Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Article in English | MEDLINE | ID: mdl-34236299

ABSTRACT

Deinococcus species are widely studied due to their utility in bioremediation of sites contaminated with radioactive elements. In the present study, we re-evaluated the taxonomic placement of two species of the genus Deinococcus namely D. swuensis DY59T and D. radiopugnans ATCC 19172T based on whole genome analyses. The 16S rRNA gene analysis revealed a 99.58% sequence similarity between this species pair that is above the recommended threshold value for species delineation. These two species also clustered together in both the 16S rRNA gene and core genome based phylogenies depicting their close relatedness. Furthermore, more than 98% of genes were shared between D. swuensis DY59T and D. radiopugnans ATCC 19172T. Interestingly, D. swuensis DY59T and D. radiopugnans ATCC 19172T shared high genome similarity in different genomic indices. They displayed an average nucleotide identity value of 97.63%, an average amino acid identity value of 97% and a digital DNA-DNA hybridization value equal to 79.50%, all of which are well above the cut-off for species delineation. Altogether, based on these evidences, D. swuensis DY59T and D. radiopugnans ATCC 19172T constitute a single species. Hence, as per the priority of publication, we propose that Deinococcus swuensis Lee et al. 2015 should be reclassified as a later heterotypic synonym of Deinococcus radiopugnans.


Subject(s)
Deinococcus/classification , Phylogeny , Bacterial Typing Techniques , DNA, Bacterial/genetics , Genomics , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
2.
Indian J Microbiol ; 60(4): 405-419, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33087991

ABSTRACT

Gut microbes play prime role in human health and have shown to exert their influence on various physiological responses including neurological functions. Growing evidences in recent years have indicated a key role of gut microbiota in contributing to mental health. The connection between gut and brain is modulated by microbes via neural, neuroendocrinal and metabolic pathways that are mediated through various neurotransmitters and their precursors, hormones, cytokines and bioactive metabolites. Impaired functioning of this connection can lead to manifestation of mental disorders. Around 1 billion of the world population is reported to suffer from emotional, psychological and neurological imbalances, substance use disorders and cognitive, psychosocial and intellectual disabilities. Thus, it becomes imperative to understand the role of gut microbes in mental disorders. Since variations occur in the conditions associated with different mental disorders and some of them have overlapping symptoms, it becomes important to have a holistic understanding of gut dysbiosis in these disorders. In this review, we consolidate the recent data on alterations in the gut microbes and its consequences in various neurological, psychological and neurodegenerative disorders. Further, considering these evidences, several studies have been undertaken to specifically target the gut microbiota through different therapeutic interventions including administration of live microbes (psychobiotics) to treat mental health disorders and/or their symptoms. We review these studies and propose that an integrative and personalized approach, where combinations of microbe-based therapeutic interventions to modulate gut microbes and in-use psychological treatment practices can be integrated and based on patient's gut microbiome can be potentially adopted for effective treatment of the mental disorders.

3.
Cancer Cell ; 42(4): 583-604.e11, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38458187

ABSTRACT

ARID1A, a subunit of the canonical BAF nucleosome remodeling complex, is commonly mutated in lymphomas. We show that ARID1A orchestrates B cell fate during the germinal center (GC) response, facilitating cooperative and sequential binding of PU.1 and NF-kB at crucial genes for cytokine and CD40 signaling. The absence of ARID1A tilts GC cell fate toward immature IgM+CD80-PD-L2- memory B cells, known for their potential to re-enter new GCs. When combined with BCL2 oncogene, ARID1A haploinsufficiency hastens the progression of aggressive follicular lymphomas (FLs) in mice. Patients with FL with ARID1A-inactivating mutations preferentially display an immature memory B cell-like state with increased transformation risk to aggressive disease. These observations offer mechanistic understanding into the emergence of both indolent and aggressive ARID1A-mutant lymphomas through the formation of immature memory-like clonal precursors. Lastly, we demonstrate that ARID1A mutation induces synthetic lethality to SMARCA2/4 inhibition, paving the way for potential precision therapy for high-risk patients.


Subject(s)
Lymphoma , Memory B Cells , Animals , Humans , Mice , DNA-Binding Proteins/genetics , Lymphoma/genetics , Mutation , Nuclear Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Cancer Cell ; 42(4): 605-622.e11, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38458188

ABSTRACT

SMARCA4 encodes one of two mutually exclusive ATPase subunits in the BRG/BRM associated factor (BAF) complex that is recruited by transcription factors (TFs) to drive chromatin accessibility and transcriptional activation. SMARCA4 is among the most recurrently mutated genes in human cancer, including ∼30% of germinal center (GC)-derived Burkitt lymphomas. In mice, GC-specific Smarca4 haploinsufficiency cooperated with MYC over-expression to drive lymphomagenesis. Furthermore, monoallelic Smarca4 deletion drove GC hyperplasia with centroblast polarization via significantly increased rates of centrocyte recycling to the dark zone. Mechanistically, Smarca4 loss reduced the activity of TFs that are activated in centrocytes to drive GC-exit, including SPI1 (PU.1), IRF family, and NF-κB. Loss of activity for these factors phenocopied aberrant BCL6 activity within murine centrocytes and human Burkitt lymphoma cells. SMARCA4 therefore facilitates chromatin accessibility for TFs that shape centrocyte trajectories, and loss of fine-control of these programs biases toward centroblast cell-fate, GC hyperplasia and lymphoma.


Subject(s)
Haploinsufficiency , Lymphoma, B-Cell , Animals , Humans , Mice , Chromatin , DNA Helicases/genetics , Hyperplasia , Lymphoma, B-Cell/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics
5.
F1000Res ; 11: 530, 2022.
Article in English | MEDLINE | ID: mdl-36262335

ABSTRACT

In October 2021, 59 scientists from 14 countries and 13 U.S. states collaborated virtually in the Third Annual Baylor College of Medicine & DNANexus Structural Variation hackathon. The goal of the hackathon was to advance research on structural variants (SVs) by prototyping and iterating on open-source software. This led to nine hackathon projects focused on diverse genomics research interests, including various SV discovery and genotyping methods, SV sequence reconstruction, and clinically relevant structural variation, including SARS-CoV-2 variants. Repositories for the projects that participated in the hackathon are available at https://github.com/collaborativebioinformatics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Genomics , Software
6.
Front Genet ; 12: 714185, 2021.
Article in English | MEDLINE | ID: mdl-34707636

ABSTRACT

Host genetic variants can determine their susceptibility to COVID-19 infection and severity as noted in a recent Genome-wide Association Study (GWAS). Given the prominent genetic differences in Indian sub-populations as well as differential prevalence of COVID-19, here, we compute genetic risk scores in diverse Indian sub-populations that may predict differences in the severity of COVID-19 outcomes. We utilized the top 100 most significantly associated single-nucleotide polymorphisms (SNPs) from a GWAS by Pairo-Castineira et al. determining the genetic susceptibility to severe COVID-19 infection, to compute population-wise polygenic risk scores (PRS) for populations represented in the Indian Genome Variation Consortium (IGVC) database. Using a generalized linear model accounting for confounding variables, we found that median PRS was significantly associated (p < 2 x 10-16) with COVID-19 mortality in each district corresponding to the population studied and had the largest effect on mortality (regression coefficient = 10.25). As a control we repeated our analysis on randomly selected 100 non-associated SNPs several times and did not find significant association. Therefore, we conclude that genetic susceptibility may play a major role in determining the differences in COVID-19 outcomes and mortality across the Indian sub-continent. We suggest that combining PRS with other observed risk-factors in a Bayesian framework may provide a better prediction model for ascertaining high COVID-19 risk groups and to design more effective public health resource allocation and vaccine distribution schemes.

7.
Sci Rep ; 9(1): 10127, 2019 07 12.
Article in English | MEDLINE | ID: mdl-31300691

ABSTRACT

Deteriorating weight loss in patients with Huntington's disease (HD) is a complicated peripheral manifestation and the cause remains poorly understood. Studies suggest that body weight strongly influences the clinical progression rate of HD and thereby offers a valuable target for therapeutic interventions. Mutant huntingtin (mHTT) is ubiquitously expressed and could induce toxicity by directly acting in the peripheral tissues. We investigated the effects of selective expression of mHTT exon1 in fat body (FB; functionally equivalent to human adipose tissue and liver) using transgenic Drosophila. We find that FB-autonomous expression of mHTT exon1 is intrinsically toxic and causes chronic weight loss in the flies despite progressive hyperphagia, and early adult death. Moreover, flies exhibit loss of intracellular lipid stores, and decline in the systemic levels of lipids and carbohydrates which aggravates over time, representing metabolic defects. At the cellular level, besides impairment, cell death also occurs with the formation of mHTT aggregates in the FB. These findings indicate that FB-autonomous expression of mHTT alone is sufficient to cause metabolic abnormalities and emaciation in vivo without any neurodegenerative cues.


Subject(s)
Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Huntingtin Protein/genetics , Huntington Disease/genetics , Mutation , Animals , Animals, Genetically Modified , Cell Death/genetics , Drosophila Proteins/genetics , Eating , Exons , Fat Body/metabolism , Fat Body/physiopathology , Female , Humans , Huntington Disease/metabolism , Lipid Metabolism/genetics , Male , Weight Loss/genetics
SELECTION OF CITATIONS
SEARCH DETAIL