Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 383
Filter
Add more filters

Publication year range
1.
Cell ; 187(1): 166-183.e25, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38181739

ABSTRACT

To better understand intrinsic resistance to immune checkpoint blockade (ICB), we established a comprehensive view of the cellular architecture of the treatment-naive melanoma ecosystem and studied its evolution under ICB. Using single-cell, spatial multi-omics, we showed that the tumor microenvironment promotes the emergence of a complex melanoma transcriptomic landscape. Melanoma cells harboring a mesenchymal-like (MES) state, a population known to confer resistance to targeted therapy, were significantly enriched in early on-treatment biopsies from non-responders to ICB. TCF4 serves as the hub of this landscape by being a master regulator of the MES signature and a suppressor of the melanocytic and antigen presentation transcriptional programs. Targeting TCF4 genetically or pharmacologically, using a bromodomain inhibitor, increased immunogenicity and sensitivity of MES cells to ICB and targeted therapy. We thereby uncovered a TCF4-dependent regulatory network that orchestrates multiple transcriptional programs and contributes to resistance to both targeted therapy and ICB in melanoma.


Subject(s)
Melanoma , Humans , Gene Regulatory Networks , Immunotherapy , Melanocytes , Melanoma/drug therapy , Melanoma/genetics , Transcription Factor 4/genetics , Tumor Microenvironment
2.
Immunity ; 57(3): 541-558.e7, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38442708

ABSTRACT

Cancer patients often receive a combination of antibodies targeting programmed death-ligand 1 (PD-L1) and cytotoxic T lymphocyte antigen-4 (CTLA4). We conducted a window-of-opportunity study in head and neck squamous cell carcinoma (HNSCC) to examine the contribution of anti-CTLA4 to anti-PD-L1 therapy. Single-cell profiling of on- versus pre-treatment biopsies identified T cell expansion as an early response marker. In tumors, anti-PD-L1 triggered the expansion of mostly CD8+ T cells, whereas combination therapy expanded both CD4+ and CD8+ T cells. Such CD4+ T cells exhibited an activated T helper 1 (Th1) phenotype. CD4+ and CD8+ T cells co-localized with and were surrounded by dendritic cells expressing T cell homing factors or antibody-producing plasma cells. T cell receptor tracing suggests that anti-CTLA4, but not anti-PD-L1, triggers the trafficking of CD4+ naive/central-memory T cells from tumor-draining lymph nodes (tdLNs), via blood, to the tumor wherein T cells acquire a Th1 phenotype. Thus, CD4+ T cell activation and recruitment from tdLNs are hallmarks of early response to anti-PD-L1 plus anti-CTLA4 in HNSCC.


Subject(s)
CD8-Positive T-Lymphocytes , Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck , B7-H1 Antigen/genetics , CTLA-4 Antigen , Head and Neck Neoplasms/drug therapy , CD4-Positive T-Lymphocytes , Tumor Microenvironment
3.
Cell ; 175(2): 400-415.e13, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30173915

ABSTRACT

Macrophages are highly heterogeneous tissue-resident immune cells that perform a variety of tissue-supportive functions. The current paradigm dictates that intestinal macrophages are continuously replaced by incoming monocytes that acquire a pro-inflammatory or tissue-protective signature. Here, we identify a self-maintaining population of macrophages that arise from both embryonic precursors and adult bone marrow-derived monocytes and persists throughout adulthood. Gene expression and imaging studies of self-maintaining macrophages revealed distinct transcriptional profiles that reflect their unique localization (i.e., closely positioned to blood vessels, submucosal and myenteric plexus, Paneth cells, and Peyer's patches). Depletion of self-maintaining macrophages resulted in morphological abnormalities in the submucosal vasculature and loss of enteric neurons, leading to vascular leakage, impaired secretion, and reduced intestinal motility. These results provide critical insights in intestinal macrophage heterogeneity and demonstrate the strategic role of self-maintaining macrophages in gut homeostasis and intestinal physiology.


Subject(s)
Intestines/immunology , Macrophages/immunology , Animals , Body Patterning/physiology , Cell Differentiation/genetics , Cell Differentiation/immunology , Gastrointestinal Motility/immunology , Gastrointestinal Motility/physiology , Homeostasis , Inflammation/immunology , Intestinal Mucosa/immunology , Intestine, Small/metabolism , Mice , Monocytes/metabolism , Neurons/metabolism , Phagocytes/immunology , Transcriptome
5.
Nature ; 610(7930): 190-198, 2022 10.
Article in English | MEDLINE | ID: mdl-36131018

ABSTRACT

Although melanoma is notorious for its high degree of heterogeneity and plasticity1,2, the origin and magnitude of cell-state diversity remains poorly understood. Equally, it is unclear whether growth and metastatic dissemination are supported by overlapping or distinct melanoma subpopulations. Here, by combining mouse genetics, single-cell and spatial transcriptomics, lineage tracing and quantitative modelling, we provide evidence of a hierarchical model of tumour growth that mirrors the cellular and molecular logic underlying the cell-fate specification and differentiation of the embryonic neural crest. We show that tumorigenic competence is associated with a spatially localized perivascular niche, a phenotype acquired through an intercellular communication pathway established by endothelial cells. Consistent with a model in which only a fraction of cells are fated to fuel growth, temporal single-cell tracing of a population of melanoma cells with a mesenchymal-like state revealed that these cells do not contribute to primary tumour growth but, instead, constitute a pool of metastatic initiating cells that switch cell identity while disseminating to secondary organs. Our data provide a spatially and temporally resolved map of the diversity and trajectories of melanoma cell states and suggest that the ability to support growth and metastasis are limited to distinct pools of cells. The observation that these phenotypic competencies can be dynamically acquired after exposure to specific niche signals warrant the development of therapeutic strategies that interfere with the cancer cell reprogramming activity of such microenvironmental cues.


Subject(s)
Cell Proliferation , Melanoma , Neoplasm Metastasis , Animals , Cell Communication , Cell Differentiation , Cell Lineage , Cell Tracking , Cellular Reprogramming , Endothelial Cells , Melanoma/genetics , Melanoma/pathology , Mesoderm/pathology , Mice , Neoplasm Metastasis/pathology , Neural Crest/embryology , Phenotype , Single-Cell Analysis , Transcriptome , Tumor Microenvironment
6.
Nature ; 605(7911): 747-753, 2022 05.
Article in English | MEDLINE | ID: mdl-35585241

ABSTRACT

Cancer metastasis requires the transient activation of cellular programs enabling dissemination and seeding in distant organs1. Genetic, transcriptional and translational heterogeneity contributes to this dynamic process2,3. Metabolic heterogeneity has also been observed4, yet its role in cancer progression is less explored. Here we find that the loss of phosphoglycerate dehydrogenase (PHGDH) potentiates metastatic dissemination. Specifically, we find that heterogeneous or low PHGDH expression in primary tumours of patients with breast cancer is associated with decreased metastasis-free survival time. In mice, circulating tumour cells and early metastatic lesions are enriched with Phgdhlow cancer cells, and silencing Phgdh in primary tumours increases metastasis formation. Mechanistically, Phgdh interacts with the glycolytic enzyme phosphofructokinase, and the loss of this interaction activates the hexosamine-sialic acid pathway, which provides precursors for protein glycosylation. As a consequence, aberrant protein glycosylation occurs, including increased sialylation of integrin αvß3, which potentiates cell migration and invasion. Inhibition of sialylation counteracts the metastatic ability of Phgdhlow cancer cells. In conclusion, although the catalytic activity of PHGDH supports cancer cell proliferation, low PHGDH protein expression non-catalytically potentiates cancer dissemination and metastasis formation. Thus, the presence of PHDGH heterogeneity in primary tumours could be considered a sign of tumour aggressiveness.


Subject(s)
Breast Neoplasms , Neoplasm Metastasis , Phosphoglycerate Dehydrogenase , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease Progression , Female , Gene Silencing , Humans , Mice , Phosphoglycerate Dehydrogenase/genetics , Serine/metabolism
7.
Nature ; 579(7797): 111-117, 2020 03.
Article in English | MEDLINE | ID: mdl-32103177

ABSTRACT

The avascular nature of cartilage makes it a unique tissue1-4, but whether and how the absence of nutrient supply regulates chondrogenesis remain unknown. Here we show that obstruction of vascular invasion during bone healing favours chondrogenic over osteogenic differentiation of skeletal progenitor cells. Unexpectedly, this process is driven by a decreased availability of extracellular lipids. When lipids are scarce, skeletal progenitors activate forkhead box O (FOXO) transcription factors, which bind to the Sox9 promoter and increase its expression. Besides initiating chondrogenesis, SOX9 acts as a regulator of cellular metabolism by suppressing oxidation of fatty acids, and thus adapts the cells to an avascular life. Our results define lipid scarcity as an important determinant of chondrogenic commitment, reveal a role for FOXO transcription factors during lipid starvation, and identify SOX9 as a critical metabolic mediator. These data highlight the importance of the nutritional microenvironment in the specification of skeletal cell fate.


Subject(s)
Bone and Bones/cytology , Cellular Microenvironment , Chondrogenesis , Lipid Metabolism , SOX9 Transcription Factor/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Animals , Bone and Bones/blood supply , Chondrocytes/cytology , Chondrocytes/metabolism , Fatty Acids/metabolism , Female , Food Deprivation , Forkhead Transcription Factors/metabolism , Male , Mice , Mice, Inbred C57BL , Osteogenesis , Oxidation-Reduction , SOX9 Transcription Factor/genetics , Signal Transduction , Wound Healing
8.
Hepatology ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38761406

ABSTRACT

BACKGROUND AND AIMS: Acute-on-chronic liver failure (ACLF) is a complication of cirrhosis characterized by multiple organ failure and high short-term mortality. The pathophysiology of ACLF involves elevated systemic inflammation leading to organ failure, along with immune dysfunction that heightens susceptibility to bacterial infections. However, it is unclear how these aspects are associated with recovery and nonrecovery in ACLF. APPROACH AND RESULTS: Here, we mapped the single-cell transcriptome of circulating immune cells from patients with ACLF and acute decompensated (AD) cirrhosis and healthy individuals. We further interrogate how these findings, as well as immunometabolic and functional profiles, associate with ACLF-recovery (ACLF-R) or nonrecovery (ACLF-NR). Our analysis unveiled 2 distinct states of classical monocytes (cMons). Hereto, ACLF-R cMons were characterized by transcripts associated with immune and stress tolerance, including anti-inflammatory genes such as RETN and LGALS1 . Additional metabolomic and functional validation experiments implicated an elevated oxidative phosphorylation metabolic program as well as an impaired ACLF-R cMon functionality. Interestingly, we observed a common stress-induced tolerant state, oxidative phosphorylation program, and blunted activation among lymphoid populations in patients with ACLF-R. Conversely, ACLF-NR cMon featured elevated expression of inflammatory and stress response genes such as VIM , LGALS2 , and TREM1 , along with blunted metabolic activity and increased functionality. CONCLUSIONS: This study identifies distinct immunometabolic cellular states that contribute to disease outcomes in patients with ACLF. Our findings provide valuable insights into the pathogenesis of ACLF, shedding light on factors driving either recovery or nonrecovery phenotypes, which may be harnessed as potential therapeutic targets in the future.

9.
Nature ; 569(7756): E4, 2019 May.
Article in English | MEDLINE | ID: mdl-31043737

ABSTRACT

Further analysis has revealed that the signal reported in Extended Data Fig. 1c of this Letter is attributed to phosphorylethanolamine, not carbamoyl phosphate. A newly developed derivatization method revealed that the level of carbamoyl phosphate in these NSCLC extracts is below the detection threshold of approximately 10 nanomoles. These findings do not alter the overall conclusions of the Letter; see associated Amendment for full details. The Letter has not been corrected online.

10.
Br J Dermatol ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913652

ABSTRACT

BACKGROUND: Observational studies in cutaneous melanoma have indicated an inverse relationship between levels of 25-hydroxy vitamin D and Breslow thickness, as well as a protective effect of high 25- hydroxy vitamin D levels on clinical outcome. OBJECTIVES: To evaluate whether high dose vitamin D supplementation in curatively resected cutaneous melanoma reduces melanoma relapse. METHODS: In a prospective, randomized, double-blind, placebo-controlled trial, 436 patients with resected cutaneous melanoma stage IA to III (8th American Joint Committee on Cancer staging) were randomized. Among them, 218 received a placebo while 218 received monthly 100,000 IU cholecalciferol for a minimum of 6 months and a maximum of 42 months (treatment arm). Following randomization, patients were followed for a median of 52 months, with a maximum follow-up of 116 months. The primary endpoint was relapse-free survival. Secondary endpoints were melanoma-related mortality, overall survival, and the evolution of 25-hydroxy vitamin D serum levels over time. RESULTS: In our population (mean age 55 years, 54% female) Vitamin D supplementation increased 25- hydroxy vitamin D serum levels after 6 months of supplementation in the treatment arm by a median 17 ng/ml (95%CI: 9; 26) compared to 0 ng/ml (95%CI: -6; 8) in the placebo arm (P < 0.001; Wilcoxon test) and remained at a steady state during the whole treatment period. The estimated event rate for relapse-free survival at 72 months after inclusion was 26.51% in the vitamin D supplemented arm (95% CI: 19.37; 35.64) versus 20.70% (95%CI: 14.26; 29.52) in the placebo arm, [hazard ratio 1.27 (95%CI 0.79; 2.03), P = 0.32]. After adjusting for confounding factors (including baseline stage, body mass index, age, gender, and baseline season), the hazard ratio was 1.20 (95% CI 0.74; 1.94, P = 0.46). Deaths from progression of cutaneous melanoma and non-melanoma related deaths were similar in both vitamin D supplemented and placebo group (n = 10 and 11 and n = 3 and 2, respectively). No major adverse events were observed during the study. CONCLUSION: In cutaneous melanoma patients, monthly high dose vitamin D supplementation was safe, resulted in a sustained increase in 25-hydroxy vitamin D levels during the treatment period, but did not improve relapse-free survival, melanoma-related death or overall survival.

11.
Liver Int ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847551

ABSTRACT

BACKGROUND & AIMS: Cystic fibrosis (CF) is considered a multisystemic disorder in which CF-associated liver disease (CFLD) is the third most common cause of mortality. Currently, no effective treatment is available for CFLD because its pathophysiology is still unclear. Interestingly, CFLD exhibits identical vascular characteristics as non-cirrhotic portal hypertension, recently classified as porto-sinusoidal vascular disorders (PSVD). METHODS: Since endothelial cells (ECs) are an important component in PSVD, we performed single-cell RNA sequencing (scRNA-seq) on four explant livers from CFLD patients to identify differential endothelial characteristics which could contribute to the disease. We comprehensively characterized the endothelial compartment and compared it with publicly available scRNA-seq datasets from cirrhotic and healthy livers. Key gene signatures were validated ex vivo on patient tissues. RESULTS: We found that ECs from CF liver explants are more closely related to healthy than cirrhotic patients. In CF patients we also discovered a distinct population of liver sinusoidal ECs-coined CF LSECs-upregulating genes involved in the complement cascade and coagulation. Finally, our immunostainings further validated the predominant periportal location of CF LSECs. CONCLUSIONS: Our work showed novel aspects of human liver ECs at the single-cell level thereby supporting endothelial involvement in CFLD, and reinforcing the hypothesis that ECs could be a driver of PSVD. Therefore, considering the vascular compartment in CF and CFLD may help developing new therapeutic approaches for these diseases.

12.
Int J Gynecol Cancer ; 34(4): 627-630, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38453176

ABSTRACT

BACKGROUND: Low-grade serous and endometrioid ovarian cancers and adult-type granulosa cell tumors are rare ovarian malignancies that show high estrogen receptor positivity. Recurrences of these subtypes of ovarian cancer are often treated with conventional chemotherapy, although response rates are disappointing. PRIMARY OBJECTIVE: To determine the overall response rate of the combination therapy of abemaciclib and letrozole in patients with estrogen receptor-positive rare ovarian cancers. STUDY HYPOTHESIS: The combination therapy of abemaciclib and letrozole will provide a clinically meaningful therapeutic benefit, with an overall response rate of >25%. TRIAL DESIGN: This is a phase II, international, multicenter, open-label, single-arm study to evaluate the efficacy and safety of abemaciclib and letrozole in patients with advanced, recurrent, and/or metastatic estrogen receptor-positive, rare ovarian cancer. The study will follow a tandem two-stage design. MAJOR INCLUSION/EXCLUSION CRITERIA: Patients must have histologically confirmed low-grade serous/endometrioid ovarian cancer or adult-type granulosa cell tumor with estrogen receptor positivity on immunohistochemistry. Patients need to have recurrent and measurable disease according to Radiologic Evaluation Criteria in Solid Tumors (RECIST) version 1.1. A maximum of two prior lines of endocrine therapy are allowed, and patients cannot have previously received a cyclin-dependent kinase inhibitor. Patients with platinum-refractory disease are not allowed in any stage of the study. PRIMARY ENDPOINT: Investigator-assessed confirmed overall response rate, defined as the proportion of patients with a complete or partial response according to RECIST v1.1. SAMPLE SIZE: 40 to 100 patients will be included, depending on the results of the interim analysis. Patients will be included in Belgium, France and the Netherlands. ESTIMATED DATES FOR COMPLETING ACCRUAL AND PRESENTING RESULTS: Patient recruitment will be completed by the end of 2025 and reporting of the final study results will be done by the end of 2027. TRIAL REGISTRATION NUMBER: NCT05872204.


Subject(s)
Benzimidazoles , Carcinoma, Ovarian Epithelial , Ovarian Neoplasms , Adult , Female , Humans , Aminopyridines/therapeutic use , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/pathology , Letrozole/therapeutic use , Ovarian Neoplasms/pathology , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism
13.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34161279

ABSTRACT

Stem cells in the adult pituitary are quiescent yet show acute activation upon tissue injury. The molecular mechanisms underlying this reaction are completely unknown. We applied single-cell transcriptomics to start unraveling the acute pituitary stem cell activation process as occurring upon targeted endocrine cell-ablation damage. This stem cell reaction was contrasted with the aging (middle-aged) pituitary, known to have lost damage-repair capacity. Stem cells in the aging pituitary show regressed proliferative activation upon injury and diminished in vitro organoid formation. Single-cell RNA sequencing uncovered interleukin-6 (IL-6) as being up-regulated upon damage, however only in young but not aging pituitary. Administering IL-6 to young mice promptly triggered pituitary stem cell proliferation, while blocking IL-6 or associated signaling pathways inhibited such reaction to damage. By contrast, IL-6 did not generate a pituitary stem cell activation response in aging mice, coinciding with elevated basal IL-6 levels and raised inflammatory state in the aging gland (inflammaging). Intriguingly, in vitro stem cell activation by IL-6 was discerned in organoid culture not only from young but also from aging pituitary, indicating that the aging gland's stem cells retain intrinsic activatability in vivo, likely impeded by the prevailing inflammatory tissue milieu. Importantly, IL-6 supplementation strongly enhanced the growth capability of pituitary stem cell organoids, thereby expanding their potential as an experimental model. Our study identifies IL-6 as a pituitary stem cell activator upon local damage, a competence quenched at aging, concomitant with raised IL-6/inflammatory levels in the older gland. These insights may open the way to interfering with pituitary aging.


Subject(s)
Aging/pathology , Interleukin-6/metabolism , Pituitary Gland/pathology , Stem Cells/pathology , Animals , Cell Proliferation , Inflammation/pathology , Mice , Organoids/pathology , Phenotype , Single-Cell Analysis , Transcriptome/genetics , Up-Regulation/genetics
14.
Br J Cancer ; 128(10): 1862-1878, 2023 05.
Article in English | MEDLINE | ID: mdl-36932191

ABSTRACT

BACKGROUND: One-third of cancers activate endogenous synthesis of serine/glycine, and can become addicted to this pathway to sustain proliferation and survival. Mechanisms driving this metabolic rewiring remain largely unknown. METHODS: NKX2-1 overexpressing and NKX2-1 knockdown/knockout T-cell leukaemia and lung cancer cell line models were established to study metabolic rewiring using ChIP-qPCR, immunoblotting, mass spectrometry, and proliferation and invasion assays. Findings and therapeutic relevance were validated in mouse models and confirmed in patient datasets. RESULTS: Exploring T-cell leukaemia, lung cancer and neuroendocrine prostate cancer patient datasets highlighted the transcription factor NKX2-1 as putative driver of serine/glycine metabolism. We demonstrate that transcription factor NKX2-1 binds and transcriptionally upregulates serine/glycine synthesis enzyme genes, enabling NKX2-1 expressing cells to proliferate and invade in serine/glycine-depleted conditions. NKX2-1 driven serine/glycine synthesis generates nucleotides and redox molecules, and is associated with an altered cellular lipidome and methylome. Accordingly, NKX2-1 tumour-bearing mice display enhanced tumour aggressiveness associated with systemic metabolic rewiring. Therapeutically, NKX2-1-expressing cancer cells are more sensitive to serine/glycine conversion inhibition by repurposed anti-depressant sertraline, and to etoposide chemotherapy. CONCLUSION: Collectively, we identify NKX2-1 as a novel transcriptional regulator of serine/glycine synthesis addiction across cancers, revealing a therapeutic vulnerability of NKX2-1-driven cancers. Transcription factor NKX2-1 fuels cancer cell proliferation and survival by hyperactivating serine/glycine synthesis, highlighting this pathway as a novel therapeutic target in NKX2-1-positive cancers.


Subject(s)
Lung Neoplasms , Serine , Animals , Humans , Mice , Cell Line , Cell Line, Tumor , Glycine , Lung Neoplasms/pathology , Serine/metabolism , Thyroid Nuclear Factor 1/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
15.
Br J Cancer ; 129(8): 1327-1338, 2023 10.
Article in English | MEDLINE | ID: mdl-37620410

ABSTRACT

BACKGROUND: Patient-derived glioma stem-like cells (GSCs) have become the gold-standard in neuro-oncological research; however, it remains to be established whether loss of in situ microenvironment affects the clinically-predictive value of this model. We implemented a GSC monolayer system to investigate in situ-in vitro molecular correspondence and the relationship between in vitro and patient response to temozolomide (TMZ). METHODS: DNA/RNA-sequencing was performed on 56 glioblastoma tissues and 19 derived GSC cultures. Sensitivity to TMZ was screened across 66 GSC cultures. Viability readouts were related to clinical parameters of corresponding patients and whole-transcriptome data. RESULTS: Tumour DNA and RNA sequences revealed strong similarity to corresponding GSCs despite loss of neuronal and immune interactions. In vitro TMZ screening yielded three response categories which significantly correlated with patient survival, therewith providing more specific prediction than the binary MGMT marker. Transcriptome analysis identified 121 genes related to TMZ sensitivity of which 21were validated in external datasets. CONCLUSION: GSCs retain patient-unique hallmark gene expressions despite loss of their natural environment. Drug screening using GSCs predicted patient response to TMZ more specifically than MGMT status, while transcriptome analysis identified potential biomarkers for this response. GSC drug screening therefore provides a tool to improve drug development and precision medicine for glioblastoma.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , Drug Evaluation, Preclinical , Biomarkers , DNA/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Cell Line, Tumor , Tumor Microenvironment
16.
Cancer Immunol Immunother ; 72(2): 475-491, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35960332

ABSTRACT

A phase II study (PRIMMO) of patients with pretreated persistent/recurrent/metastatic cervical or endometrial cancer is presented. Patients received an immunomodulatory five-drug cocktail (IDC) consisting of low-dose cyclophosphamide, aspirin, lansoprazole, vitamin D, and curcumin starting 2 weeks before radioimmunotherapy. Pembrolizumab was administered three-weekly from day 15 onwards; one of the tumor lesions was irradiated (8Gyx3) on days 15, 17, and 19. The primary endpoint was the objective response rate per immune-related response criteria (irORR) at week 26 (a lower bound of the 90% confidence interval [CI] of > 10% was considered efficacious). The prespecified 43 patients (cervical, n = 18; endometrial, n = 25) were enrolled. The irORR was 11.1% (90% CI 2.0-31.0) in cervical cancer and 12.0% (90% CI 3.4-28.2) in endometrial cancer. Median duration of response was not reached in both cohorts. Median interval-censored progression-free survival was 4.1 weeks (95% CI 4.1-25.7) in cervical cancer and 3.6 weeks (95% CI 3.6-15.4) in endometrial cancer; median overall survival was 39.6 weeks (95% CI 15.0-67.0) and 37.4 weeks (95% CI 19.0-50.3), respectively. Grade ≥ 3 treatment-related adverse events were reported in 10 (55.6%) cervical cancer patients and 9 (36.0%) endometrial cancer patients. Health-related quality of life was generally stable over time. Responders had a significantly higher proportion of peripheral T cells when compared to nonresponders (p = 0.013). In conclusion, PRIMMO did not meet its primary objective in both cohorts; pembrolizumab, radiotherapy, and an IDC had modest but durable antitumor activity with acceptable but not negligible toxicity.Trial registration ClinicalTrials.gov (identifier NCT03192059) and EudraCT Registry (number 2016-001569-97).


Subject(s)
Endometrial Neoplasms , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/drug therapy , Quality of Life , Antibodies, Monoclonal, Humanized/therapeutic use , Endometrial Neoplasms/pathology
18.
J Neurooncol ; 163(2): 327-338, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37237151

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is an aggressive brain cancer that typically results in death in the first 15 months after diagnosis. There have been limited advances in finding new treatments for GBM. In this study, we investigated molecular differences between patients with extremely short (≤ 9 months, Short term survivors, STS) and long survival (≥ 36 months, Long term survivors, LTS). METHODS: Patients were selected from an in-house cohort (GLIOTRAIN-cohort), using defined inclusion criteria (Karnofsky score > 70; age < 70 years old; Stupp protocol as first line treatment, IDH wild type), and a multi-omic analysis of LTS and STS GBM samples was performed. RESULTS: Transcriptomic analysis of tumour samples identified cilium gene signatures as enriched in LTS. Moreover, Immunohistochemical analysis confirmed the presence of cilia in the tumours of LTS. Notably, reverse phase protein array analysis (RPPA) demonstrated increased phosphorylated GAB1 (Y627), SRC (Y527), BCL2 (S70) and RAF (S338) protein expression in STS compared to LTS. Next, we identified 25 unique master regulators (MR) and 13 transcription factors (TFs) belonging to ontologies of integrin signalling and cell cycle to be upregulated in STS. CONCLUSION: Overall, comparison of STS and LTS GBM patients, identifies novel biomarkers and potential actionable therapeutic targets for the management of GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Aged , Glioblastoma/pathology , Prognosis , Brain Neoplasms/pathology , Brain/pathology , Survivors
19.
Nature ; 546(7656): 168-172, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28538732

ABSTRACT

Metabolic reprogramming by oncogenic signals promotes cancer initiation and progression. The oncogene KRAS and tumour suppressor STK11, which encodes the kinase LKB1, regulate metabolism and are frequently mutated in non-small-cell lung cancer (NSCLC). Concurrent occurrence of oncogenic KRAS and loss of LKB1 (KL) in cells specifies aggressive oncological behaviour. Here we show that human KL cells and tumours share metabolomic signatures of perturbed nitrogen handling. KL cells express the urea cycle enzyme carbamoyl phosphate synthetase-1 (CPS1), which produces carbamoyl phosphate in the mitochondria from ammonia and bicarbonate, initiating nitrogen disposal. Transcription of CPS1 is suppressed by LKB1 through AMPK, and CPS1 expression correlates inversely with LKB1 in human NSCLC. Silencing CPS1 in KL cells induces cell death and reduces tumour growth. Notably, cell death results from pyrimidine depletion rather than ammonia toxicity, as CPS1 enables an unconventional pathway of nitrogen flow from ammonia into pyrimidines. CPS1 loss reduces the pyrimidine to purine ratio, compromises S-phase progression and induces DNA-polymerase stalling and DNA damage. Exogenous pyrimidines reverse DNA damage and rescue growth. The data indicate that the KL oncological genotype imposes a metabolic vulnerability related to a dependence on a cross-compartmental pathway of pyrimidine metabolism in an aggressive subset of NSCLC.


Subject(s)
Carbamoyl-Phosphate Synthase (Ammonia)/metabolism , DNA/biosynthesis , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Pyrimidines/metabolism , AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases/metabolism , Ammonia/metabolism , Animals , Bicarbonates/metabolism , Carbamoyl-Phosphate Synthase (Ammonia)/deficiency , Carbamoyl-Phosphate Synthase (Ammonia)/genetics , Carbamyl Phosphate/metabolism , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Death , Cell Proliferation , DNA Damage/drug effects , DNA Replication , DNA-Directed DNA Polymerase/metabolism , Female , Gene Silencing , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Male , Metabolomics , Mice , Mitochondria/metabolism , Nitrogen/metabolism , Protein Serine-Threonine Kinases/metabolism , Purines/metabolism , Pyrimidines/pharmacology , S Phase , Transcription, Genetic , Xenograft Model Antitumor Assays
20.
Nature ; 542(7639): 49-54, 2017 02 02.
Article in English | MEDLINE | ID: mdl-28024299

ABSTRACT

Lymphatic vessels are lined by lymphatic endothelial cells (LECs), and are critical for health. However, the role of metabolism in lymphatic development has not yet been elucidated. Here we report that in transgenic mouse models, LEC-specific loss of CPT1A, a rate-controlling enzyme in fatty acid ß-oxidation, impairs lymphatic development. LECs use fatty acid ß-oxidation to proliferate and for epigenetic regulation of lymphatic marker expression during LEC differentiation. Mechanistically, the transcription factor PROX1 upregulates CPT1A expression, which increases acetyl coenzyme A production dependent on fatty acid ß-oxidation. Acetyl coenzyme A is used by the histone acetyltransferase p300 to acetylate histones at lymphangiogenic genes. PROX1-p300 interaction facilitates preferential histone acetylation at PROX1-target genes. Through this metabolism-dependent mechanism, PROX1 mediates epigenetic changes that promote lymphangiogenesis. Notably, blockade of CPT1 enzymes inhibits injury-induced lymphangiogenesis, and replenishing acetyl coenzyme A by supplementing acetate rescues this process in vivo.


Subject(s)
Fatty Acids/chemistry , Fatty Acids/metabolism , Lymphangiogenesis , Lymphatic Vessels/cytology , Lymphatic Vessels/metabolism , Acetates/pharmacology , Acetyl Coenzyme A/metabolism , Acetylation/drug effects , Animals , Carnitine O-Palmitoyltransferase/antagonists & inhibitors , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Epigenesis, Genetic , Female , Histones/metabolism , Homeodomain Proteins/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Lymphangiogenesis/drug effects , Lymphangiogenesis/genetics , Lymphatic Vessels/drug effects , Mice , Mice, Inbred C57BL , Oxidation-Reduction/drug effects , Protein Biosynthesis , Transcription, Genetic , Tumor Suppressor Proteins/metabolism , Umbilical Arteries/cytology , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL