Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Nature ; 612(7940): 495-502, 2022 12.
Article in English | MEDLINE | ID: mdl-36450981

ABSTRACT

Fanconi anaemia (FA), a model syndrome of genome instability, is caused by a deficiency in DNA interstrand crosslink repair resulting in chromosome breakage1-3. The FA repair pathway protects against endogenous and exogenous carcinogenic aldehydes4-7. Individuals with FA are hundreds to thousands fold more likely to develop head and neck (HNSCC), oesophageal and anogenital squamous cell carcinomas8 (SCCs). Molecular studies of SCCs from individuals with FA (FA SCCs) are limited, and it is unclear how FA SCCs relate to sporadic HNSCCs primarily driven by tobacco and alcohol exposure or infection with human papillomavirus9 (HPV). Here, by sequencing genomes and exomes of FA SCCs, we demonstrate that the primary genomic signature of FA repair deficiency is the presence of high numbers of structural variants. Structural variants are enriched for small deletions, unbalanced translocations and fold-back inversions, and are often connected, thereby forming complex rearrangements. They arise in the context of TP53 loss, but not in the context of HPV infection, and lead to somatic copy-number alterations of HNSCC driver genes. We further show that FA pathway deficiency may lead to epithelial-to-mesenchymal transition and enhanced keratinocyte-intrinsic inflammatory signalling, which would contribute to the aggressive nature of FA SCCs. We propose that the genomic instability in sporadic HPV-negative HNSCC may arise as a result of the FA repair pathway being overwhelmed by DNA interstrand crosslink damage caused by alcohol and tobacco-derived aldehydes, making FA SCC a powerful model to study tumorigenesis resulting from DNA-crosslinking damage.


Subject(s)
DNA Repair , Fanconi Anemia , Genomics , Head and Neck Neoplasms , Humans , Aldehydes/adverse effects , Aldehydes/metabolism , DNA Repair/genetics , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Fanconi Anemia/pathology , Head and Neck Neoplasms/chemically induced , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Papillomavirus Infections , Squamous Cell Carcinoma of Head and Neck/chemically induced , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , DNA Damage/drug effects
2.
Genes Dev ; 34(11-12): 832-846, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32354836

ABSTRACT

DNA interstrand cross-links (ICLs) are a form of DNA damage that requires the interplay of a number of repair proteins including those of the Fanconi anemia (FA) and the homologous recombination (HR) pathways. Pathogenic variants in the essential gene BRCA2/FANCD1, when monoallelic, predispose to breast and ovarian cancer, and when biallelic, result in a severe subtype of Fanconi anemia. BRCA2 function in the FA pathway is attributed to its role as a mediator of the RAD51 recombinase in HR repair of programmed DNA double-strand breaks (DSB). BRCA2 and RAD51 functions are also required to protect stalled replication forks from nucleolytic degradation during response to hydroxyurea (HU). While RAD51 has been shown to be necessary in the early steps of ICL repair to prevent aberrant nuclease resection, the role of BRCA2 in this process has not been described. Here, based on the analysis of BRCA2 DNA-binding domain (DBD) mutants (c.8488-1G>A and c.8524C>T) discovered in FA patients presenting with atypical FA-like phenotypes, we establish that BRCA2 is necessary for the protection of DNA at ICLs. Cells carrying BRCA2 DBD mutations are sensitive to ICL-inducing agents but resistant to HU treatment consistent with relatively high HR repair in these cells. BRCA2 function at an ICL protects against DNA2-WRN nuclease-helicase complex and not the MRE11 nuclease that is implicated in the resection of HU-induced stalled replication forks. Our results also indicate that unlike the processing at HU-induced stalled forks, the function of the SNF2 translocases (SMARCAL1, ZRANB3, or HLTF), implicated in fork reversal, are not an integral component of the ICL repair, pointing to a different mechanism of fork protection at different DNA lesions.


Subject(s)
BRCA2 Protein/metabolism , Fanconi Anemia/genetics , Fanconi Anemia/physiopathology , BRCA2 Protein/genetics , Cell Line , DNA/chemistry , DNA Repair/drug effects , DNA Repair/genetics , DNA Replication/drug effects , Homologous Recombination/genetics , Humans , Hydroxyurea/pharmacology , Mutation , Protein Domains/genetics , Rad51 Recombinase/metabolism
3.
Mol Cell ; 69(1): 24-35.e5, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29290612

ABSTRACT

The protection and efficient restart of stalled replication forks is critical for the maintenance of genome integrity. Here, we identify a regulatory pathway that promotes stalled forks recovery from replication stress. We show that the mammalian replisome component C20orf43/RTF2 (homologous to S. pombe Rtf2) must be removed for fork restart to be optimal. We further show that the proteasomal shuttle proteins DDI1 and DDI2 are required for RTF2 removal from stalled forks. Persistence of RTF2 at stalled forks results in fork restart defects, hyperactivation of the DNA damage signal, accumulation of single-stranded DNA (ssDNA), sensitivity to replication drugs, and chromosome instability. These results establish that RTF2 removal is a key determinant for the ability of cells to manage replication stress and maintain genome integrity.


Subject(s)
Cell Cycle Proteins/metabolism , DNA Damage/genetics , DNA Replication/genetics , DNA-Binding Proteins/metabolism , DNA/genetics , Genomic Instability/genetics , Aspartic Acid Proteases/genetics , Cell Cycle/genetics , Cell Cycle Proteins/genetics , Cell Line, Tumor , DNA/biosynthesis , DNA Repair/genetics , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/genetics , HeLa Cells , Humans , RNA Interference , RNA, Small Interfering/genetics , Replication Origin/genetics , Stress, Physiological/genetics
4.
Mol Cell ; 59(3): 478-90, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-26253028

ABSTRACT

Repair of DNA interstrand crosslinks requires action of multiple DNA repair pathways, including homologous recombination. Here, we report a de novo heterozygous T131P mutation in RAD51/FANCR, the key recombinase essential for homologous recombination, in a patient with Fanconi anemia-like phenotype. In vitro, RAD51-T131P displays DNA-independent ATPase activity, no DNA pairing capacity, and a co-dominant-negative effect on RAD51 recombinase function. However, the patient cells are homologous recombination proficient due to the low ratio of mutant to wild-type RAD51 in cells. Instead, patient cells are sensitive to crosslinking agents and display hyperphosphorylation of Replication Protein A due to increased activity of DNA2 and WRN at the DNA interstrand crosslinks. Thus, proper RAD51 function is important during DNA interstrand crosslink repair outside of homologous recombination. Our study provides a molecular basis for how RAD51 and its associated factors may operate in a homologous recombination-independent manner to maintain genomic integrity.


Subject(s)
DNA Repair , DNA/metabolism , Fanconi Anemia/genetics , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Replication Protein A/metabolism , Cell Survival , Cross-Linking Reagents , DNA Helicases/metabolism , Exodeoxyribonucleases/metabolism , Fanconi Anemia/metabolism , Female , Genomic Instability , HEK293 Cells , Heterozygote , Humans , Infant , Mutation , RecQ Helicases/metabolism , Werner Syndrome Helicase
5.
Blood ; 135(18): 1588-1602, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32106311

ABSTRACT

Fanconi anemia (FA) is the most common genetic cause of bone marrow failure and is caused by inherited pathogenic variants in any of 22 genes. Of these, only FANCB is X-linked. We describe a cohort of 19 children with FANCB variants, from 16 families of the International Fanconi Anemia Registry. Those with FANCB deletion or truncation demonstrate earlier-than-average onset of bone marrow failure and more severe congenital abnormalities compared with a large series of FA individuals in published reports. This reflects the indispensable role of FANCB protein in the enzymatic activation of FANCD2 monoubiquitination, an essential step in the repair of DNA interstrand crosslinks. For FANCB missense variants, more variable severity is associated with the extent of residual FANCD2 monoubiquitination activity. We used transcript analysis, genetic complementation, and biochemical reconstitution of FANCD2 monoubiquitination to determine the pathogenicity of each variant. Aberrant splicing and transcript destabilization were associated with 2 missense variants. Individuals carrying missense variants with drastically reduced FANCD2 monoubiquitination in biochemical and/or cell-based assays tended to show earlier onset of hematologic disease and shorter survival. Conversely, variants with near-normal FANCD2 monoubiquitination were associated with more favorable outcome. Our study reveals a genotype-phenotype correlation within the FA-B complementation group of FA, where severity is associated with level of residual FANCD2 monoubiquitination.


Subject(s)
Fanconi Anemia Complementation Group Proteins/genetics , Fanconi Anemia/diagnosis , Fanconi Anemia/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Alleles , Alternative Splicing , Cell Line, Tumor , Fibroblasts/metabolism , Genetic Loci , Humans , Models, Biological , Mutation , Phenotype , RNA Stability , Severity of Illness Index , Ubiquitination
6.
Br J Haematol ; 193(5): 971-975, 2021 06.
Article in English | MEDLINE | ID: mdl-32866285

ABSTRACT

Fanconi anaemia (FA) is a genetic disorder due to mutations in any of the 22 FANC genes (FANCA-FANCW) and has high phenotypic variation. Siblings may have similar clinical outcome because they share the same variants; however, such association has not been reported. We present the detailed phenotype and clinical course of 25 sibling sets with FA from two institutions. Haematological progression significantly correlated between siblings, which was confirmed in an additional 55 sibling pairs from the International Fanconi Anemia Registry. Constitutional abnormalities were not concordant, except for a moderate degree of concordance in kidney abnormalities and microcephaly.


Subject(s)
Fanconi Anemia , Kidney , Microcephaly , Registries , Siblings , Fanconi Anemia/blood , Fanconi Anemia/genetics , Fanconi Anemia/immunology , Female , Humans , Kidney/abnormalities , Kidney/immunology , Kidney/metabolism , Male , Microcephaly/genetics , Microcephaly/immunology , Microcephaly/metabolism , Retrospective Studies
7.
Hum Mutat ; 39(2): 237-254, 2018 02.
Article in English | MEDLINE | ID: mdl-29098742

ABSTRACT

Fanconi anemia (FA) is a rare recessive DNA repair deficiency resulting from mutations in one of at least 22 genes. Two-thirds of FA families harbor mutations in FANCA. To genotype patients in the International Fanconi Anemia Registry (IFAR) we employed multiple methodologies, screening 216 families for FANCA mutations. We describe identification of 57 large deletions and 261 sequence variants, in 159 families. All but seven families harbored distinct combinations of two mutations demonstrating high heterogeneity. Pathogenicity of the 18 novel missense variants was analyzed functionally by determining the ability of the mutant cDNA to improve the survival of a FANCA-null cell line when treated with MMC. Overexpressed pathogenic missense variants were found to reside in the cytoplasm, and nonpathogenic in the nucleus. RNA analysis demonstrated that two variants (c.522G > C and c.1565A > G), predicted to encode missense variants, which were determined to be nonpathogenic by a functional assay, caused skipping of exons 5 and 16, respectively, and are most likely pathogenic. We report 48 novel FANCA sequence variants. Defining both variants in a large patient cohort is a major step toward cataloging all FANCA variants, and permitting studies of genotype-phenotype correlations.


Subject(s)
Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia/genetics , Mutation, Missense/genetics , Cell Line , Fanconi Anemia/pathology , Fluorescent Antibody Technique , Humans
8.
Mol Cell ; 39(1): 36-47, 2010 Jul 09.
Article in English | MEDLINE | ID: mdl-20603073

ABSTRACT

The Fanconi anemia (FA) pathway is responsible for interstrand crosslink repair. At the heart of this pathway is the FANCI-FAND2 (ID) complex, which, upon ubiquitination by the FA core complex, travels to sites of damage to coordinate repair that includes nucleolytic modification of the DNA surrounding the lesion and translesion synthesis. How the ID complex regulates these events is unknown. Here we describe a shRNA screen that led to the identification of two nucleases necessary for crosslink repair, FAN1 (KIAA1018) and EXDL2. FAN1 colocalizes at sites of DNA damage with the ID complex in a manner dependent on FAN1's ubiquitin-binding domain (UBZ), the ID complex, and monoubiquitination of FANCD2. FAN1 possesses intrinsic 5'-3' exonuclease activity and endonuclease activity that cleaves nicked and branched structures. We propose that FAN1 is a repair nuclease that is recruited to sites of crosslink damage in part through binding the ubiquitinated ID complex through its UBZ domain.


Subject(s)
Cross-Linking Reagents/metabolism , DNA Repair , Exodeoxyribonucleases/metabolism , Exonucleases/metabolism , Fanconi Anemia/enzymology , Genetic Testing/methods , Amino Acid Sequence , Animals , Caenorhabditis elegans/metabolism , Cell Line , DNA Damage , DNA Mismatch Repair/drug effects , DNA Repair/drug effects , Endodeoxyribonucleases , Endonucleases/metabolism , Exodeoxyribonucleases/chemistry , Exonucleases/chemistry , Fanconi Anemia/pathology , Fanconi Anemia Complementation Group D2 Protein/metabolism , Genome, Human/genetics , Humans , Mitomycin/pharmacology , Molecular Sequence Data , Multifunctional Enzymes , Protein Binding/drug effects , Protein Structure, Tertiary , Protein Transport/drug effects , RNA, Small Interfering/metabolism
9.
Hum Mutat ; 37(5): 465-8, 2016 May.
Article in English | MEDLINE | ID: mdl-26841305

ABSTRACT

Fanconi anemia (FA) is a rare inherited disorder caused by pathogenic variants in one of 19 FANC genes. FA patients display congenital abnormalities, and develop bone marrow failure, and cancer susceptibility. We identified homozygous mutations in four FA patients and, in each case, only one parent carried the obligate mutant allele. FANCA and FANCP/SLX4 genes, both located on chromosome 16, were the affected recessive FA genes in three and one family respectively. Genotyping with short tandem repeat markers and SNP arrays revealed uniparental disomy (UPD) of the entire mutation-carrying chromosome 16 in all four patients. One FANCA patient had paternal UPD, whereas FA in the other three patients resulted from maternal UPD. These are the first reported cases of UPD as a cause of FA. UPD indicates a reduced risk of having another child with FA in the family and has implications in prenatal diagnosis.


Subject(s)
Chromosomes, Human, Pair 16/genetics , Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia/genetics , Recombinases/genetics , Uniparental Disomy/genetics , Adult , Child, Preschool , Female , Genes, Recessive , Homozygote , Humans , Male , Mutation , Pedigree , Polymorphism, Single Nucleotide , Young Adult
11.
Nat Genet ; 39(2): 162-4, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17200671

ABSTRACT

PALB2 was recently identified as a nuclear binding partner of BRCA2. Biallelic BRCA2 mutations cause Fanconi anemia subtype FA-D1 and predispose to childhood malignancies. We identified pathogenic mutations in PALB2 (also known as FANCN) in seven families affected with Fanconi anemia and cancer in early childhood, demonstrating that biallelic PALB2 mutations cause a new subtype of Fanconi anemia, FA-N, and, similar to biallelic BRCA2 mutations, confer a high risk of childhood cancer.


Subject(s)
Breast Neoplasms/genetics , Fanconi Anemia/genetics , Genetic Predisposition to Disease , Nuclear Proteins/genetics , Tumor Suppressor Proteins/genetics , Alleles , Child, Preschool , Fanconi Anemia Complementation Group N Protein , Fanconi Anemia Complementation Group Proteins/genetics , Humans , Infant , Mutation
12.
Blood ; 121(1): 54-63, 2013 Jan 03.
Article in English | MEDLINE | ID: mdl-23093618

ABSTRACT

SLX4, the newly identified Fanconi anemia protein, FANCP, is implicated in repairing DNA damage induced by DNA interstrand cross-linking (ICL) agents, topoisomerase I (TOP1) inhibitors, and in Holliday junction resolution. It interacts with and enhances the activity of XPF-ERCC1, MUS81-EME1, and SLX1 nucleases, but the requirement for the specific nucleases in SLX4 function is unclear. Here, by complementing a null FA-P Fanconi anemia cell line with SLX4 mutants that specifically lack the interaction with each of the nucleases, we show that the SLX4-dependent XPF-ERCC1 activity is essential for ICL repair but is dispensable for repairing TOP1 inhibitor-induced DNA lesions. Conversely, MUS81-SLX4 interaction is critical for resistance to TOP1 inhibitors but is less important for ICL repair. Mutation of SLX4 that abrogates interaction with SLX1 results in partial resistance to both cross-linking agents and TOP1 inhibitors. These results demonstrate that SLX4 modulates multiple DNA repair pathways by regulating appropriate nucleases.


Subject(s)
DNA Repair Enzymes/metabolism , DNA Repair/physiology , Fanconi Anemia/genetics , Recombinases/physiology , Camptothecin/toxicity , Cell Line , Cross-Linking Reagents/toxicity , DNA/drug effects , DNA/metabolism , DNA Mutational Analysis , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases , Endonucleases/metabolism , Fanconi Anemia/enzymology , Fanconi Anemia/pathology , Humans , Mitomycin/toxicity , Phthalazines/toxicity , Piperazines/toxicity , Poly(ADP-ribose) Polymerase Inhibitors , Protein Interaction Mapping , Protein Structure, Tertiary , Recombinant Fusion Proteins/metabolism , Recombinases/deficiency , Recombinases/genetics , Topoisomerase I Inhibitors/toxicity
13.
Blood ; 121(22): e138-48, 2013 May 30.
Article in English | MEDLINE | ID: mdl-23613520

ABSTRACT

Current methods for detecting mutations in Fanconi anemia (FA)-suspected patients are inefficient and often miss mutations. We have applied recent advances in DNA sequencing and genomic capture to the diagnosis of FA. Specifically, we used custom molecular inversion probes or TruSeq-enrichment oligos to capture and sequence FA and related genes, including introns, from 27 samples from the International Fanconi Anemia Registry at The Rockefeller University. DNA sequencing was complemented with custom array comparative genomic hybridization (aCGH) and RNA sequencing (RNA-seq) analysis. aCGH identified deletions/duplications in 4 different FA genes. RNA-seq analysis revealed lack of allele specific expression associated with a deletion and splicing defects caused by missense, synonymous, and deep-in-intron variants. The combination of TruSeq-targeted capture, aCGH, and RNA-seq enabled us to identify the complementation group and biallelic germline mutations in all 27 families: FANCA (7), FANCB (3), FANCC (3), FANCD1 (1), FANCD2 (3), FANCF (2), FANCG (2), FANCI (1), FANCJ (2), and FANCL (3). FANCC mutations are often the cause of FA in patients of Ashkenazi Jewish (AJ) ancestry, and we identified 2 novel FANCC mutations in 2 patients of AJ ancestry. We describe here a strategy for efficient molecular diagnosis of FA.


Subject(s)
Comparative Genomic Hybridization/methods , Fanconi Anemia/diagnosis , Fanconi Anemia/genetics , Jews/genetics , Sequence Analysis, RNA/methods , Basic-Leucine Zipper Transcription Factors/genetics , Family Health , Fanconi Anemia/ethnology , Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia Complementation Group C Protein/genetics , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group G Protein/genetics , Fanconi Anemia Complementation Group L Protein/genetics , Fanconi Anemia Complementation Group Proteins/genetics , Gene Deletion , Gene Duplication , Humans , Mutation
14.
Hum Mutat ; 35(11): 1342-53, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25168418

ABSTRACT

Fanconi anemia (FA) is a rare recessive disease resulting from mutations in one of at least 16 different genes. Mutation types and phenotypic manifestations of FA are highly heterogeneous and influence the clinical management of the disease. We analyzed 202 FA families for large deletions, using high-resolution comparative genome hybridization arrays, single-nucleotide polymorphism arrays, and DNA sequencing. We found pathogenic deletions in 88 FANCA, seven FANCC, two FANCD2, and one FANCB families. We find 35% of FA families carry large deletions, accounting for 18% of all FA pathogenic variants. Cloning and sequencing across the deletion breakpoints revealed that 52 FANCA deletion ends, and one FANCC deletion end extended beyond the gene boundaries, potentially affecting neighboring genes with phenotypic consequences. Seventy-five percent of the FANCA deletions are Alu-Alu mediated, predominantly by AluY elements, and appear to be caused by nonallelic homologous recombination. Individual Alu hotspots were identified. Defining the haplotypes of four FANCA deletions shared by multiple families revealed that three share a common ancestry. Knowing the exact molecular changes that lead to the disease may be critical for a better understanding of the FA phenotype, and to gain insight into the mechanisms driving these pathogenic deletion variants.


Subject(s)
Fanconi Anemia Complementation Group Proteins/genetics , Fanconi Anemia/genetics , Genomics , Sequence Deletion , Alu Elements , Base Sequence , Chromosome Breakpoints , Cloning, Molecular , Comparative Genomic Hybridization , Conserved Sequence , Fanconi Anemia Complementation Group Proteins/classification , Genome-Wide Association Study , Genotype , Haplotypes , Humans , Linkage Disequilibrium , Phylogeny , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
15.
Blood Adv ; 8(4): 899-908, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38191666

ABSTRACT

ABSTRACT: Fanconi anemia (FA) is a hereditary, DNA repair deficiency disorder caused by pathogenic variants in any 1 of 22 known genes (FANCA-FANCW). Variants in FANCA account for nearly two-thirds of all patients with FA. Clinical presentation of FA can be heterogeneous and include congenital abnormalities, progressive bone marrow failure, and predisposition to cancer. Here, we describe a relatively mild disease manifestation among 6 individuals diagnosed with FA, each compound heterozygous for 1 established pathogenic FANCA variant and 1 FANCA exon 36 variant, c.3624C>T. These individuals had delayed onset of hematological abnormalities, increased survival, reduced incidence of cancer, and improved fertility. Although predicted to encode a synonymous change (p.Ser1208=), the c.3624C>T variant causes a splicing error resulting in a FANCA transcript missing the last 4 base pairs of exon 36. Deep sequencing and quantitative reverse transcription polymerase chain reaction analysis revealed that 6% to 10% of the FANCA transcripts included the canonical splice product, which generated wild-type FANCA protein. Consistently, functional analysis of cell lines from the studied individuals revealed presence of residual FANCD2 ubiquitination and FANCD2 foci formation, better cell survival, and decreased late S/G2 accumulation in response to DNA interstrand cross-linking agent, indicating presence of residual activity of the FA repair pathway. Thus, the c.3624C>T variant is a hypomorphic allele, which contributes to delayed manifestation of FA disease phenotypes in individuals with at least 1 c.3624C>T allele.


Subject(s)
Fanconi Anemia , Neoplasms , Humans , Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia/genetics , Cell Line , Genotype
16.
Nat Commun ; 15(1): 1943, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38431617

ABSTRACT

DNA replication through a challenging genomic landscape is coordinated by the replisome, which must adjust to local conditions to provide appropriate replication speed and respond to lesions that hinder its progression. We have previously shown that proteasome shuttle proteins, DNA Damage Inducible 1 and 2 (DDI1/2), regulate Replication Termination Factor 2 (RTF2) levels at stalled replisomes, allowing fork stabilization and restart. Here, we show that during unperturbed replication, RTF2 regulates replisome localization of RNase H2, a heterotrimeric enzyme that removes RNA from RNA-DNA heteroduplexes. RTF2, like RNase H2, is essential for mammalian development and maintains normal replication speed. However, persistent RTF2 and RNase H2 at stalled replication forks prevent efficient replication restart, which is dependent on PRIM1, the primase component of DNA polymerase α-primase. Our data show a fundamental need for RTF2-dependent regulation of replication-coupled ribonucleotide removal and reveal the existence of PRIM1-mediated direct replication restart in mammalian cells.


Subject(s)
DNA Replication , DNA , Animals , DNA/genetics , DNA/metabolism , DNA Damage , Cell Cycle Proteins/metabolism , RNA/genetics , Ribonucleases/metabolism , Mammals/genetics
17.
Blood ; 117(14): 3759-69, 2011 Apr 07.
Article in English | MEDLINE | ID: mdl-21273304

ABSTRACT

Fanconi anemia is characterized by congenital abnormalities, bone marrow failure, and cancer predisposition. To investigate the origin, functional role, and clinical impact of FANCA mutations, we determined a FANCA mutational spectrum with 130 pathogenic alleles. Some of these mutations were further characterized for their distribution in populations, mode of emergence, or functional consequences at cellular and clinical level. The world most frequent FANCA mutation is not the result of a mutational "hot-spot" but results from worldwide dissemination of an ancestral Indo-European mutation. We provide molecular evidence that total absence of FANCA in humans does not reduce embryonic viability, as the observed frequency of mutation carriers in the Gypsy population equals the expected by Hardy-Weinberg equilibrium. We also prove that long distance Alu-Alu recombination can cause Fanconi anemia by originating large interstitial deletions involving FANCA and 2 adjacent genes. Finally, we show that all missense mutations studied lead to an altered FANCA protein that is unable to relocate to the nucleus and activate the FA/BRCA pathway. This may explain the observed lack of correlation between type of FANCA mutation and cellular phenotype or clinical severity in terms of age of onset of hematologic disease or number of malformations.


Subject(s)
Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia Complementation Group A Protein/physiology , Fanconi Anemia/genetics , Fanconi Anemia/pathology , Mutation , Adolescent , Age of Onset , Base Sequence , Cell Culture Techniques , Cells, Cultured , Child , Child, Preschool , Chromosome Aberrations , Comparative Genomic Hybridization , DNA Mutational Analysis , Fanconi Anemia/diagnosis , Fanconi Anemia/epidemiology , Fanconi Anemia Complementation Group A Protein/metabolism , Gene Frequency , Humans , Infant , Models, Biological , Molecular Sequence Data , Mutation/physiology , Phenotype , Spain/epidemiology
18.
bioRxiv ; 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36993543

ABSTRACT

Genetic information is duplicated via the highly regulated process of DNA replication. The machinery coordinating this process, the replisome, encounters many challenges, including replication fork-stalling lesions that threaten the accurate and timely transmission of genetic information. Cells have multiple mechanisms to repair or bypass lesions that would otherwise compromise DNA replication1,2. We have previously shown that proteasome shuttle proteins, DNA Damage Inducible 1 and 2 (DDI1/2) function to regulate Replication Termination Factor 2 (RTF2) at the stalled replisome, allowing for replication fork stabilization and restart3. Here we show that RTF2 regulates replisome localization of RNase H2, a heterotrimeric enzyme responsible for removing RNA in the context of RNA-DNA heteroduplexes4-6. We show that during unperturbed DNA replication, RTF2, like RNase H2, is required to maintain normal replication fork speeds. However, persistent RTF2 and RNase H2 at stalled replication forks compromises the replication stress response, preventing efficient replication restart. Such restart is dependent on PRIM1, the primase component of DNA polymerase α-primase. Our data show a fundamental need for regulation of replication-coupled ribonucleotide incorporation during normal replication and the replication stress response that is achieved through RTF2. We also provide evidence for PRIM1 function in direct replication restart following replication stress in mammalian cells.

19.
Nat Struct Mol Biol ; 14(6): 564-7, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17460694

ABSTRACT

Activation of the Fanconi anemia (FA) DNA damage-response pathway results in the monoubiquitination of FANCD2, which is regulated by the nuclear FA core ubiquitin ligase complex. A FANCD2 protein sequence-based homology search facilitated the discovery of FANCI, a second monoubiquitinated component of the FA pathway. Biallelic mutations in the gene coding for this protein were found in cells from four FA patients, including an FA-I reference cell line.


Subject(s)
DNA Repair/genetics , Fanconi Anemia Complementation Group Proteins/genetics , Fanconi Anemia Complementation Group Proteins/metabolism , Fanconi Anemia/genetics , Amino Acid Sequence , Base Sequence , Blotting, Western , Computational Biology , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group D2 Protein/metabolism , HeLa Cells , Humans , Immunoprecipitation , Microscopy, Fluorescence , Molecular Sequence Data , Mutation/genetics , Sequence Analysis, DNA , Ubiquitination
20.
Nat Struct Mol Biol ; 29(8): 801-812, 2022 08.
Article in English | MEDLINE | ID: mdl-35941380

ABSTRACT

Vertebrate replication forks arrested at interstrand DNA cross-links (ICLs) engage the Fanconi anemia pathway to incise arrested forks, 'unhooking' the ICL and forming a double strand break (DSB) that is repaired by homologous recombination (HR). The FANCP product, SLX4, in complex with the XPF (also known as FANCQ or ERCC4)-ERCC1 endonuclease, mediates ICL unhooking. Whether this mechanism operates at replication fork barriers other than ICLs is unknown. Here, we study the role of mouse SLX4 in HR triggered by a site-specific chromosomal DNA-protein replication fork barrier formed by the Escherichia coli-derived Tus-Ter complex. We show that SLX4-XPF is required for Tus-Ter-induced HR but not for error-free HR induced by a replication-independent DSB. We additionally uncover a role for SLX4-XPF in DSB-induced long-tract gene conversion, an error-prone HR pathway related to break-induced replication. Notably, Slx4 and Xpf mutants that are defective for Tus-Ter-induced HR are hypersensitive to ICLs and also to the DNA-protein cross-linking agents 5-aza-2'-deoxycytidine and zebularine. Collectively, these findings show that SLX4-XPF can process DNA-protein fork barriers for HR and that the Tus-Ter system recapitulates this process.


Subject(s)
Fanconi Anemia , Homologous Recombination , Animals , DNA/genetics , DNA Breaks, Double-Stranded , DNA Repair , DNA Replication , Endonucleases/genetics , Endonucleases/metabolism , Fanconi Anemia/metabolism , Mice
SELECTION OF CITATIONS
SEARCH DETAIL