Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Nucleic Acids Res ; 49(D1): D1207-D1217, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33264411

ABSTRACT

The Human Phenotype Ontology (HPO, https://hpo.jax.org) was launched in 2008 to provide a comprehensive logical standard to describe and computationally analyze phenotypic abnormalities found in human disease. The HPO is now a worldwide standard for phenotype exchange. The HPO has grown steadily since its inception due to considerable contributions from clinical experts and researchers from a diverse range of disciplines. Here, we present recent major extensions of the HPO for neurology, nephrology, immunology, pulmonology, newborn screening, and other areas. For example, the seizure subontology now reflects the International League Against Epilepsy (ILAE) guidelines and these enhancements have already shown clinical validity. We present new efforts to harmonize computational definitions of phenotypic abnormalities across the HPO and multiple phenotype ontologies used for animal models of disease. These efforts will benefit software such as Exomiser by improving the accuracy and scope of cross-species phenotype matching. The computational modeling strategy used by the HPO to define disease entities and phenotypic features and distinguish between them is explained in detail.We also report on recent efforts to translate the HPO into indigenous languages. Finally, we summarize recent advances in the use of HPO in electronic health record systems.


Subject(s)
Biological Ontologies , Computational Biology/methods , Databases, Factual , Disease/genetics , Genome , Phenotype , Software , Animals , Disease Models, Animal , Genotype , Humans , Infant, Newborn , International Cooperation , Internet , Neonatal Screening/methods , Pharmacogenetics/methods , Terminology as Topic
2.
Bioinformatics ; 33(22): 3658-3660, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28961788

ABSTRACT

MOTIVATION: Identification of small molecules that could be interesting starting points for drug discovery or to investigate a biological system as in chemical biology endeavours is both time consuming and costly. In silico approaches that assist the design of quality compound collections or help to prioritize molecules before synthesis or purchase are therefore valuable. Here quality refers to the selection of molecules that pass one or several selected filters that can be tuned by the users according to the project and the stage of the project. These filters can involve prediction of physicochemical properties, search for toxicophores or other unwanted chemical groups. RESULTS: FAF-Drugs4 is a novel version of our online server dedicated to the preparation and annotation of compound collections. The tool is now faster and several parameters have been optimized. In addition, a new service referred to as FAF-QED, an implementation of the quantitative estimate of drug-likeness method, is now available. AVAILABILITY AND IMPLEMENTATION: The server is available at http://fafdrugs4.mti.univ-paris-diderot.fr. CONTACT: Bruno.Villoutreix@inserm.fr. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Computational Biology/methods , Computer Simulation , Drug Discovery/methods , Software , Computational Biology/instrumentation , Drug Discovery/instrumentation
3.
Nucleic Acids Res ; 44(D1): D542-7, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26432833

ABSTRACT

In order to boost the identification of low-molecular-weight drugs on protein-protein interactions (PPI), it is essential to properly collect and annotate experimental data about successful examples. This provides the scientific community with the necessary information to derive trends about privileged physicochemical properties and chemotypes that maximize the likelihood of promoting a given chemical probe to the most advanced stages of development. To this end we have developed iPPI-DB (freely accessible at http://www.ippidb.cdithem.fr), a database that contains the structure, some physicochemical characteristics, the pharmacological data and the profile of the PPI targets of several hundreds modulators of protein-protein interactions. iPPI-DB is accessible through a web application and can be queried according to two general approaches: using physicochemical/pharmacological criteria; or by chemical similarity to a user-defined structure input. In both cases the results are displayed as a sortable and exportable datasheet with links to external databases such as Uniprot, PubMed. Furthermore each compound in the table has a link to an individual ID card that contains its physicochemical and pharmacological profile derived from iPPI-DB data. This includes information about its binding data, ligand and lipophilic efficiencies, location in the PPI chemical space, and importantly similarity with known drugs, and links to external databases like PubChem, and ChEMBL.


Subject(s)
Databases, Protein , Drug Discovery , Protein Interaction Mapping , Internet , Pharmaceutical Preparations/chemistry , Proteins/drug effects
4.
Nucleic Acids Res ; 43(W1): W200-7, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25883137

ABSTRACT

Drug attrition late in preclinical or clinical development is a serious economic problem in the field of drug discovery. These problems can be linked, in part, to the quality of the compound collections used during the hit generation stage and to the selection of compounds undergoing optimization. Here, we present FAF-Drugs3, a web server that can be used for drug discovery and chemical biology projects to help in preparing compound libraries and to assist decision-making during the hit selection/lead optimization phase. Since it was first described in 2006, FAF-Drugs has been significantly modified. The tool now applies an enhanced structure curation procedure, can filter or analyze molecules with user-defined or eight predefined physicochemical filters as well as with several simple ADMET (absorption, distribution, metabolism, excretion and toxicity) rules. In addition, compounds can be filtered using an updated list of 154 hand-curated structural alerts while Pan Assay Interference compounds (PAINS) and other, generally unwanted groups are also investigated. FAF-Drugs3 offers access to user-friendly html result pages and the possibility to download all computed data. The server requires as input an SDF file of the compounds; it is open to all users and can be accessed without registration at http://fafdrugs3.mti.univ-paris-diderot.fr.


Subject(s)
Drug Discovery , Pharmaceutical Preparations/chemistry , Software , Internet , Pharmacokinetics
5.
Nucleic Acids Res ; 43(W1): W448-54, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25855812

ABSTRACT

Open screening endeavors play and will play a key role to facilitate the identification of new bioactive compounds in order to foster innovation and to improve the effectiveness of chemical biology and drug discovery processes. In this line, we developed the new web server MTiOpenScreen dedicated to small molecule docking and virtual screening. It includes two services, MTiAutoDock and MTiOpenScreen, allowing performing docking into a user-defined binding site or blind docking using AutoDock 4.2 and automated virtual screening with AutoDock Vina. MTiOpenScreen provides valuable starting collections for screening, two in-house prepared drug-like chemical libraries containing 150 000 PubChem compounds: the Diverse-lib containing diverse molecules and the iPPI-lib enriched in molecules likely to inhibit protein-protein interactions. In addition, MTiOpenScreen offers users the possibility to screen up to 5000 small molecules selected outside our two libraries. The predicted binding poses and energies of up to 1000 top ranked ligands can be downloaded. In this way, MTiOpenScreen enables researchers to apply virtual screening using different chemical libraries on traditional or more challenging protein targets such as protein-protein interactions. The MTiOpenScreen web server is free and open to all users at http://bioserv.rpbs.univ-paris-diderot.fr/services/MTiOpenScreen/.


Subject(s)
Drug Discovery/methods , Molecular Docking Simulation/methods , Software , Binding Sites , Internet , Ligands , Pharmaceutical Preparations/chemistry , Protein Conformation , Proteins/antagonists & inhibitors
6.
Eur J Hum Genet ; 32(2): 182-189, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37926714

ABSTRACT

Rare diseases (RD) have a prevalence of not more than 1/2000 persons in the European population, and are characterised by the difficulty experienced in obtaining a correct and timely diagnosis. According to Orphanet, 72.5% of RD have a genetic origin although 35% of them do not yet have an identified causative gene. A significant proportion of patients suspected to have a genetic RD receive an inconclusive exome/genome sequencing. Working towards the International Rare Diseases Research Consortium (IRDiRC)'s goal for 2027 to ensure that all people living with a RD receive a diagnosis within one year of coming to medical attention, the Solve-RD project aims to identify the molecular causes underlying undiagnosed RD. As part of this strategy, we developed a phenotypic similarity-based variant prioritization methodology comparing submitted cases with other submitted cases and with known RD in Orphanet. Three complementary approaches based on phenotypic similarity calculations using the Human Phenotype Ontology (HPO), the Orphanet Rare Diseases Ontology (ORDO) and the HPO-ORDO Ontological Module (HOOM) were developed; genomic data reanalysis was performed by the RD-Connect Genome-Phenome Analysis Platform (GPAP). The methodology was tested in 4 exemplary cases discussed with experts from European Reference Networks. Variants of interest (pathogenic or likely pathogenic) were detected in 8.8% of the 725 cases clustered by similarity calculations. Diagnostic hypotheses were validated in 42.1% of them and needed further exploration in another 10.9%. Based on the promising results, we are devising an automated standardized phenotypic-based re-analysis pipeline to be applied to the entire unsolved cases cohort.


Subject(s)
Genomics , Rare Diseases , Humans , Rare Diseases/diagnosis , Rare Diseases/epidemiology , Rare Diseases/genetics , Phenotype , Chromosome Mapping
7.
Bioinformatics ; 27(14): 2018-20, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21636592

ABSTRACT

SUMMARY: The FAF-Drugs2 server is a web application that prepares chemical compound libraries prior to virtual screening or that assists hit selection/lead optimization before chemical synthesis or ordering. The FAF-Drugs2 web server is an enhanced version of the FAF-Drugs2 package that now includes Pan Assay Interference Compounds detection. This online toolkit has been designed through a user-centered approach with emphasis on user-friendliness. This is a unique online tool allowing to prepare large compound libraries with in house or user-defined filtering parameters. AVAILABILITY: The FAF-Drugs2 server is freely available at http://bioserv.rpbs.univ-paris-diderot.fr/FAF-Drugs/.


Subject(s)
Internet , Pharmaceutical Preparations/chemistry , Small Molecule Libraries , Software , Computer Simulation , Electronics , Online Systems
8.
Mol Pharm ; 9(11): 3127-35, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-23072744

ABSTRACT

Aqueous solubility is one of the most important ADMET properties to assess and to optimize during the drug discovery process. At present, accurate prediction of solubility remains very challenging and there is an important need of independent benchmarking of the existing in silico models such as to suggest solutions for their improvement. In this study, we developed a new protocol for improved solubility prediction by combining several existing models available in commercial or free software packages. We first performed an evaluation of ten in silico models for aqueous solubility prediction on several data sets in order to assess the reliability of the methods, and we proposed a new diverse data set of 150 molecules as relevant test set, SolDiv150. We developed a random forest protocol to evaluate the performance of different fingerprints for aqueous solubility prediction based on molecular structure similarity. Our protocol, called a "multimodel protocol", allows selecting the most accurate model for a compound of interest among the employed models or software packages, achieving r(2) of 0.84 when applied to SolDiv150. We also found that all models assessed here performed better on druglike molecules than on real drugs, thus additional improvement is needed in this direction. Overall, our approach enlarges the applicability domain as demonstrated by the more accurate results for solubility prediction obtained using our protocol in comparison to using individual models.


Subject(s)
Computer Simulation , Models, Chemical , Pharmaceutical Preparations , Water/chemistry , Molecular Structure , Quantitative Structure-Activity Relationship , Software , Solubility
9.
ACS Chem Biol ; 15(6): 1566-1574, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32320205

ABSTRACT

Protein-protein interactions (PPIs) mediate nearly every cellular process and represent attractive targets for modulating disease states but are challenging to target with small molecules. Despite this, several PPI inhibitors (iPPIs) have entered clinical trials, and a growing number of PPIs have become validated drug targets. However, high-throughput screening efforts still endure low hit rates mainly because of the use of unsuitable screening libraries. Here, we describe the collective effort of a French consortium to build, select, and store in plates a unique chemical library dedicated to the inhibition of PPIs. Using two independent predictive models and two updated databases of experimentally confirmed PPI inhibitors developed by members of the consortium, we built models based on different training sets, molecular descriptors, and machine learning methods. Independent statistical models were used to select putative PPI inhibitors from large commercial compound collections showing great complementarity. Medicinal chemistry filters were applied to remove undesirable structures from this set (such as PAINS, frequent hitters, and toxic compounds) and to improve drug likeness. The remaining compounds were subjected to a clustering procedure to reduce the final size of the library while maintaining its chemical diversity. In practice, the library showed a 46-fold activity rate enhancement when compared to a non-iPPI-enriched diversity library in high-throughput screening against the CD47-SIRPα PPI. The Fr-PPIChem library is plated in 384-well plates and will be distributed on demand to the scientific community as a powerful tool for discovering new chemical probes and early hits for the development of potential therapeutic drugs.


Subject(s)
Databases, Chemical , High-Throughput Screening Assays/methods , Protein Interaction Maps , Small Molecule Libraries/chemistry , Drug Discovery , Models, Chemical , Reproducibility of Results
10.
BMC Bioinformatics ; 9: 184, 2008 Apr 10.
Article in English | MEDLINE | ID: mdl-18402678

ABSTRACT

BACKGROUND: The number of protein targets with a known or predicted tri-dimensional structure and of drug-like chemical compounds is growing rapidly and so is the need for new therapeutic compounds or chemical probes. Performing flexible structure-based virtual screening computations on thousands of targets with millions of molecules is intractable to most laboratories nor indeed desirable. Since shape complementarity is of primary importance for most protein-ligand interactions, we have developed a tool/protocol based on rigid-body docking to select compounds that fit well into binding sites. RESULTS: Here we present an efficient multiple conformation rigid-body docking approach, MS-DOCK, which is based on the program DOCK. This approach can be used as the first step of a multi-stage docking/scoring protocol. First, we developed and validated the Multiconf-DOCK tool that generates several conformers per input ligand. Then, each generated conformer (bioactives and 37970 decoys) was docked rigidly using DOCK6 with our optimized protocol into seven different receptor-binding sites. MS-DOCK was able to significantly reduce the size of the initial input library for all seven targets, thereby facilitating subsequent more CPU demanding flexible docking procedures. CONCLUSION: MS-DOCK can be easily used for the generation of multi-conformer libraries and for shape-based filtering within a multi-step structure-based screening protocol in order to shorten computation times.


Subject(s)
Computational Biology/methods , Molecular Conformation , Protein Binding , User-Computer Interface , Algorithms , Binding Sites , Computer Simulation , Databases, Factual , Isomerism , Ligands , Models, Molecular , Particle Size
11.
BMC Bioinformatics ; 9: 396, 2008 Sep 24.
Article in English | MEDLINE | ID: mdl-18816385

ABSTRACT

BACKGROUND: Drug discovery and chemical biology are exceedingly complex and demanding enterprises. In recent years there are been increasing awareness about the importance of predicting/optimizing the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of small chemical compounds along the search process rather than at the final stages. Fast methods for evaluating ADMET properties of small molecules often involve applying a set of simple empirical rules (educated guesses) and as such, compound collections' property profiling can be performed in silico. Clearly, these rules cannot assess the full complexity of the human body but can provide valuable information and assist decision-making. RESULTS: This paper presents FAF-Drugs2, a free adaptable tool for ADMET filtering of electronic compound collections. FAF-Drugs2 is a command line utility program (e.g., written in Python) based on the open source chemistry toolkit OpenBabel, which performs various physicochemical calculations, identifies key functional groups, some toxic and unstable molecules/functional groups. In addition to filtered collections, FAF-Drugs2 can provide, via Gnuplot, several distribution diagrams of major physicochemical properties of the screened compound libraries. CONCLUSION: We have developed FAF-Drugs2 to facilitate compound collection preparation, prior to (or after) experimental screening or virtual screening computations. Users can select to apply various filtering thresholds and add rules as needed for a given project. As it stands, FAF-Drugs2 implements numerous filtering rules (23 physicochemical rules and 204 substructure searching rules) that can be easily tuned.


Subject(s)
Algorithms , Drug Design , Models, Chemical , Pharmaceutical Preparations/chemistry , Software , Biochemistry/methods , Computer Simulation , Research
12.
BMC Bioinformatics ; 9: 438, 2008 Oct 16.
Article in English | MEDLINE | ID: mdl-18925937

ABSTRACT

BACKGROUND: Virtual or in silico ligand screening combined with other computational methods is one of the most promising methods to search for new lead compounds, thereby greatly assisting the drug discovery process. Despite considerable progresses made in virtual screening methodologies, available computer programs do not easily address problems such as: structural optimization of compounds in a screening library, receptor flexibility/induced-fit, and accurate prediction of protein-ligand interactions. It has been shown that structural optimization of chemical compounds and that post-docking optimization in multi-step structure-based virtual screening approaches help to further improve the overall efficiency of the methods. To address some of these points, we developed the program AMMOS for refining both, the 3D structures of the small molecules present in chemical libraries and the predicted receptor-ligand complexes through allowing partial to full atom flexibility through molecular mechanics optimization. RESULTS: The program AMMOS carries out an automatic procedure that allows for the structural refinement of compound collections and energy minimization of protein-ligand complexes using the open source program AMMP. The performance of our package was evaluated by comparing the structures of small chemical entities minimized by AMMOS with those minimized with the Tripos and MMFF94s force fields. Next, AMMOS was used for full flexible minimization of protein-ligands complexes obtained from a mutli-step virtual screening. Enrichment studies of the selected pre-docked complexes containing 60% of the initially added inhibitors were carried out with or without final AMMOS minimization on two protein targets having different binding pocket properties. AMMOS was able to improve the enrichment after the pre-docking stage with 40 to 60% of the initially added active compounds found in the top 3% to 5% of the entire compound collection. CONCLUSION: The open source AMMOS program can be helpful in a broad range of in silico drug design studies such as optimization of small molecules or energy minimization of pre-docked protein-ligand complexes. Our enrichment study suggests that AMMOS, designed to minimize a large number of ligands pre-docked in a protein target, can successfully be applied in a final post-processing step and that it can take into account some receptor flexibility within the binding site area.


Subject(s)
Drug Design , Ligands , Proteins/metabolism , Software , Algorithms , Binding Sites , Models, Molecular , Neuraminidase/antagonists & inhibitors , Neuraminidase/chemistry , Neuraminidase/metabolism , Proteins/chemistry , Receptors, Estrogen/antagonists & inhibitors , Receptors, Estrogen/chemistry , Receptors, Estrogen/metabolism , Small Molecule Libraries , Thermodynamics
13.
Curr Protein Pept Sci ; 8(4): 381-411, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17696871

ABSTRACT

In today's research environment, a wealth of experimental/theoretical structural data is available and the number of therapeutically relevant macromolecular structures is growing rapidly. This, coupled with the huge number of small non-peptide potential drug candidates easily available (over 7 million compounds), highlight the need of using computer-aided techniques for the efficient identification and optimization of novel hit compounds. Virtual (or in silico) ligand screening based on the three-dimensional structure of macromolecular targets (SB-VLS) is firmly established as an important approach to identify chemical entities that have a high likelihood of binding to a target molecule to elicit desired biological responses. A myriad of free applications and services facilitating the drug discovery process have been posted on the Web. In this review, we cite over 350 URLs that are useful for SB-VLS projects and essentially free for academic groups. We attempt to provide links for in silico ADME/tox prediction tools, compound collections, some ligand-based methods, characterization/simulation of 3D targets and homology modeling tools, druggable pocket predictions, active site comparisons, analysis of macromolecular interfaces, protein docking tools to help identify binding pockets and protein-ligand docking/scoring methods. As such, we aim at providing both, methods pertaining to the field of Structural Bioinformatics (defined here as tools to study macromolecules) and methods pertaining to the field of Chemoinformatics (defined here as tools to make better decisions faster in the arena of drug/lead identification and optimization). We also report several recent success stories using these free computer methods. This review should help readers finding free computer tools useful for their projects. Overall, we are confident that these tools will facilitate rapid and cost-effective identification of new hit compounds. The URLs presented in this review will be updated regularly at www.vls3d.com in the coming months, "Links" section.


Subject(s)
Algorithms , Databases, Genetic , Drug Design , Information Services , Binding Sites , Computational Biology/methods , Computer-Aided Design , Databases, Protein , Internet , Ligands , Molecular Structure , Quantitative Structure-Activity Relationship , Software
14.
Sci Rep ; 7: 46277, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28397808

ABSTRACT

The modulation of PPIs by low molecular weight chemical compounds, particularly by orally bioavailable molecules, would be very valuable in numerous disease indications. However, it is known that PPI inhibitors (iPPIs) tend to have properties that are linked to poor Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) and in some cases to poor clinical outcomes. Previously reported in silico analyses of iPPIs have essentially focused on physicochemical properties but several other ADMET parameters would be important to assess. In order to gain new insights into the ADMET properties of iPPIs, computations were carried out on eight datasets collected from several databases. These datasets involve compounds targeting enzymes, GPCRs, ion channels, nuclear receptors, allosteric modulators, oral marketed drugs, oral natural product-derived marketed drugs and iPPIs. Several trends are reported that should assist the design and optimization of future PPI inhibitors, either for drug discovery endeavors or for chemical biology projects.


Subject(s)
Computational Biology/methods , Drug Discovery , Protein Binding/drug effects , Animals , Drug Discovery/methods , Drug Stability , Drug-Related Side Effects and Adverse Reactions , Humans , Kinetics , Protein Interaction Mapping , Protein Interaction Maps , Rats , Solubility , Structure-Activity Relationship , Tissue Distribution
15.
Sci Rep ; 7(1): 7249, 2017 08 03.
Article in English | MEDLINE | ID: mdl-28775266

ABSTRACT

The human ClC-Kb channel plays a key role in exporting chloride ions from the cytosol and is known to be involved in Bartter syndrome type 3 when its permeation capacity is decreased. The ClC-Kb channel has been recently proposed as a potential therapeutic target to treat hypertension. In order to gain new insights into the sequence-structure-function relationships of this channel, to investigate possible impacts of amino-acid substitutions, and to design novel inhibitors, we first built a structural model of the human ClC-Kb channel using comparative modeling strategies. We combined in silico and in vitro techniques to analyze amino acids involved in the chloride ion pathway as well as to rationalize the possible role of several clinically observed mutations leading to the Bartter syndrome type 3. Virtual screening and drug repositioning computations were then carried out. We identified six novel molecules, including 2 approved drugs, diflusinal and loperamide, with Kd values in the low micromolar range, that block the human ClC-Kb channel and that could be used as starting point to design novel chemical probes for this potential therapeutic target.


Subject(s)
Chloride Channels/chemistry , Models, Molecular , Quantitative Structure-Activity Relationship , Amino Acid Sequence , Animals , Cattle , Chloride Channels/antagonists & inhibitors , Chloride Channels/genetics , Chloride Channels/metabolism , Chlorides/chemistry , Chlorides/metabolism , Disease Susceptibility , Drug Evaluation, Preclinical , Humans , Ion Channel Gating , Membrane Potentials , Molecular Structure , Mutation , Protein Conformation
16.
Oncogene ; 24(31): 4921-33, 2005 Jul 21.
Article in English | MEDLINE | ID: mdl-15897896

ABSTRACT

Hepatitis C virus (HCV) core, known to be involved in liver carcinogenesis, is processed in the endoplasmic reticulum (ER). We thus investigated the impact of three HCV core isolates on ER stress, ER calcium signalling and apoptosis. We show that HCV core constructs trigger hyperexpression of Grp78/BiP, Grp 94, calreticulin and sarco/endoplasmic reticulum calcium ATPase, inducing ER stress. By using the ER-targeted aequorin calcium probe, we found that ER calcium depletion follows ER stress in core-expressing cells. HCV core induces apoptosis through overexpression of the CHOP/GADD153 proapoptotic factor, Bax translocation to mitochondria, mitochondrial membrane depolarization, cytochrome c release, caspase-3 and PARP cleavage. Furthermore, reversion of HCV core-induced ER calcium depletion (by transfection of SERCA2) completely abolished mitochondrial membrane depolarization, suggesting that both ER stress (through CHOP overexpression) and calcium signalling play a major role in the HCV core-mediated control of apoptosis. ER stress and apoptosis were also found in a proportion of HCV-full-length replicon-expressing cells and in the liver of HCV core transgenic mice. In conclusion, our data demonstrate that HCV core deregulates the control of apoptosis by inducing ER stress and ER calcium depletion providing new elements to understand the mechanisms involved in HCV-related liver chronic diseases.


Subject(s)
Apoptosis/physiology , Calcium/metabolism , Endoplasmic Reticulum/physiology , Hepacivirus/pathogenicity , Liver/virology , Animals , Cell Line, Tumor , Endoplasmic Reticulum/virology , Endoplasmic Reticulum Chaperone BiP , Humans , In Situ Nick-End Labeling , Intracellular Membranes/physiology , Liver/cytology , Liver/physiology , Membrane Potentials , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/physiology , Models, Biological , Promoter Regions, Genetic , Transfection
17.
Nucleic Acids Res ; 31(2): 570-9, 2003 Jan 15.
Article in English | MEDLINE | ID: mdl-12527764

ABSTRACT

The six minichromosome maintenance proteins (Mcm2-7) are required for both the initiation and elongation of chromosomal DNA, ensuring that DNA replication takes place once, and only once, during the S phase. Here we report on the cloning of a new human Mcm gene (hMcm8) and on characterisation of its protein product. The hMcm8 gene contains the central Mcm domain conserved in the Mcm2-7 gene family, and is expressed in a range of cell lines and human tissues. hMcm8 mRNA accumulates during G(1)/S phase, while hMcm8 protein is detectable throughout the cell cycle. Immunoprecipitation-based studies did not reveal any participation of hMcm8 in the Mcm3/5 and Mcm2/4/6/7 subcomplexes. hMcm8 localises to the nucleus, although it is devoid of a nuclear localisation signal, suggesting that it binds to a nuclear protein. In the nucleus, the hMcm8 structure-bound fraction is detectable in S, but not in G(2)/M, phase, as for hMcm3. However, unlike hMcm3, the hMcm8 structure-bound fraction is not detectable in G(1) phase. Overall, our data identify a new Mcm protein, which does not form part of the Mcm2-7 complex and which is only structure-bound during S phase, thus suggesting its specific role in DNA replication.


Subject(s)
Cell Cycle Proteins/genetics , Multigene Family/genetics , Blotting, Western , Cell Cycle Proteins/metabolism , Cell Line , Chromatin/metabolism , Cloning, Molecular , Conserved Sequence/genetics , DNA, Complementary/chemistry , DNA, Complementary/genetics , Evolution, Molecular , G1 Phase , Gene Expression , HeLa Cells , Humans , Minichromosome Maintenance Proteins , Molecular Sequence Data , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phylogeny , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism , S Phase , Sequence Analysis, DNA , Tumor Cells, Cultured
18.
Oncogene ; 22(25): 3911-6, 2003 Jun 19.
Article in English | MEDLINE | ID: mdl-12813464

ABSTRACT

Integration of Hepatitis B Virus (HBV) DNA into liver cell DNA has been well established, but its implication in liver carcinogenesis is still being debated. In particular, insertion of the viral genome into cellular genes has been viewed as a rare event. By using HBV-Alu PCR, we have now isolated, from nine hepatocellular carcinomas, nine HBV-DNA integration sites showing that the viral genome mutates key regulatory cellular genes: neurotropic tyrosin receptor kinase 2 (NTRK2) gene, IL-1R-associated kinase 2 (IRAK2) gene, p42 mitogen-activated protein kinase 1 (p42MAPK1) gene, inositol 1,4,5-triphosphate receptor type 2 (IP3R2) gene, inositol 1,4,5-triphosphate receptor (IP3R) type 1 (IP3R1) gene, alpha 2,3 sialyltransferase (ST3GAL VI or SITA) gene, thyroid hormone uncoupling protein (TRUP) gene, EMX2-like gene, and human telomerase reverse transcriptase (hTERT) gene. This result brings to 15 the total number of genes targeted by HBV in a study of 22 human liver cancers. Overall, we found that both the inositol 1,4,5-triphosphate receptor gene and the telomerase gene were targeted by HBV in two different tumors. Thus, HBV frequently targets cellular genes involved in cell signalling and some of them may be preferential targets of the viral integration.


Subject(s)
Carcinoma, Hepatocellular/virology , DNA, Neoplasm/analysis , DNA, Viral/isolation & purification , Hepatitis B virus/physiology , Liver Neoplasms/virology , Mutagenesis, Insertional , Telomerase/genetics , Virus Integration , Calcium Channels/genetics , Calcium-Transporting ATPases/genetics , Carcinoma, Hepatocellular/genetics , DNA-Binding Proteins/genetics , Hepatitis B/virology , Hepatitis B virus/genetics , Humans , Inositol 1,4,5-Trisphosphate Receptors , Interleukin-1 Receptor-Associated Kinases , Liver Neoplasms/genetics , Mitogen-Activated Protein Kinase 1/genetics , Neoplasm Proteins/genetics , Polymerase Chain Reaction , Protein Kinases/genetics , Receptor, trkB/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Ribosomal Proteins/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Sialyltransferases/genetics , Transcription Factors/genetics , beta-Galactoside alpha-2,3-Sialyltransferase
19.
Prog Biophys Mol Biol ; 119(1): 20-32, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25748546

ABSTRACT

Protein-protein interactions (PPIs) are carrying out diverse functions in living systems and are playing a major role in the health and disease states. Low molecular weight (LMW) "drug-like" inhibitors of PPIs would be very valuable not only to enhance our understanding over physiological processes but also for drug discovery endeavors. However, PPIs were deemed intractable by LMW chemicals during many years. But today, with the new experimental and in silico technologies that have been developed, about 50 PPIs have already been inhibited by LMW molecules. Here, we first focus on general concepts about protein-protein interactions, present a consensual view about ligandable pockets at the protein interfaces and the possibilities of using fast and cost effective structure-based virtual screening methods to identify PPI hits. We then discuss the design of compound collections dedicated to PPIs. Recent financial analyses of the field suggest that LMW PPI modulators could be gaining momentum over biologics in the coming years supporting further research in this area.


Subject(s)
Computer Simulation , Drug Design , Protein Interaction Maps/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Animals , Humans , Ligands , Molecular Weight , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacokinetics
20.
PLoS One ; 9(10): e110884, 2014.
Article in English | MEDLINE | ID: mdl-25340632

ABSTRACT

Snyder-Robinson Syndrome (SRS) is a rare mental retardation disorder which is caused by the malfunctioning of an enzyme, the spermine synthase (SMS), which functions as a homo-dimer. The malfunctioning of SMS in SRS patients is associated with several identified missense mutations that occur away from the active site. This investigation deals with a particular SRS-causing mutation, the G56S mutation, which was shown computationally and experimentally to destabilize the SMS homo-dimer and thus to abolish SMS enzymatic activity. As a proof-of-concept, we explore the possibility to restore the enzymatic activity of the malfunctioning SMS mutant G56S by stabilizing the dimer through small molecule binding at the mutant homo-dimer interface. For this purpose, we designed an in silico protocol that couples virtual screening and a free binding energy-based approach to identify potential small-molecule binders on the destabilized G56S dimer, with the goal to stabilize it and thus to increase SMS G56S mutant activity. The protocol resulted in extensive list of plausible stabilizers, among which we selected and tested 51 compounds experimentally for their capability to increase SMS G56S mutant enzymatic activity. In silico analysis of the experimentally identified stabilizers suggested five distinctive chemical scaffolds. This investigation suggests that druggable pockets exist in the vicinity of the mutation sites at protein-protein interfaces which can be used to alter the disease-causing effects by small molecule binding. The identified chemical scaffolds are drug-like and can serve as original starting points for development of lead molecules to further rescue the disease-causing effects of the Snyder-Robinson syndrome for which no efficient treatment exists up to now.


Subject(s)
Drug Design , Intellectual Disability/genetics , Mental Retardation, X-Linked/genetics , Spermine Synthase/chemistry , Spermine Synthase/genetics , Binding Sites , Chemistry, Pharmaceutical/methods , Crystallography, X-Ray/methods , Humans , Intellectual Disability/drug therapy , Mental Retardation, X-Linked/drug therapy , Molecular Dynamics Simulation , Mutation , Mutation, Missense , Protein Binding , Protein Conformation , Protein Interaction Mapping , Protein Multimerization , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL