Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
ChemMedChem ; 12(18): 1542-1554, 2017 09 21.
Article in English | MEDLINE | ID: mdl-28857471

ABSTRACT

Activation of the phosphoinositide 3-kinase (PI3K) pathway is a key signaling event in cancer, inflammation, and other proliferative diseases. PI3K inhibitors are already approved for some specific clinical indications, but their systemic on-target toxicity limits their larger use. In particular, whereas toxicity is tolerable in acute treatment of life-threatening diseases, this is less acceptable in chronic conditions. In the past, the strategy to overcome this drawback was to block selected isoforms mainly expressed in leukocytes, but redundancy within the PI3K family members challenges the effectiveness of this approach. On the other hand, decreasing exposure to selected target cells represents a so-far unexplored alternative to circumvent systemic toxicity. In this manuscript, we describe the generation of a library of triazolylquinolones and the development of the first prodrug pan-PI3K inhibitor.


Subject(s)
Carboxylic Acids/chemistry , Enzyme Inhibitors/chemistry , Phosphoinositide-3 Kinase Inhibitors , Prodrugs/chemistry , Animals , Binding Sites , Carboxylic Acids/metabolism , Carboxylic Acids/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , Hydrogen Bonding , Inhibitory Concentration 50 , Mice , Microsomes/metabolism , Molecular Dynamics Simulation , Phosphatidylinositol 3-Kinases/metabolism , Prodrugs/metabolism , Prodrugs/pharmacology , Protein Binding , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Quinolones/chemistry , Quinolones/metabolism , Quinolones/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL