Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Mol Psychiatry ; 28(3): 1327-1336, 2023 03.
Article in English | MEDLINE | ID: mdl-36577842

ABSTRACT

Polygenic risk scores (PRS) have been widely adopted as a tool for measuring common variant liability and they have been shown to predict lifetime risk of Alzheimer's disease (AD) development. However, the relationship between PRS and AD pathogenesis is largely unknown. To this end, we performed a differential gene-expression and associated disrupted biological pathway analyses of AD PRS vs. case/controls in human brain-derived cohort sample (cerebellum/temporal cortex; MayoRNAseq). The results highlighted already implicated mechanisms: immune and stress response, lipids, fatty acids and cholesterol metabolisms, endosome and cellular/neuronal death, being disrupted biological pathways in both case/controls and PRS, as well as previously less well characterised processes such as cellular structures, mitochondrial respiration and secretion. Despite heterogeneity in terms of differentially expressed genes in case/controls vs. PRS, there was a consensus of commonly disrupted biological mechanisms. Glia and microglia-related terms were also significantly disrupted, albeit not being the top disrupted Gene Ontology terms. GWAS implicated genes were significantly and in their majority, up-regulated in response to different PRS among the temporal cortex samples, suggesting potential common regulatory mechanisms. Tissue specificity in terms of disrupted biological pathways in temporal cortex vs. cerebellum was observed in relation to PRS, but limited tissue specificity when the datasets were analysed as case/controls. The largely common biological mechanisms between a case/control classification and in association with PRS suggests that PRS stratification can be used for studies where suitable case/control samples are not available or the selection of individuals with high and low PRS in clinical trials.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/genetics , Risk Factors , Multifactorial Inheritance , Mitochondria/genetics , Endoplasmic Reticulum , Golgi Apparatus , Sequence Analysis, RNA , Genome-Wide Association Study , Genetic Predisposition to Disease
2.
Genet Med ; 24(2): 463-474, 2022 02.
Article in English | MEDLINE | ID: mdl-34906518

ABSTRACT

PURPOSE: Disruptions of genomic imprinting are associated with congenital imprinting disorders (CIDs) and other disease states, including cancer. CIDs are most often associated with altered methylation at imprinted differentially methylated regions (iDMRs). In some cases, multiple iDMRs are affected causing multilocus imprinting disturbances (MLIDs). The availability of accurate, quantitative, and scalable high-throughput methods to interrogate multiple iDMRs simultaneously would enhance clinical diagnostics and research. METHODS: We report the development of a custom targeted methylation sequencing panel that covered most relevant 63 iDMRs for CIDs and the detection of MLIDs. We tested it in 70 healthy controls and 147 individuals with CIDs. We distinguished loss and gain of methylation per differentially methylated region and classified high and moderate methylation alterations. RESULTS: Across a range of CIDs with a variety of molecular mechanisms, ImprintSeq performed at 98.4% sensitivity, 99.9% specificity, and 99.9% accuracy (when compared with previous diagnostic testing). ImprintSeq was highly sensitive for detecting MLIDs and enabled diagnostic criteria for MLID to be proposed. In a child with extreme MLID profile a probable genetic cause was identified. CONCLUSION: ImprintSeq provides a novel assay for clinical diagnostic and research studies of CIDs, MLIDs, and the role of disordered imprinting in human disease states.


Subject(s)
DNA Methylation , Genomic Imprinting , Child , DNA Methylation/genetics , Genomic Imprinting/genetics , Humans
3.
PLoS One ; 15(10): e0240824, 2020.
Article in English | MEDLINE | ID: mdl-33104720

ABSTRACT

Many research teams perform numerous genetic, transcriptomic, proteomic and other types of omic experiments to understand molecular, cellular and physiological mechanisms of disease and health. Often (but not always), the results of these experiments are deposited in publicly available repository databases. These data records often include phenotypic characteristics following genetic and environmental perturbations, with the aim of discovering underlying molecular mechanisms leading to the phenotypic responses. A constrained set of phenotypic characteristics is usually recorded and these are mostly hypothesis driven of possible to record within financial or practical constraints. We present a novel proof-of-principal computational approach for combining publicly available gene-expression data from control/mutant animal experiments that exhibit a particular phenotype, and we use this approach to predict unobserved phenotypic characteristics in new experiments (data derived from EBI's ArrayExpress and ExpressionAtlas respectively). We utilised available microarray gene-expression data for two phenotypes (starvation-sensitive and sterile) in Drosophila. The data were combined using a linear-mixed effects model with the inclusion of consecutive principal components to account for variability between experiments in conjunction with Gene Ontology enrichment analysis. We present how available data can be ranked in accordance to a phenotypic likelihood of exhibiting these two phenotypes using random forest. The results from our study show that it is possible to integrate seemingly different gene-expression microarray data and predict a potential phenotypic manifestation with a relatively high degree of confidence (>80% AUC). This provides thus far unexplored opportunities for inferring unknown and unbiased phenotypic characteristics from already performed experiments, in order to identify studies for future analyses. Molecular mechanisms associated with gene and environment perturbations are intrinsically linked and give rise to a variety of phenotypic manifestations. Therefore, unravelling the phenotypic spectrum can help to gain insights into disease mechanisms associated with gene and environmental perturbations. Our approach uses public data that are set to increase in volume, thus providing value for money.


Subject(s)
Computational Biology/methods , Gene Expression Profiling/methods , Transcriptome/genetics , Animals , Databases, Genetic , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Gene Ontology , Oligonucleotide Array Sequence Analysis/methods , Phenotype , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL