Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Clin Immunol ; 230: 108825, 2021 09.
Article in English | MEDLINE | ID: mdl-34403816

ABSTRACT

We have recently introduced multiple reaction monitoring (MRM) mass spectrometry as a novel tool for glycan biomarker research and discovery. Herein, we employ this technique to characterize the site-specific glycan alterations associated with primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC). Glycopeptides associated with disease severity were also identified. Multinomial regression modelling was employed to construct and validate multi-analyte diagnostic models capable of accurately distinguishing PBC, PSC, and healthy controls from one another (AUC = 0.93 ± 0.03). Finally, to investigate how disease-relevant environmental factors can influence glycosylation, we characterized the ability of bile acids known to be differentially expressed in PBC to alter glycosylation. We hypothesize that this could be a mechanism by which altered self-antigens are generated and become targets for immune attack. This work demonstrates the utility of the MRM method to identify diagnostic site-specific glycan classifiers capable of distinguishing even related autoimmune diseases from one another.


Subject(s)
Autoimmunity , Cholangitis, Sclerosing/immunology , Liver Cirrhosis, Biliary/immunology , Polysaccharides/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Bile Acids and Salts/blood , Bile Acids and Salts/immunology , Biomarkers/blood , Case-Control Studies , Cholangitis, Sclerosing/blood , Cholangitis, Sclerosing/diagnosis , Diagnosis, Differential , Glycomics/methods , Glycopeptides/blood , Glycopeptides/immunology , Glycosylation , Humans , Liver Cirrhosis, Biliary/blood , Liver Cirrhosis, Biliary/diagnosis , Polysaccharides/blood , Spectrometry, Mass, Electrospray Ionization/methods
2.
Stem Cells ; 38(2): 231-245, 2020 02.
Article in English | MEDLINE | ID: mdl-31648388

ABSTRACT

Therapeutic applications for mesenchymal stem/stromal cells (MSCs) are growing; however, the successful implementation of these therapies requires the development of appropriate MSC delivery systems. Hydrogels are ideally suited to cultivate MSCs but tuning hydrogel properties to match their specific in vivo applications remains a challenge. Thus, further characterization of how hydrogel-based delivery vehicles broadly influence MSC function and fate will help lead to the next generation of more intelligently designed delivery vehicles. To date, few attempts have been made to comprehensively characterize hydrogel impact on the MSC transcriptome. Herein, we have synthesized cell-degradable hydrogels based on bio-inert poly(ethylene glycol) tethered with specific integrin-binding small molecules and have characterized their resulting effect on the MSC transcriptome when compared with 2D cultured and untethered 3D hydrogel cultured MSCs. The 3D culture systems resulted in alterations in the MSC transcriptome, as is evident by the differential expression of genes related to extracellular matrix production, glycosylation, metabolism, signal transduction, gene epigenetic regulation, and development. For example, genes important for osteogenic differentiation were upregulated in 3D hydrogel cultures, and the expression of these genes could be partially suppressed by tethering an integrin-binding RGD peptide within the hydrogel. Highlighting the utility of tunable hydrogels, when applied to ex vivo human wounds the RGD-tethered hydrogel was able to support wound re-epithelialization, possibly due to its ability to increase PDGF expression and decrease IL-6 expression. These results will aid in future hydrogel design for a broad range of applications.


Subject(s)
Hydrogels/therapeutic use , Integrins/metabolism , Mesenchymal Stem Cells/drug effects , Transcriptome/drug effects , Wound Healing/drug effects , Cell Differentiation , Humans
3.
Sci Rep ; 10(1): 17505, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33060657

ABSTRACT

Alterations in the human glycome have been associated with cancer and autoimmunity. Thus, constructing a site-specific map of the human glycome for biomarker research and discovery has been a highly sought-after objective. However, due to analytical barriers, comprehensive site-specific glycoprofiling is difficult to perform. To develop a platform to detect easily quantifiable, site-specific, disease-associated glycan alterations for clinical applications, we have adapted the multiple reaction monitoring mass spectrometry method for use in glycan biomarker research. The adaptations allow for highly precise site-specific glycan monitoring with minimum sample prep. Using this technique, we successfully mapped out the relative abundances of the most common 159 glycopeptides in the plasma of 97 healthy volunteers. This plasma glycome map revealed 796 significant (FDR < 0.05) site-specific inter-protein and intra-protein glycan associations, of which the vast majority were previously unknown. Since age and gender are relevant covariants in biomarker research, these variables were also characterized. 13 glycopeptides were found to be associated with gender and 41 to be associated with age. Using just five age-associated glycopeptides, a highly accurate age prediction model was constructed and validated (r2 = 0.62 ± 0.12). The human plasma site-specific glycan map described herein has utility in applications ranging from glycan biomarker research and discovery to the development of novel glycan-altering interventions.


Subject(s)
Age Factors , Biomarkers/blood , Polysaccharides/blood , Sex Factors , Adult , Aged , Aged, 80 and over , Blood Proteins , Female , Glycomics , Glycopeptides/blood , Glycosylation , Healthy Volunteers , Humans , Immunoglobulin G/blood , Likelihood Functions , Male , Middle Aged , Spectrometry, Mass, Electrospray Ionization , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL