Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters

Publication year range
1.
Cell ; 178(5): 1057-1071.e11, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442400

ABSTRACT

The Zika epidemic in the Americas has challenged surveillance and control. As the epidemic appears to be waning, it is unclear whether transmission is still ongoing, which is exacerbated by discrepancies in reporting. To uncover locations with lingering outbreaks, we investigated travel-associated Zika cases to identify transmission not captured by reporting. We uncovered an unreported outbreak in Cuba during 2017, a year after peak transmission in neighboring islands. By sequencing Zika virus, we show that the establishment of the virus was delayed by a year and that the ensuing outbreak was sparked by long-lived lineages of Zika virus from other Caribbean islands. Our data suggest that, although mosquito control in Cuba may initially have been effective at mitigating Zika virus transmission, such measures need to be maintained to be effective. Our study highlights how Zika virus may still be "silently" spreading and provides a framework for understanding outbreak dynamics. VIDEO ABSTRACT.


Subject(s)
Epidemics , Genomics/methods , Zika Virus Infection/epidemiology , Aedes/virology , Animals , Cuba/epidemiology , Humans , Incidence , Mosquito Control , Phylogeny , RNA, Viral/chemistry , RNA, Viral/metabolism , Sequence Analysis, RNA , Travel , West Indies/epidemiology , Zika Virus/classification , Zika Virus/genetics , Zika Virus/isolation & purification , Zika Virus Infection/transmission , Zika Virus Infection/virology
2.
Cell ; 161(7): 1516-26, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26091036

ABSTRACT

The 2013-2015 Ebola virus disease (EVD) epidemic is caused by the Makona variant of Ebola virus (EBOV). Early in the epidemic, genome sequencing provided insights into virus evolution and transmission and offered important information for outbreak response. Here, we analyze sequences from 232 patients sampled over 7 months in Sierra Leone, along with 86 previously released genomes from earlier in the epidemic. We confirm sustained human-to-human transmission within Sierra Leone and find no evidence for import or export of EBOV across national borders after its initial introduction. Using high-depth replicate sequencing, we observe both host-to-host transmission and recurrent emergence of intrahost genetic variants. We trace the increasing impact of purifying selection in suppressing the accumulation of nonsynonymous mutations over time. Finally, we note changes in the mucin-like domain of EBOV glycoprotein that merit further investigation. These findings clarify the movement of EBOV within the region and describe viral evolution during prolonged human-to-human transmission.


Subject(s)
Ebolavirus/genetics , Ebolavirus/isolation & purification , Genome, Viral , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/virology , Mutation , Biological Evolution , Disease Outbreaks , Ebolavirus/classification , Hemorrhagic Fever, Ebola/transmission , Humans , Sierra Leone/epidemiology , Specimen Handling
3.
PLoS Biol ; 21(8): e3002225, 2023 08.
Article in English | MEDLINE | ID: mdl-37527248

ABSTRACT

Pathogen genome sequencing has become a routine part of our response to active outbreaks of infectious disease and should be an important part of our preparations for future epidemics. In this Essay, we discuss the innovations that have enabled routine pathogen genome sequencing, as well as how genome sequences can be used to understand and control the spread of infectious disease. We also explore the impact of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic on the field of pathogen genomics and outline the challenges we must address to further improve the utility of pathogen genome sequencing in the future.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Pandemics , Disease Outbreaks , Chromosome Mapping
4.
PLoS Biol ; 20(6): e3001676, 2022 06.
Article in English | MEDLINE | ID: mdl-35737674

ABSTRACT

Snake fungal disease (SFD; ophidiomycosis), caused by the pathogen Ophidiomyces ophiodiicola (Oo), has been documented in wild snakes in North America and Eurasia, and is considered an emerging disease in the eastern United States of America. However, a lack of historical disease data has made it challenging to determine whether Oo is a recent arrival to the USA or whether SFD emergence is due to other factors. Here, we examined the genomes of 82 Oo strains to determine the pathogen's history in the eastern USA. Oo strains from the USA formed a clade (Clade II) distinct from European strains (Clade I), and molecular dating indicated that these clades diverged too recently (approximately 2,000 years ago) for transcontinental dispersal of Oo to have occurred via natural snake movements across Beringia. A lack of nonrecombinant intermediates between clonal lineages in Clade II indicates that Oo has actually been introduced multiple times to North America from an unsampled source population, and molecular dating indicates that several of these introductions occurred within the last few hundred years. Molecular dating also indicated that the most common Clade II clonal lineages have expanded recently in the USA, with time of most recent common ancestor mean estimates ranging from 1985 to 2007 CE. The presence of Clade II in captive snakes worldwide demonstrates a potential mechanism of introduction and highlights that additional incursions are likely unless action is taken to reduce the risk of pathogen translocation and spillover into wild snake populations.


Subject(s)
Dermatomycoses , Onygenales , Animals , Dermatomycoses/epidemiology , Dermatomycoses/microbiology , Genetics, Population , Snakes/genetics , United States
5.
J Infect Dis ; 2024 Oct 22.
Article in English | MEDLINE | ID: mdl-39432903

ABSTRACT

The etiologic agent of Pacific Coast tick fever (PCTF), a moderately severe tickborne illness that resembles Rocky Mountain spotted fever (RMSF), was first isolated in 1966 from specimens of Dermacentor occidentalis (the Pacific Coast tick) obtained in California. For several decades, this bacterium was identified ambiguously as the unclassified spotted fever group Rickettsia species 364-D, Rickettsia 364, or Rickettsia philipii. However, none of these epithets satisfied criteria of formal bacterial nomenclature. Data developed from mouse serotyping studies performed 45 years ago, and multi-locus sequence typing several decades later, indicated that this bacterium was similar to, but distinct from isolates of Rickettsia rickettsii, the etiological agent of RMSF. We applied an integrative taxonomic approach, combining phenotypic, ecological, and clinical data with whole genome sequencing of 11 contemporary isolates of this pathogen to identify it as a distinct subspecies of R. rickettsii, and propose the name Rickettsia rickettsii subsp. californica subsp. nov.

6.
PLoS Biol ; 19(9): e3001403, 2021 09.
Article in English | MEDLINE | ID: mdl-34587150

ABSTRACT

Powered by metagenomics, viral discovery is outpacing our capacity for the downstream characterization needed to fully assess zoonotic potential. A study published in PLOS Biology uses machine learning to prioritize novel viruses based only on genomic signatures.


Subject(s)
Viruses , Genome, Viral/genetics , Machine Learning , Metagenomics , Viruses/genetics
7.
Nature ; 544(7650): 309-315, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28405027

ABSTRACT

The 2013-2016 West African epidemic caused by the Ebola virus was of unprecedented magnitude, duration and impact. Here we reconstruct the dispersal, proliferation and decline of Ebola virus throughout the region by analysing 1,610 Ebola virus genomes, which represent over 5% of the known cases. We test the association of geography, climate and demography with viral movement among administrative regions, inferring a classic 'gravity' model, with intense dispersal between larger and closer populations. Despite attenuation of international dispersal after border closures, cross-border transmission had already sown the seeds for an international epidemic, rendering these measures ineffective at curbing the epidemic. We address why the epidemic did not spread into neighbouring countries, showing that these countries were susceptible to substantial outbreaks but at lower risk of introductions. Finally, we reveal that this large epidemic was a heterogeneous and spatially dissociated collection of transmission clusters of varying size, duration and connectivity. These insights will help to inform interventions in future epidemics.


Subject(s)
Ebolavirus/genetics , Ebolavirus/physiology , Genome, Viral/genetics , Hemorrhagic Fever, Ebola/transmission , Hemorrhagic Fever, Ebola/virology , Climate , Disease Outbreaks/statistics & numerical data , Ebolavirus/isolation & purification , Geography , Hemorrhagic Fever, Ebola/epidemiology , Humans , Internationality , Linear Models , Molecular Epidemiology , Phylogeny , Travel/legislation & jurisprudence , Travel/statistics & numerical data
8.
Nature ; 546(7658): 401-405, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28538723

ABSTRACT

Zika virus (ZIKV) is causing an unprecedented epidemic linked to severe congenital abnormalities. In July 2016, mosquito-borne ZIKV transmission was reported in the continental United States; since then, hundreds of locally acquired infections have been reported in Florida. To gain insights into the timing, source, and likely route(s) of ZIKV introduction, we tracked the virus from its first detection in Florida by sequencing ZIKV genomes from infected patients and Aedes aegypti mosquitoes. We show that at least 4 introductions, but potentially as many as 40, contributed to the outbreak in Florida and that local transmission is likely to have started in the spring of 2016-several months before its initial detection. By analysing surveillance and genetic data, we show that ZIKV moved among transmission zones in Miami. Our analyses show that most introductions were linked to the Caribbean, a finding corroborated by the high incidence rates and traffic volumes from the region into the Miami area. Our study provides an understanding of how ZIKV initiates transmission in new regions.


Subject(s)
Zika Virus Infection/epidemiology , Zika Virus Infection/virology , Zika Virus/genetics , Aedes/virology , Animals , Caribbean Region/epidemiology , Disease Outbreaks/statistics & numerical data , Female , Florida/epidemiology , Genome, Viral/genetics , Humans , Incidence , Molecular Epidemiology , Mosquito Vectors/virology , Zika Virus/isolation & purification , Zika Virus Infection/transmission
9.
J Virol ; 95(23): e0088221, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34549979

ABSTRACT

Human and simian immunodeficiency virus (HIV and SIV) infections establish lifelong reservoirs of cells harboring an integrated proviral genome. Genome editing CRISPR-associated Cas9 nucleases, combined with SIV-specific guiding RNA (gRNA) molecules, inactivate integrated provirus DNA in vitro and in animal models. We generated RNA-guided Cas9 nucleases (RGNu) and nickases (RGNi) targeting conserved SIV regions with no homology in the human or rhesus macaque genome. Assays in cells cotransfected with SIV provirus and plasmids coding for RGNus identified SIV long terminal repeat (LTR), trans-activation response (TAR) element, and ribosome slip site (RSS) regions as the most effective at virus suppression; RGNi targeting these regions inhibited virus production significantly. Multiplex plasmids that coexpressed these three RGNu (Nu3), or six (three pairs) RGNi (Ni6), were more efficient at virus suppression than any combination of individual RGNu and RGNi plasmids. Both Nu3 and Ni6 plasmids were tested in lymphoid cells chronically infected with SIVmac239, and whole-genome sequencing was used to determine on- and off-target mutations. Treatment with these all-in-one plasmids resulted in similar levels of mutations of viral sequences from the cellular genome; Nu3 induced indels at the 3 SIV-specific sites, whereas for Ni6 indels were present at the LTR and TAR sites. Levels of off-target effects detected by two different algorithms were indistinguishable from background mutations. In summary, we demonstrate that Cas9 nickase in association with gRNA pairs can specifically eliminate parts of the integrated provirus DNA; also, we show that careful design of an all-in-one plasmid coding for 3 gRNAs and Cas9 nuclease inhibits SIV production with undetectable off-target mutations, making these tools a desirable prospect for moving into animal studies. IMPORTANCE Our approach to HIV cure, utilizing the translatable SIV/rhesus macaque model system, aims at provirus inactivation and its removal with the least possible off-target side effects. We developed single molecules that delivered either three truncated SIV-specific gRNAs along with Cas9 nuclease or three pairs of SIV-specific gRNAs (six individual gRNAs) along with Cas9 nickase to enhance efficacy of on-target mutagenesis. Whole-genome sequencing demonstrated effective SIV sequence mutation and inactivation and the absence of demonstrable off-target mutations. These results open the possibility to employ Cas9 variants that introduce single-strand DNA breaks to eliminate integrated proviral DNA.


Subject(s)
DNA , Deoxyribonuclease I/genetics , Deoxyribonuclease I/metabolism , Proviruses/genetics , RNA, Guide, Kinetoplastida/genetics , Simian Immunodeficiency Virus/genetics , Animals , CRISPR-Cas Systems , Endonucleases/genetics , Gene Editing , HEK293 Cells , Humans , Macaca mulatta/metabolism , Mutagenesis , Plasmids
10.
N Engl J Med ; 373(25): 2448-54, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26465384

ABSTRACT

A suspected case of sexual transmission from a male survivor of Ebola virus disease (EVD) to his female partner (the patient in this report) occurred in Liberia in March 2015. Ebola virus (EBOV) genomes assembled from blood samples from the patient and a semen sample from the survivor were consistent with direct transmission. The genomes shared three substitutions that were absent from all other Western African EBOV sequences and that were distinct from the last documented transmission chain in Liberia before this case. Combined with epidemiologic data, the genomic analysis provides evidence of sexual transmission of EBOV and evidence of the persistence of infective EBOV in semen for 179 days or more after the onset of EVD. (Funded by the Defense Threat Reduction Agency and others.).


Subject(s)
Ebolavirus/genetics , Hemorrhagic Fever, Ebola/transmission , Semen/virology , Adult , Coitus , Ebolavirus/isolation & purification , Female , Genome, Viral , Hemorrhagic Fever, Ebola/virology , Humans , Liberia , Male , RNA, Viral/blood , Reverse Transcriptase Polymerase Chain Reaction , Unsafe Sex
11.
J Virol ; 91(15)2017 08 01.
Article in English | MEDLINE | ID: mdl-28539437

ABSTRACT

Ebolaviruses have a surface glycoprotein (GP1,2) that is required for virus attachment and entry into cells. Mutations affecting GP1,2 functions can alter virus growth properties. We generated a recombinant vesicular stomatitis virus encoding Ebola virus Makona variant GP1,2 (rVSV-MAK-GP) and observed emergence of a T544I mutation in the Makona GP1,2 gene during tissue culture passage in certain cell lines. The T544I mutation emerged within two passages when VSV-MAK-GP was grown on Vero E6, Vero, and BS-C-1 cells but not when it was passaged on Huh7 and HepG2 cells. The mutation led to a marked increase in virus growth kinetics and conferred a robust growth advantage over wild-type rVSV-MAK-GP on Vero E6 cells. Analysis of complete viral genomes collected from patients in western Africa indicated that this mutation was not found in Ebola virus clinical samples. However, we observed the emergence of T544I during serial passage of various Ebola Makona isolates on Vero E6 cells. Three independent isolates showed emergence of T544I from undetectable levels in nonpassaged virus or virus passaged once to frequencies of greater than 60% within a single passage, consistent with it being a tissue culture adaptation. Intriguingly, T544I is not found in any Sudan, Bundibugyo, or Tai Forest ebolavirus sequences. Furthermore, T544I did not emerge when we serially passaged recombinant VSV encoding GP1,2 from these ebolaviruses. This report provides experimental evidence that the spontaneous mutation T544I is a tissue culture adaptation in certain cell lines and that it may be unique for the species Zaire ebolavirusIMPORTANCE The Ebola virus (Zaire) species is the most lethal species of all ebolaviruses in terms of mortality rate and number of deaths. Understanding how the Ebola virus surface glycoprotein functions to facilitate entry in cells is an area of intense research. Recently, three groups independently identified a polymorphism in the Ebola glycoprotein (I544) that enhanced virus entry, but they did not agree in their conclusions regarding its impact on pathogenesis. Our findings here address the origins of this polymorphism and provide experimental evidence showing that it is the result of a spontaneous mutation (T544I) specific to tissue culture conditions, suggesting that it has no role in pathogenesis. We further show that this mutation may be unique to the species Zaire ebolavirus, as it does not occur in Sudan, Bundibugyo, and Tai Forest ebolaviruses. Understanding the mechanism behind this mutation can provide insight into functional differences that exist in culture conditions and among ebolavirus glycoproteins.


Subject(s)
Ebolavirus/physiology , Mutant Proteins/genetics , Mutation, Missense , Selection, Genetic , Viral Envelope Proteins/genetics , Virus Internalization , Adaptation, Biological , Amino Acid Substitution , Animals , Cell Line , DNA Mutational Analysis , Ebolavirus/genetics , Ebolavirus/growth & development , Genome, Viral , Humans , Recombination, Genetic , Reverse Genetics , Sequence Analysis, DNA , Serial Passage , Vesiculovirus/genetics , Vesiculovirus/growth & development , Virus Cultivation
12.
Adv Exp Med Biol ; 1062: 303-318, 2018.
Article in English | MEDLINE | ID: mdl-29845541

ABSTRACT

The United States Army Medical Research Institute of Infectious Diseases (USAMRIID) possesses an array of expertise in diverse capabilities for the characterization of emerging infectious diseases from the pathogen itself to human or animal infection models. The recent Zika virus (ZIKV) outbreak was a challenge and an opportunity to put these capabilities to work as a cohesive unit to quickly respond to a rapidly developing threat. Next-generation sequencing was used to characterize virus stocks and to understand the introduction and spread of ZIKV in the United States. High Content Imaging was used to establish a High Content Screening process to evaluate antiviral therapies. Functional genomics was used to identify critical host factors for ZIKV infection. An animal model using the temporal blockade of IFN-I in immunocompetent laboratory mice was investigated in conjunction with Positron Emission Tomography to study ZIKV. Correlative light and electron microscopy was used to examine ZIKV interaction with host cells in culture and infected animals. A quantitative mass spectrometry approach was used to examine the protein and metabolite type or concentration changes that occur during ZIKV infection in blood, cells, and tissues. Multiplex fluorescence in situ hybridization was used to confirm ZIKV replication in mouse and NHP tissues. The integrated rapid response approach developed at USAMRIID presented in this review was successfully applied and provides a new template pathway to follow if a new biological threat emerges. This streamlined approach will increase the likelihood that novel medical countermeasures could be rapidly developed, evaluated, and translated into the clinic.


Subject(s)
Academies and Institutes , Zika Virus Infection/virology , Zika Virus/physiology , Academies and Institutes/trends , Animals , Biomedical Research , Humans , Zika Virus/genetics
13.
Appl Environ Microbiol ; 83(5)2017 03 01.
Article in English | MEDLINE | ID: mdl-27986727

ABSTRACT

During routine screening for Burkholderia pseudomallei from water wells in northern Australia in areas where it is endemic, Gram-negative bacteria (strains MSMB43T, MSMB121, and MSMB122) with a similar morphology and biochemical pattern to B. pseudomallei and B. thailandensis were coisolated with B. pseudomallei on Ashdown's selective agar. To determine the exact taxonomic position of these strains and to distinguish them from B. pseudomallei and B. thailandensis, they were subjected to a series of phenotypic and molecular analyses. Biochemical and fatty acid methyl ester analysis was unable to distinguish B. humptydooensis sp. nov. from closely related species. With matrix-assisted laser desorption ionization-time of flight analysis, all isolates grouped together in a cluster separate from other Burkholderia spp. 16S rRNA and recA sequence analyses demonstrated phylogenetic placement for B. humptydooensis sp. nov. in a novel clade within the B. pseudomallei group. Multilocus sequence typing (MLST) analysis of the three isolates in comparison with MLST data from 3,340 B. pseudomallei strains and related taxa revealed a new sequence type (ST318). Genome-to-genome distance calculations and the average nucleotide identity of all isolates to both B. thailandensis and B. pseudomallei, based on whole-genome sequences, also confirmed B. humptydooensis sp. nov. as a novel Burkholderia species within the B. pseudomallei complex. Molecular analyses clearly demonstrated that strains MSMB43T, MSMB121, and MSMB122 belong to a novel Burkholderia species for which the name Burkholderia humptydooensis sp. nov. is proposed, with the type strain MSMB43T (American Type Culture Collection BAA-2767; Belgian Co-ordinated Collections of Microorganisms LMG 29471; DDBJ accession numbers CP013380 to CP013382).IMPORTANCEBurkholderia pseudomallei is a soil-dwelling bacterium and the causative agent of melioidosis. The genus Burkholderia consists of a diverse group of species, with the closest relatives of B. pseudomallei referred to as the B. pseudomallei complex. A proposed novel species, B. humptydooensis sp. nov., was isolated from a bore water sample from the Northern Territory in Australia. B. humptydooensis sp. nov. is phylogenetically distinct from B. pseudomallei and other members of the B. pseudomallei complex, making it the fifth member of this important group of bacteria.


Subject(s)
Burkholderia pseudomallei/classification , Burkholderia/classification , Burkholderia/genetics , Burkholderia/physiology , Phylogeny , Animals , Australia , Bacterial Typing Techniques/methods , Burkholderia/isolation & purification , Burkholderia Infections/microbiology , DNA, Bacterial/genetics , Disease Models, Animal , Fatty Acids/analysis , Genes, Bacterial/genetics , Genome, Bacterial , Melioidosis/microbiology , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Multilocus Sequence Typing/methods , Northern Territory , Phenotype , RNA, Ribosomal, 16S/genetics , Rec A Recombinases/genetics , Sequence Analysis, DNA , Species Specificity , Virulence , Water Microbiology
14.
J Infect Dis ; 214(suppl 3): S102-S109, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27377746

ABSTRACT

Containment limited the 2014 Nigerian Ebola virus (EBOV) disease outbreak to 20 reported cases and 8 fatalities. We present here clinical data and contact information for at least 19 case patients, and full-length EBOV genome sequences for 12 of the 20. The detailed contact data permits nearly complete reconstruction of the transmission tree for the outbreak. The EBOV genomic data are consistent with that tree. It confirms that there was a single source for the Nigerian infections, shows that the Nigerian EBOV lineage nests within a lineage previously seen in Liberia but is genetically distinct from it, and supports the conclusion that transmission from Nigeria to elsewhere did not occur.


Subject(s)
Disease Outbreaks , Ebolavirus/genetics , Genome, Viral/genetics , Hemorrhagic Fever, Ebola/epidemiology , Adult , Biological Evolution , Ebolavirus/isolation & purification , Female , Hemorrhagic Fever, Ebola/transmission , Hemorrhagic Fever, Ebola/virology , Humans , Liberia , Male , Middle Aged , Nigeria/epidemiology , Phylogeny , Sequence Analysis, DNA
15.
Proc Natl Acad Sci U S A ; 110(4): 1387-92, 2013 Jan 22.
Article in English | MEDLINE | ID: mdl-23297204

ABSTRACT

Recent advances in DNA-sequencing technologies now allow for in-depth characterization of the genomic stress responses of many organisms beyond model taxa. They are especially appropriate for organisms such as reef-building corals, for which dramatic declines in abundance are expected to worsen as anthropogenic climate change intensifies. Different corals differ substantially in physiological resilience to environmental stress, but the molecular mechanisms behind enhanced coral resilience remain unclear. Here, we compare transcriptome-wide gene expression (via RNA-Seq using Illumina sequencing) among conspecific thermally sensitive and thermally resilient corals to identify the molecular pathways contributing to coral resilience. Under simulated bleaching stress, sensitive and resilient corals change expression of hundreds of genes, but the resilient corals had higher expression under control conditions across 60 of these genes. These "frontloaded" transcripts were less up-regulated in resilient corals during heat stress and included thermal tolerance genes such as heat shock proteins and antioxidant enzymes, as well as a broad array of genes involved in apoptosis regulation, tumor suppression, innate immune response, and cell adhesion. We propose that constitutive frontloading enables an individual to maintain physiological resilience during frequently encountered environmental stress, an idea that has strong parallels in model systems such as yeast. Our study provides broad insight into the fundamental cellular processes responsible for enhanced stress tolerances that may enable some organisms to better persist into the future in an era of global climate change.


Subject(s)
Anthozoa/genetics , Anthozoa/physiology , Climate Change , Acclimatization/genetics , American Samoa , Animals , Anthozoa/parasitology , Cell Death/genetics , Coral Reefs , Dinoflagellida/physiology , Genes, MHC Class II , Genome , Heat-Shock Response/genetics , Stress, Physiological , Symbiosis , Transcriptome
16.
BMC Bioinformatics ; 16: 416, 2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26714571

ABSTRACT

BACKGROUND: The detection of pathogens in complex sample backgrounds has been revolutionized by wide access to next-generation sequencing (NGS) platforms. However, analytical methods to support NGS platforms are not as uniformly available. Pathosphere (found at Pathosphere.org) is a cloud - based open - sourced community tool that allows for communication, collaboration and sharing of NGS analytical tools and data amongst scientists working in academia, industry and government. The architecture allows for users to upload data and run available bioinformatics pipelines without the need for onsite processing hardware or technical support. RESULTS: The pathogen detection capabilities hosted on Pathosphere were tested by analyzing pathogen-containing samples sequenced by NGS with both spiked human samples as well as human and zoonotic host backgrounds. Pathosphere analytical pipelines developed by Edgewood Chemical Biological Center (ECBC) identified spiked pathogens within a common sample analyzed by 454, Ion Torrent, and Illumina sequencing platforms. ECBC pipelines also correctly identified pathogens in human samples containing arenavirus in addition to animal samples containing flavivirus and coronavirus. These analytical methods were limited in the detection of sequences with limited homology to previous annotations within NCBI databases, such as parvovirus. Utilizing the pipeline-hosting adaptability of Pathosphere, the analytical suite was supplemented by analytical pipelines designed by the United States Army Medical Research Insititute of Infectious Diseases and Walter Reed Army Institute of Research (USAMRIID-WRAIR). These pipelines were implemented and detected parvovirus sequence in the sample that the ECBC iterative analysis previously failed to identify. CONCLUSIONS: By accurately detecting pathogens in a variety of samples, this work demonstrates the utility of Pathosphere and provides a platform for utilizing, modifying and creating pipelines for a variety of NGS technologies developed to detect pathogens in complex sample backgrounds. These results serve as an exhibition for the existing pipelines and web-based interface of Pathosphere as well as the plug-in adaptability that allows for integration of newer NGS analytical software as it becomes available.


Subject(s)
User-Computer Interface , Algorithms , Animals , Arenavirus/genetics , Arenavirus/isolation & purification , Computational Biology , Coronavirus/genetics , Coronavirus/isolation & purification , Databases, Factual , Flavivirus/genetics , Flavivirus/isolation & purification , High-Throughput Nucleotide Sequencing , Humans , Internet , RNA, Viral/chemistry , RNA, Viral/metabolism , Sequence Analysis, RNA
17.
Emerg Infect Dis ; 21(7): 1135-43, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26079255

ABSTRACT

To support Liberia's response to the ongoing Ebola virus (EBOV) disease epidemic in Western Africa, we established in-country advanced genomic capabilities to monitor EBOV evolution. Twenty-five EBOV genomes were sequenced at the Liberian Institute for Biomedical Research, which provided an in-depth view of EBOV diversity in Liberia during September 2014-February 2015. These sequences were consistent with a single virus introduction to Liberia; however, shared ancestry with isolates from Mali indicated at least 1 additional instance of movement into or out of Liberia. The pace of change is generally consistent with previous estimates of mutation rate. We observed 23 nonsynonymous mutations and 1 nonsense mutation. Six of these changes are within known binding sites for sequence-based EBOV medical countermeasures; however, the diagnostic and therapeutic impact of EBOV evolution within Liberia appears to be low.


Subject(s)
Ebolavirus/genetics , Hemorrhagic Fever, Ebola/virology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , DNA Mutational Analysis , Drug Resistance, Viral/genetics , Evolution, Molecular , Genes, Viral , Hemorrhagic Fever, Ebola/drug therapy , Hemorrhagic Fever, Ebola/epidemiology , Humans , Liberia/epidemiology
18.
Mol Biol Evol ; 31(6): 1343-52, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24651035

ABSTRACT

Dinoflagellates of the genus Symbiodinium form an endosymbiosis with reef building corals, in which photosynthetically derived nutrients comprise the majority of the coral energy budget. An extraordinary amount of functional and genetic diversity is contained within the coral-associated Symbiodinium, with some phylotypes (i.e., genotypic groupings), conferring enhanced stress tolerance to host corals. Recent advances in DNA sequencing technologies have enabled transcriptome-wide profiling of the stress response of the cnidarian coral host; however, a comprehensive understanding of the molecular response to stress of coral-associated Symbiodinium, as well as differences among physiologically susceptible and tolerant types, remains largely unexplored. Here, we examine the transcriptome-wide response to heat stress via RNA-Seq of two types of Symbiodinium, the putatively thermotolerant type D2 and the more susceptible type C3K, resident within the same coral host species, Acropora hyacinthus. Contrary to previous findings with coral hosts, we find no detectable change in gene expression across the dinoflagellate transcriptome after 3 days of elevated thermal exposure, despite physical evidence of symbiosis breakdown. However, hundreds of genes identified as orthologs between the C and D types exhibited significant expression differences within treatments (i.e., attributable solely to type, not heat exposure). These include many genes related to known thermotolerance mechanisms including heat shock proteins and chloroplast membrane components. Additionally, both the between-treatment similarities and between-type differences remained pervasive after 12-18 months of common garden acclimation and in mixed Symbiodinium assemblages within the same coral host colony.


Subject(s)
Dinoflagellida/classification , Dinoflagellida/genetics , Gene Expression Regulation , Animals , Coral Reefs , Gene Expression Profiling , Genes, Protozoan , Hot Temperature , Phylogeny , RNA, Protozoan , Sequence Analysis, RNA , Species Specificity , Stress, Physiological , Symbiosis , Transcriptome
19.
J Gen Virol ; 96(8): 2079-2085, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25934793

ABSTRACT

Punta Toro virus (PTV), a member of the PTV complex, is a relatively common causative agent of febrile illness in Panama that is often misdiagnosed as 'dengue' or 'influenza'. Currently, only two named members make up this species complex, PTV and Buenaventura virus (BUEV). Genomic and antigenic characterization of 17 members of the PTV complex, nine of which were isolated from human acute febrile illness cases, reveals that this species complex is composed of six distant viruses. We propose to add four additional new viruses, designated Leticia virus, Cocle virus, Campana virus and Capira virus.


Subject(s)
Bunyaviridae Infections/virology , Fever/virology , Phlebovirus/isolation & purification , Animals , Antibodies, Viral , Bunyaviridae Infections/immunology , Cross Reactions , Fever/immunology , Humans , Insect Vectors/virology , Molecular Sequence Data , Panama , Phlebovirus/classification , Phlebovirus/genetics , Phlebovirus/immunology , Phylogeny , Psychodidae/virology
20.
BMC Microbiol ; 15: 259, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26545875

ABSTRACT

BACKGROUND: Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm) are Gram-negative facultative intracellular pathogens, which are the causative agents of melioidosis and glanders, respectively. Depending on the route of exposure, aerosol or transcutaneous, infection by Bp or Bm can result in an extensive range of disease - from acute to chronic, relapsing illness to fatal septicemia. Both diseases are associated with difficult diagnosis and high fatality rates. About ninety five percent of patients succumb to untreated septicemic infections and the fatality rate is 50 % even when standard antibiotic treatments are administered. RESULTS: The goal of this study is to profile murine macrophage-mediated phenotypic and molecular responses that are characteristic to a collection of Bp, Bm, Burkholderia thailandensis (Bt) and Burkholderia oklahomensis (Bo) strains obtained from humans, animals, environment and geographically diverse locations. Burkholderia spp. (N = 21) were able to invade and replicate in macrophages, albeit to varying degrees. All Bp (N = 9) and four Bm strains were able to induce actin polymerization on the bacterial surface following infection. Several Bp and Bm strains showed reduced ability to induce multinucleated giant cell (MNGC) formation, while Bo and Bp 776 were unable to induce this phenotype. Measurement of host cytokine responses revealed a statistically significant Bm mediated IL-6 and IL-10 production compared to Bp strains. Hierarchical clustering of transcriptional data from 84 mouse cytokines, chemokines and their corresponding receptors identified 29 host genes as indicators of differential responses between the Burkholderia spp. Further validation confirmed Bm mediated Il-1b, Il-10, Tnfrsf1b and Il-36a mRNA expressions were significantly higher when compared to Bp and Bt. CONCLUSIONS: These results characterize the phenotypic and immunological differences in the host innate response to pathogenic and avirulent Burkholderia strains and provide insight into the phenotypic alterations and molecular targets underlying host-Burkholderia interactions.


Subject(s)
Burkholderia mallei/immunology , Burkholderia pseudomallei/immunology , Chemokines/genetics , Macrophages/immunology , Macrophages/microbiology , Actins/metabolism , Animals , Burkholderia mallei/isolation & purification , Burkholderia mallei/pathogenicity , Burkholderia pseudomallei/isolation & purification , Burkholderia pseudomallei/pathogenicity , Gene Expression Regulation , Giant Cells/metabolism , Immunity, Innate , Macrophages/cytology , Mice , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL