Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 439, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39145847

ABSTRACT

The escalating interest in Bacillus velezensis as a biocontrol agent arises from its demonstrated efficacy in inhibiting both phytopathogenic fungi and bacteria, positioning it as a promising candidate for biotechnological applications. This mini review aims to offer a comprehensive exploration of the multifaceted properties of B. velezensis, with particular focus on its beneficial interactions with plants and its potential for controlling phytopathogenic fungi. The molecular dialogues involving B. velezensis, plants, and phytopathogens are scrutinized to underscore the intricate mechanisms orchestrating these interactions. Additionally, the review elucidates the mode of action of B. velezensis, particularly through cyclic lipopeptides, highlighting their importance in biocontrol and promoting plant growth. The agricultural applications of B. velezensis are detailed, showcasing its role in enhancing crop health and productivity while reducing reliance on chemical pesticides. Furthermore, the review extends its purview in the industrial and environmental arenas, highlighting its versatility across various sectors. By addressing challenges such as formulation optimization and regulatory frameworks, the review aims to chart a course for the effective utilization of B. velezensis. KEY POINTS: • B. velezensis fights phytopathogens, boosting biotech potential • B. velezensis shapes agri-biotech future, offers sustainable solutions • Explores plant-B. velezensis dialogue, lipopeptide potential showcased.


Subject(s)
Bacillus , Plant Diseases , Bacillus/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Biological Control Agents/metabolism , Biological Control Agents/pharmacology , Lipopeptides/metabolism , Lipopeptides/pharmacology , Fungi/metabolism , Fungi/drug effects , Plant Development , Pest Control, Biological/methods , Biotechnology/methods , Crops, Agricultural/microbiology , Plants/microbiology , Agriculture/methods
2.
Molecules ; 27(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36557875

ABSTRACT

Numerous fungal plant pathogens can infect fresh fruits and vegetables during transit and storage conditions. The resulting infections were mainly controlled by synthetic fungicides, but their application has many drawbacks associated with the threatened environment and human health. Therefore, the use of natural plants with antimicrobial potential could be a promising alternative to overcome the side effects of fungicides. In this regard, this study aimed at evaluating the antifungal activity potential of saffron petal extract (SPE) against three mains important fungal pathogens: Rhizopus stolonifer, Penicillium digitatum and Botritys cinerea, which cause rot decay on the tomato, orange and apple fruits, respectively. In addition, the organic composition of SPE was characterized by attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectroscopy and its biochemical, and gas chromatography-mass spectrometry (GC-MS) analyses were carried out. The obtained results highlighted an increased inhibition rate of the mycelial growth and spore germination of the three pathogenic fungi with increasing SPE concentrations. The mycelial growth and spore germination were completely inhibited at 10% of the SPE for Rhizopus stolonifer and Penicillium digitatum and at 5% for B. cinerea. Interestingly, the in vivo test showed the complete suppression of Rhizopus rot by the SPE at 10%, and a significant reduction of the severity of grey mold disease (37.19%) and green mold, when applied at 5 and 10%, respectively. The FT-IR spectra showed characteristic peaks and a variety of functional groups, which confirmed that SPE contains phenolic and flavonoid components. In addition, The average value of the total phenolic content, flavonoid content and half-maximal inhibitory concentration (IC50) were 3.09 ± 0.012 mg GAE/g DW, 0.92 ± 0.004 mg QE/g DW and 235.15 ± 2.12 µg/mL, respectively. A volatile analysis showed that the most dominant component in the saffron petal is 2(5H)-Furanone (92.10%). Taken together, it was concluded that SPE could be used as an alternative to antioxidant and antifungal compounds for the control of postharvest diseases in fruits.


Subject(s)
Biological Products , Crocus , Fungicides, Industrial , Penicillium , Humans , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Fungicides, Industrial/pharmacology , Spectroscopy, Fourier Transform Infrared , Fungi , Fruit , Biological Products/pharmacology , Plant Extracts/pharmacology
3.
Molecules ; 28(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36615378

ABSTRACT

Saffron petals, which are the main by-products of Crocus sativus L. (Iridaceae family), are produced in large quantities and are known for their many beneficial properties. In this regard, this study aims to investigate the phenolic composition and antibacterial properties of hydroethanolic extracts from Crocus sativus L. petals collected from Serghina (province of Boulmane) in Morocco. The phenolic profiles were characterized using high-performance liquid chromatography coupled to a photodiode array and electrospray ionization mass spectrometry (HPLC-PDA-ESI/MS). The antibacterial potential was evaluated against four bacterial strains potentially causing food-borne disease (Staphylococcus aureus, Salmonella typhimurium, Escherichia coli, and Listeria monocytogenes) using disc diffusion and broth micro-dilution assays. Results showed that a total of 27 phenolic compounds was detected in the Crocus sativus L. petal extracts, which were assigned to flavonoids (kaempferol, quercetin, isorhamnetin, and myricetin derivatives). The most abundant compound was represented by kaempferol-sophoroside isomer (20.82 mg/g ± 0.152), followed by kaempferol-sophoroside-hexoside (2.63 mg/g ± 0.001). The hydroethanolic extracts of Crocus sativus L. petals demonstrated bactericidal effects against Staphylococcus aureus and Listeria monocetogenes and bacteriostatic effects against Escherichia coli and Salmonella typhimurium. Therefore, the by-product Crocus sativus L. petal extracts might be considered as valuable sources of natural antibacterial agents with potential applications in the food and pharmaceutical industries.


Subject(s)
Crocus , Crocus/chemistry , Kaempferols/chemistry , Flavonoids/chemistry , Antioxidants/analysis , Phenols , Plant Extracts/pharmacology , Plant Extracts/chemistry
4.
Int J Mol Sci ; 22(5)2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33671098

ABSTRACT

Advances in Infrared (IR) spectroscopies have entered a new era of research with applications in phytobiome, plant microbiome and health. Fusarium graminearum 3-ADON is the most aggressive mycotoxigenic chemotype causing Fusarium head blight (FHB) in cereals; while Sphaerodes mycoparasitica is the specific Fusarium mycoparasite with biotrophic lifestyle discovered in cereal seeds and roots. Fourier transform infrared (FTIR) spectroscopy analyses depicted shifts in the spectral peaks related to mycoparasitism mainly within the region of proteins, lipids, also indicating a link between carbohydrates and protein regions, involving potential phenolic compounds. Especially, S. mycoparasitica contributes to significant changes in lipid region 3050-2800 cm-1, while in the protein region, an increasing trend was observed for the peaks 1655-1638 cm-1 (amide I) and 1549-1548 cm-1 (amide II) with changes in indicative protein secondary structures. Besides, the peak extending on the region 1520-1500 cm-1 insinuates a presence of aromatic compounds in presence of mycoparasite on the F. graminearum root sample. Monitoring shift in improved seed germination, fungus-fungus interface through scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), and FTIR molecular signatures combined with principal component analysis (PCA) proved useful tools to detect an early mycoparasitism as a vital asset of the preventive biocontrol strategy against plant pathogens.


Subject(s)
Ascomycota/physiology , Fungal Proteins/metabolism , Fusarium/pathogenicity , Germination , Plant Diseases/prevention & control , Seeds/growth & development , Volatile Organic Compounds/analysis , Biological Control Agents , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Plant Diseases/microbiology , Seeds/microbiology
5.
Microb Pathog ; 139: 103914, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31811889

ABSTRACT

This study aimed at evaluating the antagonistic activity of 16 bacterial strains for the control of brown rot disease caused by Monilinia fructigena, and M. laxa under in vitro and a semi-commercial large-scale trial. These bacterial antagonists' belonging to the genera Alcaligenes, Bacillus, Brevibacterium, Pantoea, Pseudomonas, and Serratia were previously proven effective for control of fire blight of apple. The in vitro dual culture bioassay showed the highest inhibition rates of mycelial growth ranging from 55 to 95% and from 43 to 94% for M. fructigena and M. laxa, respectively. The in vivo bioassay showed moderate and strong inhibition for M. fructigena and M. laxa, respectively. The inhibition rates were dependent on incubation time as well as pathogen virulence. The free-cell bacterial filtrate revealed substantial mycelial growth inhibition ranging from 66 to 86%. The inhibition of conidial germination was from 32 to 78%, suggesting the involvement of metabolites in their biocontrol activity. The antifungal effect of the volatile compounds (VCOs) was observed for all bacteria with mycelial inhibition varying from 12 to 70%. Overall, their efficacy was substantially affected by the nature of the bacterial strains and the modes of action. Taken together, these results underscore that ACBC1 and SF14 for M. fructigena and SP10 and ACBP1 for M. laxa were the most effective bacterial strains. These strains were confirmed effective in a semi-commercial large-scale trial. Interestingly, their efficacies were found to be comparable to those of both commercial BCAs (B. subtilis Y1336 and P. agglomerans P10c), but slightly lower than thiophanate-methyl fungicide. The ability of most bacterial strains to produce lytic enzymes (Amylase, Protease or Cellulase) and lipopeptides (bacillomycin, fengycin, iturin and surfactin) was demonstrated by biochemical and molecular analyzes. Therefore, our findings suggest that the bacterial antagonists ACBC1, SF14, SP10 and ACBP1, have the potential to prevent brown rot disease.


Subject(s)
Alcaligenes faecalis/chemistry , Ascomycota/physiology , Bacillus amyloliquefaciens/chemistry , Fungicides, Industrial/pharmacology , Pantoea/chemistry , Plant Diseases/microbiology , Alcaligenes faecalis/metabolism , Bacillus amyloliquefaciens/metabolism , Fruit/microbiology , Fungicides, Industrial/chemistry , Fungicides, Industrial/metabolism , Malus/microbiology , Pantoea/metabolism
6.
Planta ; 249(2): 601-613, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30317440

ABSTRACT

MAIN CONCLUSION: ATR-FTIR spectroscopy in combination with uni- and multivariate analysis was used to quantify the spectral-chemical composition of the leaf cuticle of pea, investigating the effects of variety and heat stress. Field pea (Pisum sativum L.) is sensitive to heat stress and our goal was to improve canopy cooling and flower retention by investigating the protective role of lipid-related compounds in leaf cuticle, and to use results in the future to identify heat resistant genotypes. The objective was to use Attenuated Total Reflection (ATR)-Fourier Transform Infrared (FTIR) spectroscopy, a non-invasive technique, to investigate and quantify changes in adaxial cuticles of fresh leaves of pea varieties that were subjected to heat stress. Eleven varieties were grown under control (24/18 °C day/night) and heat stress conditions (35/18 °C day/night, for 5 days at the early flowering stage). These 11 had significant spectral differences in the integrated area of the main lipid region, CH2 region, CH3 peak, asymmetric and symmetric CH2 peaks, ester carbonyl peak, and the peak area ratio of CH2 to CH3 and ester carbonyl to CH2 asymmetric peak, indicating that cuticles had spectral-chemical diversity of waxes, cutin, and polysaccharides. Results indicated considerable diversity in spectral-chemical makeup of leaf cuticles within commercially available field pea varieties and they responded differently to high growth temperature, revealing their diverse potential to resist heat stress. The ATR-FTIR spectral technique can, therefore, be further used as a medium-throughput approach for rapid screening of superior cultivars for heat tolerance.


Subject(s)
Pisum sativum/genetics , Plant Leaves/genetics , Genotype , Heat-Shock Response , Membrane Lipids/metabolism , Pisum sativum/chemistry , Pisum sativum/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Polysaccharides/metabolism , Spectroscopy, Fourier Transform Infrared , Waxes/metabolism
7.
Plant Cell Environ ; 42(1): 354-372, 2019 01.
Article in English | MEDLINE | ID: mdl-30136298

ABSTRACT

Field pea (Pisum sativum), a major grain legume crop, is autogamous and adapted to temperate climates. The objectives of this study were to investigate effects of high temperature stress on stamen chemical composition, anther dehiscence, pollen viability, pollen interactions with pistil and ovules, and ovule growth and viability. Two cultivars ("CDC Golden" and "CDC Sage") were exposed to 24/18°C (day/night) continually or to 35/18°C for 4 or 7 days. Heat stress altered stamen chemical composition, with lipid composition of "CDC Sage" being more stable compared with "CDC Golden." Heat stress reduced pollen viability and the proportion of ovules that received a pollen tube. After 4 days at 35°C, pollen viability in flower buds decreased in "CDC Golden," but not in "CDC Sage." After 7 days, partial to full failure of anthers to dehisce resulted in subnormal pollen loads on stigmas. Although growth (ovule size) of fertilized ovules was stimulated by 35°C, heat stress tended to decrease ovule viability. Pollen appears susceptible to stress, but not many grains are needed for successful fertilization. Ovule fertilization and embryos are less susceptible to heat, but further research is warranted to link the exact degree of resilience to stress intensity.


Subject(s)
Flowers/physiology , Pisum sativum/physiology , Pollen/physiology , Pollination/physiology , Thermotolerance/physiology , Hot Temperature
8.
Microb Pathog ; 117: 7-15, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29428423

ABSTRACT

The effectiveness of antagonistic bacteria to control Erwinia amylovora was evaluated under in vitro and field conditions. Among 61 bacteria isolated from soil and flowers of fire blight host plants of different Moroccan areas, 20 bacterial isolates showed higher antagonistic activity against the pathogen during agar-diffusion-test, attached blossoms assay and in a bioassay on immature pear fruits. Effective isolates were identified by using biochemical tests and 16 S rRNA genes sequencing. These isolates were grouped into the following genera: Alcaligenes (ACBC1), Pantoea (ACBC2, ACBP1, and ACBP2), Serratia (HC4), Brevibacterium (SF3, SF4, SF7, and SF15), Pseudomonas (SP9), and Bacillus (CPa12, CPa2, HF6, JB2, LMR2, SF14, SF16, SP10, SP13, and SP18). Furthermore, isolates were reported in the NCBI nucleotide sequence database (Genbank) under the accession numbers from KY357285 to KY357304. A 2-year field trials consisted of spray treatments with different bacterial antagonists was conducted on the susceptible apple cultivars 'Gala', 'Golden Parsi' and 'Golden Smoothee'. Their efficacies were evaluated 15 days post-inoculation on detached blossoms and were ranged from 54.6 to 95.0% for 11 strains, most of them were slightly better or better than that obtained with commercial bacterial strains P10c (66%) and QST713 (63%). In field trials, the most effective were P. agglomerans ACBP2, B. amyloliquefaciens LMR2, B. halotolerans (SF3 and SF4), and B. mojarvensis SF16. In addition, effective bacterial isolates did not show the pathogenicity signs towards plant tissue and are, therefore, considered as potential candidates to be integrated in actives ingredients of microbial formulation for the effective control of Fire Blight.


Subject(s)
Antibiosis , Bacteria/isolation & purification , Bacterial Physiological Phenomena , Erwinia amylovora/pathogenicity , Plant Diseases/microbiology , Plant Diseases/therapy , Bacteria/classification , Bacteria/genetics , DNA, Bacterial/analysis , Flowers/microbiology , Fruit/microbiology , Malus/microbiology , Morocco , Phylogeny , Pyrus/microbiology , RNA, Ribosomal, 16S/genetics , Soil Microbiology
9.
Physiol Plant ; 162(3): 316-332, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28857201

ABSTRACT

Wheat (Triticum aestivum L.) is the largest cereal crop grown in Western Canada where drought during late vegetative and seed filling stages affects plant development and yield. To identify new physiochemical markers associated with drought tolerance, epidermal characteristics of the flag leaf of two wheat cultivars with contrasting drought tolerance were investigated. The drought resistant 'Stettler' had a lower drought susceptibility index, greater harvest index and water-use efficiency than the susceptible 'Superb'. Furthermore, flag leaf width, relative water content and leaf roll were significantly greater in Stettler than in Superb at moderate drought stress (MdS). Visible differences in epicuticular wax density on the adaxial flag leaf surfaces and larger bulliform cells were identified in Stettler as opposed to Superb. Mid-infrared attenuated total internal reflectance spectra revealed that Stettler flag leaves had increased asymmetric and symmetric CH2 but reduced carbonyl esters on its adaxial leaf surface compared to Superb under MdS. X-ray fluorescence spectra revealed a significant increase in total flag leaf Zn concentrations in Stettler in response to MdS. Such information on the microstructural and chemical features of flag leaf may have potential as markers for drought tolerance and thereby accelerate the selection and release of more drought-resistant cultivars.


Subject(s)
Droughts , Plant Leaves/metabolism , Triticum/metabolism , Waxes/metabolism , Adaptation, Physiological , Microscopy, Electron, Scanning , Plant Leaves/anatomy & histology , Plant Leaves/ultrastructure , Species Specificity , Spectroscopy, Fourier Transform Infrared , Stress, Physiological , Synchrotrons , Triticum/anatomy & histology , Triticum/classification , Water/metabolism , Waxes/chemistry , X-Ray Absorption Spectroscopy
10.
Int J Mol Sci ; 18(10)2017 Sep 26.
Article in English | MEDLINE | ID: mdl-28954397

ABSTRACT

Clubroot disease is a serious threat to canola production in western Canada and many parts of the world. Rcr1 is a clubroot resistance (CR) gene identified recently and its molecular mechanisms in mediating CR have been studied using several omics approaches. The current study aimed to characterize the biochemical changes in the cell wall of canola roots connecting to key molecular mechanisms of this CR gene identified in prior studies using Fourier transform infrared (FTIR) spectroscopy. The expression of nine genes involved in phenylpropanoid metabolism was also studied using qPCR. Between susceptible (S) and resistance (R) samples, the most notable biochemical changes were related to an increased biosynthesis of lignin and phenolics. These results were supported by the transcription data on higher expression of BrPAL1. The up-regulation of PAL is indicative of an inducible defence response conferred by Rcr1; the activation of this basal defence gene via the phenylpropanoid pathway may contribute to clubroot resistance conferred by Rcr1. The data indicate that several cell-wall components, including lignin and pectin, may play a role in defence responses against clubroot. Principal components analysis of FTIR data separated non-inoculated samples from inoculated samples, but not so much between inoculated S and inoculated R samples. It is also shown that FTIR spectroscopy can be a useful tool in studying plant-pathogen interaction at cellular levels.


Subject(s)
Cell Wall/chemistry , Cell Wall/metabolism , Disease Resistance/genetics , Plant Diseases/genetics , Reverse Transcriptase Polymerase Chain Reaction , Spectroscopy, Fourier Transform Infrared , Brassica napus/genetics , Brassica napus/parasitology , Lignin/genetics , Oxidative Stress , Plant Roots/chemistry , Plant Roots/genetics , Plant Roots/metabolism , Transcription, Genetic
11.
Plant Cell Physiol ; 56(7): 1252-63, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26117844

ABSTRACT

While synchrotron radiation is a powerful tool in material and biomedical sciences, it is still underutilized in plant research. This mini review attempts to introduce the potential of synchrotron-based spectroscopic and imaging methods and their applications to plant sciences. Synchrotron-based Fourier transform infrared spectroscopy, X-ray absorption and fluorescence techniques, and two- and three-dimensional imaging techniques are examined. We also discuss the limitations of synchrotron-based research in plant sciences, specifically the types of plant samples that can be used. Despite limitations, the unique features of synchrotron radiation such as high brightness, polarization and pulse properties offer great advantages over conventional spectroscopic and imaging tools and enable the correlation of the structure and chemical composition of plants with biochemical function. Modern detector technologies and experimental methodologies are thus enabling plant scientists to investigate aspects of plant sciences such as ultrafast kinetics of biochemical reactions, mineral uptake, transport and accumulation, and dynamics of cell wall structure and composition during environmental stress in unprecedented ways using synchrotron beamlines. The potential for the automation of some of these synchrotron technologies and their application to plant phenotyping is also discussed.


Subject(s)
Plants/chemistry , Research , Synchrotrons , Technology/methods , Botany/methods , Botany/trends , Spectroscopy, Fourier Transform Infrared/methods , Technology/trends , Tomography, X-Ray Computed/methods , X-Ray Absorption Spectroscopy/methods
12.
BMC Plant Biol ; 15: 24, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25628148

ABSTRACT

BACKGROUND: Fusarium head blight (FHB), a scab principally caused by Fusarium graminearum Schw., is a serious disease of wheat. The purpose of this study is to evaluate the potential of combining synchrotron based phase contrast X-ray imaging (PCI) with Fourier Transform mid infrared (FTIR) spectroscopy to understand the mechanisms of resistance to FHB by resistant wheat cultivars. Our hypothesis is that structural and biochemical differences between resistant and susceptible cultivars play a significant role in developing resistance to FHB. RESULTS: Synchrotron based PCI images and FTIR absorption spectra (4000-800 cm(-1)) of the floret and rachis from Fusarium-damaged and undamaged spikes of the resistant cultivar 'Sumai3', tolerant cultivar 'FL62R1', and susceptible cultivar 'Muchmore' were collected and analyzed. The PCI images show significant differences between infected and non-infected florets and rachises of different wheat cultivars. However, no pronounced difference between non-inoculated resistant and susceptible cultivar in terms of floret structures could be determined due to the complexity of the internal structures. The FTIR spectra showed significant variability between infected and non-infected floret and rachis of the wheat cultivars. The changes in absorption wavenumbers following pathogenic infection were mostly in the spectral range from 1800-800 cm(-1). The Principal Component Analysis (PCA) was also used to determine the significant chemical changes inside floret and rachis when exposed to the FHB disease stress to understand the plant response mechanism. In the floret and rachis samples, PCA of FTIR spectra revealed differences in cell wall related polysaccharides. In the florets, absorption peaks for Amide I, cellulose, hemicellulose and pectin were affected by the pathogenic fungus. In the rachis of the wheat cultivars, PCA underlines significant changes in pectin, cellulose, and hemicellulose characteristic absorption spectra. Amide II and lignin absorption peaks, persistent in the rachis of Sumai3, together with increased peak shift at 1245 cm(-1) after infection with FHB may be a marker for stress response in which the cell wall compounds related to pathways for lignification are increased. CONCLUSIONS: Synchrotron based PCI combined with FTIR spectroscopy show promising results related to FHB in wheat. The combined technique is a powerful new tool for internal visualisation and biomolecular monitoring before and during plant-microbe interactions to understand both the differences between cultivars and their different responses to disease stress.


Subject(s)
Disease Resistance , Fusarium/physiology , Plant Diseases/immunology , Spectroscopy, Fourier Transform Infrared/methods , Synchrotrons , Triticum/anatomy & histology , Triticum/microbiology , Green Fluorescent Proteins/metabolism , Plant Diseases/microbiology , Principal Component Analysis , X-Rays
13.
Plant Cell Environ ; 38(11): 2387-97, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26081983

ABSTRACT

Pea (Pisum sativum L.) is a major legume crop grown in a semi-arid climate in Western Canada, where heat stress affects pollination, seed set and yield. Seed set and pod growth characteristics, along with in vitro percentage pollen germination, pollen tube growth and pollen surface composition, were measured in two pea cultivars (CDC Golden and CDC Sage) subjected to five maximum temperature regimes ranging from 24 to 36 °C. Heat stress reduced percentage pollen germination, pollen tube length, pod length, seed number per pod, and the seed-ovule ratio. Percentage pollen germination of CDC Sage was greater than CDC Golden at 36 °C. No visible morphological differences in pollen grains or the pollen surface were observed between the heat and control-treated pea. However, pollen wall (intine) thickness increased due to heat stress. Mid-infrared attenuated total reflectance (MIR-ATR) spectra revealed that the chemical composition (lipid, proteins and carbohydrates) of each cultivar's pollen grains responded differently to heat stress. The lipid region of the pollen coat and exine of CDC Sage was more stable compared with CDC Golden at 36 °C. Secondary derivatives of ATR spectra indicated the presence of two lipid types, with different amounts present in pollen grains from each cultivar.


Subject(s)
Pisum sativum/physiology , Germination , Heat-Shock Response , Lipid Metabolism , Pisum sativum/anatomy & histology , Pisum sativum/growth & development , Pollen/anatomy & histology , Pollen/growth & development , Pollen/physiology , Pollen Tube/growth & development , Pollen Tube/physiology , Seeds/anatomy & histology , Seeds/growth & development , Seeds/physiology
14.
BMC Genomics ; 15: 1166, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25532522

ABSTRACT

BACKGROUND: The protist Plasmodiophora brassicae is a biotrophic soil-borne pathogen that causes clubroot on Brassica crops worldwide. Clubroot disease is a serious threat to the 8 M ha of canola (Brassica napus) grown annually in western Canada. While host resistance is the key to clubroot management, sources of resistance are limited. RESULTS: To identify new sources of clubroot resistance (CR), we fine mapped a CR gene (Rcr1) from B. rapa ssp. chinensis to the region between 24.26 Mb and 24.50 Mb on the linkage group A03, with several closely linked markers identified. Transcriptome analysis was conducted using RNA sequencing on a segregating F1 population inoculated with P. brassicae, with 2,212 differentially expressed genes (DEGs) identified between plants carrying and not carrying Rcr1. Functional annotation of these DEGs showed that several defense-related biological processes, including signaling and metabolism of jasmonate and ethylene, defensive deposition of callose and biosynthesis of indole-containing compounds, were up-regulated significantly in plants carrying Rcr1 while genes involved in salicylic acid metabolic and signaling pathways were generally not elevated. Several DEGs involved in metabolism potentially related to clubroot symptom development, including auxin biosynthesis and cell growth/development, showed significantly lower expression in plants carrying Rcr1. CONCLUSION: The CR gene Rcr1 and closely linked markers will be highly useful for breeding new resistant canola cultivars. The identification of DEGs between inoculated plants carrying and not carrying Rcr1 is an important step towards understanding of specific metabolic/signaling pathways in clubroot resistance mediated by Rcr1. This information may help judicious use of CR genes with complementary resistance mechanisms for durable clubroot resistance.


Subject(s)
Brassica/genetics , Brassica/parasitology , Chromosome Mapping , Disease Resistance/genetics , Genes, Plant , Plant Diseases/parasitology , Plasmodiophorida , Transcriptome , Alleles , Computational Biology , Crosses, Genetic , Gene Expression Regulation, Plant , Genes, Dominant , Genetic Linkage , Genetic Markers , Genotype , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Phenotype , Reproducibility of Results
15.
Folia Microbiol (Praha) ; 69(3): 465-489, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38393576

ABSTRACT

Since the late nineteenth century, the agricultural sector has experienced a tremendous increase in chemical use in response to the growing population. Consequently, the intensive and indiscriminate use of these substances caused serious damage on several levels, including threatening human health, disrupting soil microbiota, affecting wildlife ecosystems, and causing groundwater pollution. As a solution, the application of microbial-based products presents an interesting and ecological restoration tool. The use of Plant Growth-Promoting Microbes (PGPM) affected positive production, by increasing its efficiency, reducing production costs, environmental pollution, and chemical use. Among these microbial communities, lactic acid bacteria (LAB) are considered an interesting candidate to be formulated and applied as effective microbes. Indeed, these bacteria are approved by the European Food Safety Authority (EFSA) and Food and Drug Administration (FDA) as Qualified Presumption of Safety statute and Generally Recognized as Safe for various applications. To do so, this review comes as a road map for future research, which addresses the different steps included in LAB formulation as biocontrol, bioremediation, or plant growth promoting agents from the isolation process to their field application passing by the different identification methods and their various uses. The plant application methods as well as challenges limiting their use in agriculture are also discussed.


Subject(s)
Lactobacillales , Plant Development , Lactobacillales/metabolism , Lactobacillales/growth & development , Plants/microbiology , Biodegradation, Environmental , Agriculture/methods , Soil Microbiology
16.
Plants (Basel) ; 13(16)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39204649

ABSTRACT

The causal agent of tomato leaf mold, Cladosporium fulvum, is prevalent in greenhouses worldwide, especially under high humidity conditions. Despite its economic impact, studies on antifungal agents targeting C. fulvum remain limited. This study evaluates biocontrol agents (BCAs) as alternatives to chemical controls for managing this disease, alongside the strobilurin fungicide azoxystrobin. From a Moroccan collection of potential BCAs, five bacterial isolates (Alcaligenes faecalis ACBC1, Pantoea agglomerans ACBC2, ACBP1, ACBP2, and Bacillus amyloliquefaciens SF14) and three fungal isolates (Trichoderma spp. OT1, AT2, and BT3) were selected and tested. The in vitro results demonstrated that P. agglomerans isolates reduced mycelial growth by over 60% at 12 days post-inoculation (dpi), while Trichoderma isolates achieved 100% inhibition in just 5 dpi. All bacterial isolates produced volatile organic compounds (VOCs) with mycelial inhibition rates ranging from 38.8% to 57.4%. Likewise, bacterial cell-free filtrates significantly inhibited the pathogen's mycelial growth. Greenhouse tests validated these findings, showing that all the tested isolates were effective in reducing disease incidence and severity. Azoxystrobin effectively impeded C. fulvum growth, particularly in protective treatments. Fourier transform infrared spectroscopy (FTIR) analysis revealed significant biochemical changes in the treated plants, indicating fungal activity. This study provides valuable insights into the efficacy of these BCAs and azoxystrobin, contributing to integrated management strategies for tomato leaf mold disease.

17.
Plants (Basel) ; 13(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39065489

ABSTRACT

This study explores the potential of olive leaves, long integral to Mediterranean traditional medicine, as a rich source of valuable compounds. The challenge lies in their considerable water content, hindering these compounds' full valorization. Four drying methods (air-drying, oven-drying, freeze-drying and solar-drying) were investigated for their impact on nutrient and bioactive compound content in the leaves of four olive varieties ("Arbequina", "Koroneiki", "Menara" and "Picholine Marocaine") cultivated in Morocco. In their fresh state, "Picholine Marocaine" exhibited the highest protein levels (6.11%), "Arbequina" had the highest phenolic content (20.18 mg gallic acid equivalents/g fresh weight (FW)), and "Koroneiki" and "Menara" were highest in flavonoids (3.28 mg quercetin equivalents/g FW). Specific drying methods proved optimal for different varieties. Oven-drying at 60 °C and 70 °C effectively preserved protein, while phenolic content varied with drying conditions. Air-drying and freeze-drying demonstrated effectiveness for flavonoids. In addition, an analytical approach using high-performance liquid chromatography and diode array detection (HPLC-DAD) was applied to investigate the effects of the different drying methods on the bioactive fraction of the analyzed samples. The results showed qualitative and quantitative differences depending on both the variety and the drying method used. A total of 11 phenolic compounds were tentatively identified, with oleuropein being the most abundant in all the samples analyzed. The freeze-dried samples showed the highest content of oleuropein in the varieties "Arbequina" and "Picholine Marocaine" compared to the other methods analyzed. In contrast, "Koroneiki" and "Menara" had higher oleuropein content when air dried. Overall, the obtained results highlight the importance of tailored drying techniques for the preservation of nutrients and bioactive compounds in olive leaves.

18.
Front Plant Sci ; 15: 1278538, 2024.
Article in English | MEDLINE | ID: mdl-38344189

ABSTRACT

Introduction: Phytophthora infestans, the causative agent of late blight disease, has gained notoriety for its destructive potential, leading to substantial losses in potato yields. Although conventional systemic fungicides have been shown to be effective in controlling plant pathogens, growing environmental concerns have prompted the need for more integrated disease management approaches. Hence, in this study, the effectiveness of wild Origanum elongatum extracts as biopesticides was explored in controlling P. infestans and potentially mitigating its devastating impact in planta. Methods: The aerial parts of O. elongatum were subjected to sequential extraction using water, hexane, chloroform, and methanol. The obtained extracts were tested in vitro through the poisoned food procedure for their capacity to obstruct P. infestans growth and to defeat potato blight severity in vivo. The phyto-contents (total phenolic content (TPC) and total flavonoid content (TFC)), as well as the antioxidant activities, were spectrophotometrically determined in all extracts, and the phytoconstituents of the most active extract (methanolic extract) were profiled via high-performance liquid chromatography-photodiode array-tandem mass spectrometry (HPLC-PDA-MS/MS). Results: In vitro, the complete inhibition rate of the P. infestans was obtained using the methanolic extract at 5 mg/mL, followed by the hexane and chloroform extracts at 10 mg/mL. Interestingly, complete inhibition of the pathogen was achieved upon the application of the aqueous extract at 10 mg/mL. In vivo, the aqueous extract at 25 mg/mL reduced the P. infestans severity rate to 27.25%, while the methanolic extract at 20 mg/mL led to the lowest severity rate. Moreover, the hexane and chloroform extracts impaired the pathogen severity rate to 50% and 41% using 20 mg/mL, respectively. The TPC and TFC in the extracts were variable with high concentrations detected in the methanolic extract with 485.42 mg GAE/g and 58.24 mg QE/g, respectively. In addition, the methanolic extract showed the highest antioxidant activities, while the chloroform extract exhibited the lowest activity. Liquid chromatography (LC)-MS/MS analysis of the methanol extract revealed 56 components from diverse classes. These included organic acids, phenolic acids, flavonoids, tannins, and coumarins. Conclusion: These findings suggest that O. elongatum could be investigated as a potential source of antifungal compounds targeting different phytopathogens.

19.
Plants (Basel) ; 13(4)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38498518

ABSTRACT

Apple production holds a prominent position in Morocco's Rosaceae family. However, annual production can fluctuate due to substantial losses caused by fungal diseases affecting stored apples. Our findings emphasize that the pre-storage treatment of apples, disinfection of storage facilities, box type, and fruit sorting are pivotal factors affecting apple losses during storage. Additionally, the adopted preservation technique was significantly correlated with the percentage of damage caused by fungal infections. Blue mold accounts for nearly three-quarters of the diseases detected, followed by gray rot with a relatively significant incidence. This study has revealed several fungal diseases affecting stored apples caused by pathogens such as Penicillium expansum, Botrytis cinerea, Alternaria alternata, Trichothecium roseum, Fusarium avenaceum, Cadophora malorum, and Neofabraea vagabunda. Notably, these last two fungal species have been reported for the first time in Morocco as pathogens of stored apples. These data affirm that the high losses of apples in Morocco, attributed primarily to P. expansum and B. cinerea, pose a significant threat in terms of reduced production and diminished fruit quality. Hence, adopting controlled atmosphere storage chambers and implementing good practices before apple storage is crucial.

20.
Open Life Sci ; 19(1): 20220837, 2024.
Article in English | MEDLINE | ID: mdl-38585628

ABSTRACT

The abundance of Panonychus citri McGregor 1916 (Acari: Tetranychidae) and its associated enemies (Euseius stipulatus Athias-Henriot, 1960; Typhlodromus sp.; Phytoseiulus persimilis Athias-Henriot, 1957) was studied on two 12-year-old citrus cultivars, specifically Clementine "Nules" (Citrus Clementina) and Valencia (Citrus sinensis), in the Gharb region of Morocco. Throughout the entire monitoring period in the Valencia late cultivar, the density of the spider mite P. citri on leaves was notably higher at 38.0% (n = 1,212 mobile forms). Predator P. persimilis exhibited a leaf occupancy of 25.0% (n = 812), followed by Typhlodromus sp. at 20.0% (n = 643). Conversely, the abundance of E. stipulatus was lower at 17.0% (n = 538). In the Nules variety, P. citri abundance recorded a higher percentage at 48.0% (n = 1,922). E. stipulatus emerged as the most abundant predator at 23.0% (n = 898), followed by P. persimilis with 16.0% (n = 639). Meanwhile, the population of Typlodromus sp. remained notably low at 13.0% (n = 498). Regarding the fluctuation of the different mites studied on the two cultivars across monitoring dates, the period from May 4 to June 1 was characterized by low temperatures and a diminished presence of mite populations (P. citri, E. stipulatus, Typhlodromus sp., and P. persimilis). However, from June 7 to June 19, characterized by high temperatures, a notable increase in the presence of mite populations was observed. As regards the effect of the variety on the different mites studied, the varietal impact was significant.

SELECTION OF CITATIONS
SEARCH DETAIL