Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Ann N Y Acad Sci ; 1082: 31-43, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17145922

ABSTRACT

Toll-like receptors (TLRs) are involved in the innate recognition of foreign material and their activation leads to both innate and adaptive immune responses directed against invading pathogens. TLR9 is intracellularly expressed in the endo-lysosomal compartments of specialized immune cells. TLR9 is activated in response to DNA, in particular DNA containing unmethylated CpG motifs that are more prevalent in microbial than mammalian DNA. By detecting foreign DNA signatures TLR9 can sense the presence of certain viruses or bacteria inside the cell and mount an immune response. However, under certain conditions, TLR9 can also recognize self-DNA and this may promote immune pathologies with uncontrolled chronic inflammation. The autoimmune disease systemic lupus erythematosis (SLE) is characterized by the presence of immune stimulatory complexes containing autoantibodies against endogenous DNA and DNA- and RNA-associated proteins. Recent evidence indicates that the autoimmune response to these complexes involves TLR9 and the related single-stranded RNA-responsive TLRs 7 and 8, and therefore some breakdown in the normal ability of these TLRs to distinguish self and foreign DNA. Evidence suggests that immune cells use several mechanisms to discriminate between stimulatory and nonstimulatory DNA; however, it appears that TLR9 itself binds rather indiscriminately to a broad range of DNAs. We therefore propose that there is an additional recognition step by which TLR9 senses differences in the structures of bound DNA.


Subject(s)
Autoantigens/immunology , Autoimmunity , Nucleic Acids/immunology , Toll-Like Receptor 9/immunology , Autoantibodies , CpG Islands , DNA/immunology , Humans , Inflammation , Self Tolerance/immunology
2.
Dev Growth Differ ; 25(5): 495-501, 1983.
Article in English | MEDLINE | ID: mdl-37281057

ABSTRACT

The fusion of cells of complementary mating types to produce giant cells has been shown to be the critical event to induce macrocyst formation in Dictyostelium discoideum. We have examined the way in which giant cells use diffusible factors to influence the developmental mode of nearby cells using an experimental design in which NC4 cells are allowed to develop on a dialysis membrane above a suspension of giant cells. We have observed that giant cells are able to inhibit independent aggregation and stream formation in the upper cells and become the dominant aggregation centers. In addition giant cells are able to redirect local amoeba away from the fruiting-body and toward the macrocyst mode of development. We show that these effects are mediated by diffusible factors of under 2,000 MW. and discuss possible mechanisms of action.

3.
Nat Immunol ; 8(7): 772-9, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17572678

ABSTRACT

Microbial and synthetic DNA rich in CpG dinucleotides stimulates Toll-like receptor 9 (TLR9), whereas DNA lacking CpG either is inert or can inhibit TLR9 activation. The molecular mechanisms by which TLR9 becomes activated or is inhibited are not well understood. Here we show that TLR9 bound to stimulatory and inhibitory DNA; however, only stimulatory DNA led to substantial conformational changes in the TLR9 ectodomain. In the steady state, 'inactive' TLR9 homodimers formed in an inactivated conformation. Binding of DNA containing CpG, but not of DNA lacking CpG, to TLR9 dimers resulted in allosteric changes in the TLR9 cytoplasmic signaling domains. In endosomes, conformational changes induced by DNA containing CpG resulted in close apposition of the cytoplasmic signaling domains, a change that is probably required for the recruitment of signaling adaptor molecules. Our results indicate that the formation of TLR9 dimers is not sufficient for its activation but instead that TLR9 activation is regulated by conformational changes induced by DNA containing CpG.


Subject(s)
Toll-Like Receptor 9/chemistry , Toll-Like Receptor 9/metabolism , Allosteric Regulation , Cell Line , CpG Islands/immunology , Humans , Ligands , Oligodeoxyribonucleotides/metabolism , Protein Binding , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL