF 55.9%, adjusted hazard ratio 1.38, 95% confidence interval 1.10-1.72, p = 0.005). CONCLUSION: In this large HF-CS cohort, acute-on-chronic HF-CS was associated with more severe CS and higher mortality risk compared to de novo HF-CS, although traditional markers of CS severity and use of treatments were comparable. These findings highlight the vast heterogeneity of patients with HF-CS, emphasize that HF chronicity is a relevant disease modifier in CS, and indicate that future clinical trials should account for this.


Subject(s)
Heart Failure , Shock, Cardiogenic , Humans , Hospital Mortality , Prognosis , Shock, Cardiogenic/etiology
20.
Clin Res Cardiol ; 113(4): 570-580, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37982863

ABSTRACT

BACKGROUND: Currently, use of mechanical circulatory support (MCS) in non-ischaemic cardiogenic shock (CS) is predominantly guided by shock-specific markers, and not by markers of cardiac function. We hypothesise that left ventricular ejection fraction (LVEF) can identify patients with a higher likelihood to benefit from MCS and thus help to optimise their expected benefit. METHODS: Patients with non-ischaemic CS and available data on LVEF from 16 tertiary-care centres in five countries were analysed. Cox regression models were fitted to evaluate the association between LVEF and mortality, as well as the interaction between LVEF, MCS use and mortality. RESULTS: N = 807 patients were analysed: mean age 63 [interquartile range (IQR) 51.5-72.0] years, 601 (74.5%) male, lactate 4.9 (IQR 2.6-8.5) mmol/l, LVEF 20 (IQR 15-30) %. Lower LVEF was more frequent amongst patients with more severe CS, and MCS was more likely used in patients with lower LVEF. There was no association between LVEF and 30-day mortality risk in the overall study cohort. However, there was a significant interaction between MCS use and LVEF, indicating a lower 30-day mortality risk with MCS use in patients with LVEF ≤ 20% (hazard ratio 0.72, 95% confidence interval 0.51-1.02 for LVEF ≤ 20% vs. hazard ratio 1.31, 95% confidence interval 0.85-2.01 for LVEF > 20%, interaction-p = 0.017). CONCLUSION: This retrospective study may indicate a lower mortality risk with MCS use only in patients with severely reduced LVEF. This may propose the inclusion of LVEF as an adjunctive parameter for MCS decision-making in non-ischaemic CS, aiming to optimise the benefit-risk ratio.


Subject(s)
Heart-Assist Devices , Shock, Cardiogenic , Humans , Male , Middle Aged , Aged , Female , Shock, Cardiogenic/diagnosis , Shock, Cardiogenic/therapy , Stroke Volume , Ventricular Function, Left , Retrospective Studies , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL