ABSTRACT
BACKGROUND: We investigated the usefulness of invasive coronary function testing to diagnose the cause of angina in patients with no obstructive coronary arteries. METHODS: Outpatients referred for coronary computed tomography angiography in 3 hospitals in the United Kingdom were prospectively screened. After coronary computed tomography angiography, patients with unobstructed coronary arteries, and who consented, underwent invasive endotyping. The diagnostic assessments included coronary angiography, fractional flow reserve (patient excluded if ≤0.80), and, for those without obstructive coronary artery disease, coronary flow reserve (abnormal <2.0), index of microvascular resistance (abnormal ≥25), and intracoronary infusion of acetylcholine (0.182, 1.82, and 18.2 µg/mL; 2 mL/min for 2 minutes) to assess for microvascular and coronary spasm. Participants were randomly assigned to disclosure of the results of the coronary function tests to the invasive cardiologist (intervention group) or nondisclosure (control group, blinded). In the control group, a diagnosis of vasomotor angina was based on medical history, noninvasive tests, and coronary angiography. The primary outcome was the between-group difference in the reclassification rate of the initial diagnosis on the basis of coronary computed tomography angiography versus the final diagnosis after invasive endotyping. The Seattle Angina Questionnaire summary score and Treatment Satisfaction Questionnaire for Medication were secondary outcomes. RESULTS: Of 322 eligible patients, 250 (77.6%) underwent invasive endotyping; 19 (7.6%) had obstructive coronary disease, 127 (55.0%) had microvascular angina, 27 (11.7%) had vasospastic angina, 17 (7.4%) had both, and 60 (26.0%) had no abnormality. A total of 231 patients (mean age, 55.7 years; 64.5% women) were randomly assigned and followed up (median duration, 19.9 [12.6-26.9] months). The clinician diagnosed vasomotor angina in 51 (44.3%) patients in the intervention group and in 55 (47.4%) patients in the control group. After randomization, patients in the intervention group were 4-fold (odds ratio, 4.05 [95% CI, 2.32-7.24]; P<0.001) more likely to be diagnosed with a coronary vasomotor disorder; the frequency of this diagnosis increased to 76.5%. The frequency of normal coronary function (ie, no vasomotor disorder) was not different between the groups before randomization (51.3% versus 50.9%) but was reduced in the intervention group after randomization (23.5% versus 50.9%, P<0.001). At 6 and 12 months, the Seattle Angina Questionnaire summary score in the intervention versus control groups was 59.2±24.2 (2.3±16.2 change from baseline) versus 60.4±23.9 (4.6±16.4 change) and 63.7±23.5 (4.7±14.7 change) versus 66.0±19.3 (7.9±17.1 change), respectively, and not different between groups (global P=0.36). Compared with the control group, global treatment satisfaction was higher in the intervention group at 12 months (69.9±22.8 versus 61.7±26.9, P=0.013). CONCLUSIONS: For patients with angina and no obstructive coronary arteries, a diagnosis informed by invasive functional assessment had no effect on long-term angina burden, whereas treatment satisfaction improved. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03477890.
Subject(s)
Coronary Artery Disease , Fractional Flow Reserve, Myocardial , Microvascular Angina , Humans , Female , Middle Aged , Male , Coronary Artery Disease/diagnostic imaging , Coronary Angiography , United KingdomABSTRACT
BACKGROUND: Anthracycline-induced cardiotoxicity has a variable incidence, and the development of left ventricular dysfunction is preceded by elevations in cardiac troponin concentrations. Beta-adrenergic receptor blocker and renin-angiotensin system inhibitor therapies have been associated with modest cardioprotective effects in unselected patients receiving anthracycline chemotherapy. METHODS: In a multicenter, prospective, randomized, open-label, blinded end-point trial, patients with breast cancer and non-Hodgkin lymphoma receiving anthracycline chemotherapy underwent serial high-sensitivity cardiac troponin testing and cardiac magnetic resonance imaging before and 6 months after anthracycline treatment. Patients at high risk of cardiotoxicity (cardiac troponin I concentrations in the upper tertile during chemotherapy) were randomized to standard care plus cardioprotection (combination carvedilol and candesartan therapy) or standard care alone. The primary outcome was adjusted change in left ventricular ejection fraction at 6 months. In low-risk nonrandomized patients with cardiac troponin I concentrations in the lower 2 tertiles, we hypothesized the absence of a 6-month change in left ventricular ejection fraction and tested for equivalence of ±2%. RESULTS: Between October 2017 and June 2021, 175 patients (mean age, 53 years; 87% female; 71% with breast cancer) were recruited. Patients randomized to cardioprotection (n=29) or standard care (n=28) had left ventricular ejection fractions of 69.4±7.4% and 69.1±6.1% at baseline and 65.7±6.6% and 64.9±5.9% 6 months after completion of chemotherapy, respectively. After adjustment for age, pretreatment left ventricular ejection fraction, and planned anthracycline dose, the estimated mean difference in 6-month left ventricular ejection fraction between the cardioprotection and standard care groups was -0.37% (95% CI, -3.59% to 2.85%; P=0.82). In low-risk nonrandomized patients, baseline and 6-month left ventricular ejection fractions were 69.3±5.7% and 66.4±6.3%, respectively: estimated mean difference, 2.87% (95% CI, 1.63%-4.10%; P=0.92, not equivalent). CONCLUSIONS: Combination candesartan and carvedilol therapy had no demonstrable cardioprotective effect in patients receiving anthracycline-based chemotherapy with high-risk on-treatment cardiac troponin I concentrations. Low-risk nonrandomized patients had similar declines in left ventricular ejection fraction, bringing into question the utility of routine cardiac troponin monitoring. Furthermore, the modest declines in left ventricular ejection fraction suggest that the value and clinical impact of early cardioprotection therapy need to be better defined in patients receiving high-dose anthracycline. REGISTRATION: URL: https://doi.org; Unique identifier: 10.1186/ISRCTN24439460. URL: https://www.clinicaltrialsregister.eu/ctr-search/search; Unique identifier: 2017-000896-99.
Subject(s)
Anthracyclines , Breast Neoplasms , Humans , Female , Middle Aged , Male , Anthracyclines/adverse effects , Troponin I , Stroke Volume , Carvedilol/therapeutic use , Cardiotoxicity/etiology , Ventricular Function, Left , Prospective Studies , Antibiotics, Antineoplastic/pharmacology , Breast Neoplasms/drug therapy , Adrenergic beta-Antagonists/therapeutic use , Adrenergic beta-Antagonists/pharmacologyABSTRACT
AIMS: Cancer and heart failure (HF) share risk factors, pathophysiological mechanisms, and possibly genetics. Improved HF survival may increase the risk of cancer due to a competing risk. Whether the incidence of cancer has increased over time in patients with HF as survival has improved is unclear. Therefore, temporal trends of new onset cancer in HF patients between 1997 and 2016 were investigated. METHODS AND RESULTS: Using Danish nationwide registers, 103 711 individuals alive, free of cancer, and aged 30-80 years 1 year after HF diagnosis (index date) were included between 1 January 1997 and 31 December 2016. A five-year incidence rate of cancer for each year after index date was calculated. The median age and proportion of women at the index date decreased with advancing calendar time [1997-2001: 70.3 interquartile range (Q1-Q3 62.5-75.7), 60.9% men; 2012-16: 67.6 (59.2-73.8), 67.5% men]. The five-year incidence rate of cancer was 20.9 and 20.2 per 1,000 person-years in 1997 and 2016, respectively. In a multivariable Cox regression model, the hazard rates between index years 1997 (reference) and 2016 were not significantly different [hazard ratio 1.09 (0.97-1.23)]. The five-year absolute risk of cancer did not change with advancing calendar year, going from 9.0% (1997-2001) to 9.0% (2012-16). Five-year cumulative incidence of survival for HF patients increased with advancing calendar year, going from 55.9% (1997-2001) to 74.3% (2012-2016). CONCLUSION: Although cancer rates during 1997-2016 have remained stable within 1-6 years after the HF diagnosis, long-term survival following a HF diagnosis has increased significantly.
Subject(s)
Heart Failure , Neoplasms , Male , Humans , Female , Incidence , Heart Failure/etiology , Proportional Hazards Models , Neoplasms/epidemiology , Neoplasms/complications , Denmark/epidemiology , Risk FactorsABSTRACT
BACKGROUND AND AIMS: To examine the decongestive effect of the sodium-glucose cotransporter 2 inhibitor dapagliflozin compared to the thiazide-like diuretic metolazone in patients hospitalized for heart failure and resistant to treatment with intravenous furosemide. METHODS AND RESULTS: A multi-centre, open-label, randomized, and active-comparator trial. Patients were randomized to dapagliflozin 10 mg once daily or metolazone 5-10 mg once daily for a 3-day treatment period, with follow-up for primary and secondary endpoints until day 5 (96 h). The primary endpoint was a diuretic effect, assessed by change in weight (kg). Secondary endpoints included a change in pulmonary congestion (lung ultrasound), loop diuretic efficiency (weight change per 40 mg of furosemide), and a volume assessment score. 61 patients were randomized. The mean (±standard deviation) cumulative dose of furosemide at 96 h was 977 (±492) mg in the dapagliflozin group and 704 (±428) mg in patients assigned to metolazone. The mean (±standard deviation) decrease in weight at 96 h was 3.0 (2.5) kg with dapagliflozin compared to 3.6 (2.0) kg with metolazone [mean difference 0.65, 95% confidence interval (CI) -0.12,1.41 kg; P = 0.11]. Loop diuretic efficiency was less with dapagliflozin than with metolazone [mean 0.15 (0.12) vs. 0.25 (0.19); difference -0.08, 95% CI -0.17,0.01 kg; P = 0.10]. Changes in pulmonary congestion and volume assessment score were similar between treatments. Decreases in plasma sodium and potassium and increases in urea and creatinine were smaller with dapagliflozin than with metolazone. Serious adverse events were similar between treatments. CONCLUSION: In patients with heart failure and loop diuretic resistance, dapagliflozin was not more effective at relieving congestion than metolazone. Patients assigned to dapagliflozin received a larger cumulative dose of furosemide but experienced less biochemical upset than those assigned to metolazone. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04860011.
Subject(s)
Heart Failure , Metolazone , Humans , Metolazone/therapeutic use , Metolazone/adverse effects , Sodium Potassium Chloride Symporter Inhibitors/therapeutic use , Furosemide/therapeutic use , Heart Failure/drug therapy , Heart Failure/chemically induced , Diuretics/therapeutic use , SodiumABSTRACT
BACKGROUND: For patients with heart failure, reduced left ventricular ejection fraction and iron deficiency, intravenous ferric carboxymaltose administration improves quality of life and exercise capacity in the short-term and reduces hospital admissions for heart failure up to 1 year. We aimed to evaluate the longer-term effects of intravenous ferric derisomaltose on cardiovascular events in patients with heart failure. METHODS: IRONMAN was a prospective, randomised, open-label, blinded-endpoint trial done at 70 hospitals in the UK. Patients aged 18 years or older with heart failure (left ventricular ejection fraction ≤45%) and transferrin saturation less than 20% or serum ferritin less than 100 µg/L were eligible. Participants were randomly assigned (1:1) using a web-based system to intravenous ferric derisomaltose or usual care, stratified by recruitment context and trial site. The trial was open label, with masked adjudication of the outcomes. Intravenous ferric derisomaltose dose was determined by patient bodyweight and haemoglobin concentration. The primary outcome was recurrent hospital admissions for heart failure and cardiovascular death, assessed in all validly randomly assigned patients. Safety was assessed in all patients assigned to ferric derisomaltose who received at least one infusion and all patients assigned to usual care. A COVID-19 sensitivity analysis censoring follow-up on Sept 30, 2020, was prespecified. IRONMAN is registered with ClinicalTrials.gov, NCT02642562. FINDINGS: Between Aug 25, 2016, and Oct 15, 2021, 1869 patients were screened for eligibility, of whom 1137 were randomly assigned to receive intravenous ferric derisomaltose (n=569) or usual care (n=568). Median follow-up was 2·7 years (IQR 1·8-3·6). 336 primary endpoints (22·4 per 100 patient-years) occurred in the ferric derisomaltose group and 411 (27·5 per 100 patient-years) occurred in the usual care group (rate ratio [RR] 0·82 [95% CI 0·66 to 1·02]; p=0·070). In the COVID-19 analysis, 210 primary endpoints (22·3 per 100 patient-years) occurred in the ferric derisomaltose group compared with 280 (29·3 per 100 patient-years) in the usual care group (RR 0·76 [95% CI 0·58 to 1·00]; p=0·047). No between-group differences in deaths or hospitalisations due to infections were observed. Fewer patients in the ferric derisomaltose group had cardiac serious adverse events (200 [36%]) than in the usual care group (243 [43%]; difference -7·00% [95% CI -12·69 to -1·32]; p=0·016). INTERPRETATION: For a broad range of patients with heart failure, reduced left ventricular ejection fraction and iron deficiency, intravenous ferric derisomaltose administration was associated with a lower risk of hospital admissions for heart failure and cardiovascular death, further supporting the benefit of iron repletion in this population. FUNDING: British Heart Foundation and Pharmacosmos.
Subject(s)
Anemia, Iron-Deficiency , COVID-19 , Heart Failure , Iron Deficiencies , Humans , Stroke Volume , Anemia, Iron-Deficiency/drug therapy , Anemia, Iron-Deficiency/complications , Quality of Life , Prospective Studies , Ventricular Function, Left , COVID-19/complications , United Kingdom/epidemiology , Treatment OutcomeABSTRACT
The development of a wide range of novel antineoplastic therapies has improved the prognosis for patients with a wide range of malignancies, which has increased the number of cancer survivors substantially. Despite the oncological benefit, cancer survivors are exposed to short- and long-term adverse cardiovascular toxicities associated with anticancer therapies. Systemic hypertension, the most common comorbidity among cancer patients, is a major contributor to the increased risk for developing these adverse cardiovascular events. Cancer and hypertension have common risk factors, have overlapping pathophysiological mechanisms and hypertension may also be a risk factor for some tumor types. Many cancer therapies have prohypertensive effects. Although some of the mechanisms by which these antineoplastic agents lead to hypertension have been characterized, further preclinical and clinical studies are required to investigate the exact pathophysiology and the optimal management of hypertension associated with anticancer therapy. In this way, monitoring and management of hypertension before, during, and after cancer treatment can be improved to minimize cardiovascular risks. This is vital to optimize cardiovascular health in patients with cancer and survivors, and to ensure that advances in terms of cancer survivorship do not come at the expense of increased cardiovascular toxicities.
Subject(s)
Antineoplastic Agents/adverse effects , Hypertension/chemically induced , Neoplasms/drug therapy , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Cancer Survivors , Carcinoma, Renal Cell/etiology , Cardiotoxicity/etiology , Humans , Hypertension/complications , Hypertension/drug therapy , Kidney Neoplasms/etiology , MTOR Inhibitors/adverse effects , Neoplasms/etiology , Platinum Compounds/adverse effects , Poly(ADP-ribose) Polymerase Inhibitors/adverse effects , Proteasome Inhibitors/adverse effects , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins c-ret/antagonists & inhibitors , Risk Factors , Vascular Endothelial Growth Factor A/antagonists & inhibitorsABSTRACT
Cancer is the second leading cause of death in people with chronic kidney disease (CKD) after cardiovascular disease. The incidence of CKD in patients with cancer is higher than in the non-cancer population. Across various populations, CKD is associated with an elevated risk of cancer incidence and cancer death compared with people without CKD, although the risks are cancer site-specific. Higher risk of cancer is detectable in mild CKD [estimated glomerular filtration rate (eGFR) 60-89 mL/min/1.73 m2], although this risk is more obvious if sensitive markers of kidney disease are used, such as cystatin C. Independent of eGFR, albuminuria is associated with increased risk of site-specific cancer incidence and death. Here, we explore the potential mechanisms for the increased risk of cancer observed in CKD, including patient factors (shared risks such as cardiometabolic disease, obesity, smoking, diet, lifestyle and environment), disease (genetic, inflammatory and infective) and treatment factors. In particular, we discuss the ways in which renal adverse events associated with conventional chemotherapies and newer systemic anti-cancer therapies (including targeted and immunotherapies) may contribute to worse cancer outcomes in people with CKD. Finally, we review the potential benefits of acknowledging increased risk of cancer in risk prediction tools used for the management of CKD.
Subject(s)
Cardiovascular Diseases , Neoplasms , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/epidemiology , Risk , Kidney , Glomerular Filtration Rate , Cardiovascular Diseases/epidemiology , Creatinine , Neoplasms/complications , Neoplasms/epidemiologyABSTRACT
BACKGROUND: Vascular endothelial growth factor inhibitors (VEGFis) have transformed the treatment of many retinal diseases, including diabetic maculopathy. Increasing evidence supports systemic absorption of intravitreal VEGFi and development of significant cardiorenal side effects. METHODS: We conducted a systematic review and meta-analysis (PROSPERO: CRD42020189037) of randomised controlled trials of intravitreal VEGFi treatments (bevacizumab, ranibizumab and aflibercept) for any eye disease. Outcomes of interest were cardiorenal side effects (hypertension, proteinuria, kidney function decline and heart failure). Fixed effects meta-analyses were conducted where possible. RESULTS: There were 78 trials (81 comparisons; 13 175 participants) that met the criteria for inclusion: 47% were trials in diabetic eye disease. Hypertension (29 trials; 8570 participants) was equally common in VEGFi and control groups {7.3 versus 5.4%; relative risk [RR] 1.08 [95% confidence interval (CI) 0.91-1.28]}. New or worsening heart failure (10 trials; 3384 participants) had a similar incidence in VEGFi and control groups [RR 1.03 (95% CI 0.70-1.51)]. Proteinuria (5 trials; 1902 participants) was detectable in some VEGFi-treated participants (0.2%) but not controls [0.0%; RR 4.43 (95% CI 0.49-40.0)]. Kidney function decline (9 trials; 3471 participants) was similar in VEGFi and control groups. In participants with diabetic eye disease, the risk of all-cause mortality was higher in VEGFi-treated participants [RR 1.62 (95% CI 1.04-2.46)]. CONCLUSION: In trials of intravitreal VEGFi, we did not identify an increased risk of cardiorenal outcomes, although these outcomes were reported in only a minority of cases. There was an increased risk of death in VEGFi-treated participants with diabetic eye disease. Additional scrutiny of post-licensing observational data may improve the recognition of safety concerns in VEGFi-treated patients.
Subject(s)
Diabetic Retinopathy , Hypertension , Humans , Vascular Endothelial Growth Factor A , Angiogenesis Inhibitors/adverse effects , Receptors, Vascular Endothelial Growth Factor/therapeutic use , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/chemically induced , Hypertension/drug therapy , Proteinuria/drug therapyABSTRACT
The discipline of Cardio-Oncology has seen tremendous growth over the past decade. It is devoted to the cardiovascular (CV) care of the cancer patient, especially to the mitigation and management of CV complications or toxicities of cancer therapies, which can have profound implications on prognosis. To that effect, many studies have assessed CV toxicities in patients undergoing various types of cancer therapies; however, direct comparisons have proven difficult due to lack of uniformity in CV toxicity endpoints. Similarly, in clinical practice, there can be substantial differences in the understanding of what constitutes CV toxicity, which can lead to significant variation in patient management and outcomes. This document addresses these issues and provides consensus definitions for the most commonly reported CV toxicities, including cardiomyopathy/heart failure and myocarditis, vascular toxicity, and hypertension, as well as arrhythmias and QTc prolongation. The current document reflects a harmonizing review of the current landscape in CV toxicities and the definitions used to define these. This consensus effort aims to provide a structure for definitions of CV toxicity in the clinic and for future research. It will be important to link the definitions outlined herein to outcomes in clinical practice and CV endpoints in clinical trials. It should facilitate communication across various disciplines to improve clinical outcomes for cancer patients with CV diseases.
Subject(s)
Antineoplastic Agents , Cardiovascular Diseases , Heart Diseases , Neoplasms , Antineoplastic Agents/adverse effects , Cardiovascular Diseases/complications , Heart Diseases/complications , Humans , Medical Oncology , Neoplasms/drug therapyABSTRACT
BACKGROUND: Sodium-glucose cotransporter 2 inhibitors reduce the risk of heart failure hospitalization and cardiovascular death in patients with heart failure and reduced ejection fraction (HFrEF). However, their effects on cardiac structure and function in HFrEF are uncertain. METHODS: We designed a multicenter, randomized, double-blind, placebo-controlled trial (the SUGAR-DM-HF trial [Studies of Empagliflozin and Its Cardiovascular, Renal and Metabolic Effects in Patients With Diabetes Mellitus, or Prediabetes, and Heart Failure]) to investigate the cardiac effects of empagliflozin in patients in New York Heart Association functional class II to IV with a left ventricular (LV) ejection fraction ≤40% and type 2 diabetes or prediabetes. Patients were randomly assigned 1:1 to empagliflozin 10 mg once daily or placebo, stratified by age (<65 and ≥65 years) and glycemic status (diabetes or prediabetes). The coprimary outcomes were change from baseline to 36 weeks in LV end-systolic volume indexed to body surface area and LV global longitudinal strain both measured using cardiovascular magnetic resonance. Secondary efficacy outcomes included other cardiovascular magnetic resonance measures (LV end-diastolic volume index, LV ejection fraction), diuretic intensification, symptoms (Kansas City Cardiomyopathy Questionnaire Total Symptom Score, 6-minute walk distance, B-lines on lung ultrasound, and biomarkers (including N-terminal pro-B-type natriuretic peptide). RESULTS: From April 2018 to August 2019, 105 patients were randomly assigned: mean age 68.7 (SD, 11.1) years, 77 (73.3%) male, 82 (78.1%) diabetes and 23 (21.9%) prediabetes, mean LV ejection fraction 32.5% (9.8%), and 81 (77.1%) New York Heart Association II and 24 (22.9%) New York Heart Association III. Patients received standard treatment for HFrEF. In comparison with placebo, empagliflozin reduced LV end-systolic volume index by 6.0 (95% CI, -10.8 to -1.2) mL/m2 (P=0.015). There was no difference in LV global longitudinal strain. Empagliflozin reduced LV end-diastolic volume index by 8.2 (95% CI, -13.7 to -2.6) mL/m2 (P=0.0042) and reduced N-terminal pro-B-type natriuretic peptide by 28% (2%-47%), P=0.038. There were no between-group differences in other cardiovascular magnetic resonance measures, diuretic intensification, Kansas City Cardiomyopathy Questionnaire Total Symptom Score, 6-minute walk distance, or B-lines. CONCLUSIONS: The sodium-glucose cotransporter 2 inhibitor empagliflozin reduced LV volumes in patients with HFrEF and type 2 diabetes or prediabetes. Favorable reverse LV remodeling may be a mechanism by which sodium-glucose cotransporter 2 inhibitors reduce heart failure hospitalization and mortality in HFrEF. Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT03485092.
Subject(s)
Benzhydryl Compounds/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Glucosides/therapeutic use , Heart Failure/drug therapy , Prediabetic State/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Stroke Volume/drug effects , Aged , Benzhydryl Compounds/pharmacology , Double-Blind Method , Female , Glucosides/pharmacology , Humans , Male , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Ventricular RemodelingABSTRACT
Dramatic improvements in cancer survival have arisen because of the rapid development of novel anti-cancer therapies. The potential for cardiovascular toxicity associated with these drugs often reflects overlap between pathogenic cancer mechanisms and physiological pathways required for normal cardiovascular function. Clinical Science has, therefore, compiled a themed collection on Cardiovascular-Oncology. This collection examines the intersection between cancer treatments and their potentially harmful cardiovascular effects. By defining the mechanisms underlying unwanted cardiovascular effects of anti-cancer therapies, cardioprotective strategies can be developed. Only by doing so, will patients be able to achieve optimal cancer treatment at the minimum cost to cardiovascular health.
Subject(s)
Antineoplastic Agents/adverse effects , Cardiotoxicity/prevention & control , Neoplasms/drug therapy , Anthracyclines/adverse effects , Cardiotoxicity/etiology , Humans , Immunotherapy , Molecular Targeted TherapyABSTRACT
The development of new therapies for cancer has led to dramatic improvements in survivorship. Angiogenesis inhibitors represent one such advancement, revolutionising treatment for a wide range of malignancies. However, these drugs are associated with cardiovascular toxicities which can impact optimal cancer treatment in the short-term and may lead to increased morbidity and mortality in the longer term. Vascular endothelial growth factor inhibitors (VEGFIs) are associated with hypertension, left ventricular systolic dysfunction (LVSD) and heart failure as well as arterial and venous thromboembolism, QTc interval prolongation and arrhythmia. The mechanisms behind the development of VEGFI-associated LVSD and heart failure likely involve the combination of a number of myocardial insults. These include direct myocardial effects, as well as secondary toxicity via coronary or peripheral vascular damage. Cardiac toxicity may result from the 'on-target' effects of VEGF inhibition or 'off-target' effects resulting from inhibition of other tyrosine kinases. Similar mechanisms may be involved in the development of VEGFI-associated right ventricular (RV) dysfunction. Some VEGFIs can be associated with QTc interval prolongation and an increased risk of ventricular and atrial arrhythmia. Further pre-clinical and clinical studies and trials are needed to better understand the impact of VEGFI on the cardiovascular system. Once mechanisms are elucidated, therapies can be investigated in clinical trials and surveillance strategies for identifying VEGFI-associated cardiovascular complications can be developed.
Subject(s)
Angiogenesis Inhibitors/adverse effects , Cardiotoxicity/pathology , Animals , Cardiotoxicity/physiopathology , Clinical Trials as Topic , Humans , Models, Biological , Vascular Endothelial Growth Factor A/metabolism , Ventricular Dysfunction, Left/physiopathologyABSTRACT
Ageing is a major risk factor for the development of cardiovascular disease (CVD) and cancer. Whilst the cumulative effect of exposure to conventional cardiovascular risk factors is important, recent evidence highlights clonal haematopoiesis of indeterminant potential (CHIP) as a further key risk factor. CHIP reflects the accumulation of somatic, potentially pro-leukaemic gene mutations within haematopoietic stem cells over time. The most common mutations associated with CHIP and CVD occur in genes that also play central roles in the regulation of inflammation. While CHIP carriers have a low risk of haematological malignant transformation (<1% per year), their relative risk of mortality is increased by 40% and this reflects an excess of cardiovascular events. Evidence linking CHIP, inflammation and atherosclerotic disease has recently become better defined. However, there is a paucity of information about the role of CHIP in the development and progression of heart failure, particularly heart failure with preserved ejection fraction (HFpEF). While systemic inflammation plays a role in the pathophysiology of both heart failure with reduced and preserved ejection fraction (EF), it may be of greater relevance in the pathophysiology of HFpEF, which is also strongly associated with ageing. This review describes CHIP and its pathogenetic links with ageing, inflammation and CVD, while providing insight into its putative role in HFpEF.
Subject(s)
Cardiovascular Diseases , Clonal Hematopoiesis , Heart Failure , Inflammation , Aging , Humans , Risk Factors , Stroke VolumeSubject(s)
Adrenergic beta-Antagonists , Anthracyclines , Cardiotoxicity , Troponin I , Humans , Troponin I/blood , Cardiotoxicity/prevention & control , Anthracyclines/adverse effects , Adrenergic beta-Antagonists/therapeutic use , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin Receptor Antagonists/adverse effects , Randomized Controlled Trials as Topic , Prospective Studies , Multicenter Studies as Topic , Drug Therapy, CombinationABSTRACT
Over the past two decades, the treatment of cancer has been revolutionised by the highly successful introduction of novel molecular targeted therapies and immunotherapies, including small-molecule kinase inhibitors and monoclonal antibodies that target angiogenesis by inhibiting vascular endothelial growth factor (VEGF) signaling pathways. Despite their anti-angiogenic and anti-cancer benefits, the use of VEGF inhibitors (VEGFi) and other tyrosine kinase inhibitors (TKIs) has been hampered by potent vascular toxicities especially hypertension and thromboembolism. Molecular processes underlying VEGFi-induced vascular toxicities still remain unclear but inhibition of endothelial NO synthase (eNOS), reduced nitric oxide (NO) production, oxidative stress, activation of the endothelin system, and rarefaction have been implicated. However, the pathophysiological mechanisms still remain elusive and there is an urgent need to better understand exactly how anti-angiogenic drugs cause hypertension and other cardiovascular diseases (CVDs). This is especially important because VEGFi are increasingly being used in combination with other anti-cancer dugs, such as immunotherapies (immune checkpoint inhibitors (ICIs)), other TKIs, drugs that inhibit epigenetic processes (histone deacetylase (HDAC) inhibitor) and poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors, which may themselves induce cardiovascular injury. Here, we discuss vascular toxicities associated with TKIs, especially VEGFi, and provide an up-to-date overview on molecular mechanisms underlying VEGFi-induced vascular toxicity and cardiovascular sequelae. We also review the vascular effects of VEGFi when used in combination with other modern anti-cancer drugs.
Subject(s)
Angiogenesis Inhibitors/adverse effects , Angiogenesis Inhibitors/therapeutic use , Neovascularization, Pathologic/drug therapy , Animals , Humans , Neoplasms/blood supply , Neoplasms/drug therapy , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Receptors, Vascular Endothelial Growth Factor/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/metabolismSubject(s)
Diabetes Mellitus, Type 2 , Heart Failure , Prediabetic State , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Glucosides , Heart Failure/diagnostic imaging , Heart Failure/drug therapy , Humans , Kidney/diagnostic imaging , Prediabetic State/drug therapy , Stroke VolumeSubject(s)
Diabetes Mellitus, Type 2 , Heart Failure , Benzhydryl Compounds , Glucosides , Humans , Stroke VolumeABSTRACT
AIMS: Urocortin 2 and urocortin 3 may play a role in the pathophysiology of heart failure and are emerging therapeutic targets. We aimed to examine the local and systemic cardiovascular effects of urocortin 2 and urocortin 3 in healthy subjects and patients with heart failure. METHODS: Patients with heart failure (n = 8) and age and gender-matched healthy subjects (n = 8) underwent bilateral forearm arterial blood flow measurement using forearm venous occlusion plethysmography during intra-arterial infusions of urocortin 2 (3.6-36 pmol min(-1) ), urocortin 3 (360-3600 pmol min(-1) ) and substance P (2-8 pmol min(-1) ). Heart failure patients (n = 9) and healthy subjects (n = 7) underwent non-invasive impedance cardiography during incremental intravenous infusions of sodium nitroprusside (573-5730 pmol kg(-1) min(-1) ), urocortin 2 (36-360 pmol min(-1) ), urocortin 3 (1.2-12 nmol min(-1) ) and saline placebo. RESULTS: Urocortin 2, urocortin 3 and substance P induced dose-dependent forearm arterial vasodilatation in both groups (P < 0.05 for both) with no difference in magnitude of vasodilatation between patients and healthy subjects. During systemic intravenous infusions, urocortin 3 increased heart rate and cardiac index and reduced mean arterial pressure and peripheral vascular resistance index in both groups (P < 0.01 for all). Urocortin 2 produced similar responses to urocortin 3, although increases in cardiac index and heart rate were only significant in heart failure (P < 0.05) and healthy subjects (P < 0.001), respectively. CONCLUSION: Urocortins 2 and 3 cause vasodilatation, reduce peripheral vascular resistance and increase cardiac output in both health and disease. These data provide further evidence to suggest that urocortins 2 and 3 continue to hold promise for the treatment of heart failure.
Subject(s)
Corticotropin-Releasing Hormone/pharmacology , Forearm/physiology , Heart Failure/physiopathology , Regional Blood Flow/drug effects , Urocortins/pharmacology , Aged , Blood Pressure/drug effects , Cardiac Output/drug effects , Cardiography, Impedance , Corticotropin-Releasing Hormone/administration & dosage , Dose-Response Relationship, Drug , Female , Forearm/blood supply , Heart Rate/drug effects , Humans , Infusions, Intra-Arterial , Infusions, Intravenous , Male , Middle Aged , Nitroprusside/pharmacology , Plethysmography , Substance P/pharmacology , Urocortins/administration & dosage , Vascular Resistance/drug effects , Vasodilation/drug effectsABSTRACT
AIM: Ischaemia-reperfusion injury (IRI) causes impaired endothelial function and is a major component of the adverse effects of reperfusion following myocardial infarction. Rotigaptide increases gap junction conductance via connexin-43. We tested the hypothesis that rotigaptide reduces experimental myocardial infarction size and ameliorates endothelial IRI in humans. METHODS: Myocardial infarction study: porcine myocardial infarction was achieved by catheter-induced occlusion of the left anterior descending artery. In a randomized double-blind study, rotigaptide (n = 9) or placebo (n = 10) was administered intravenously as a 10 min bolus prior to reperfusion and continuously during 2 h of reperfusion. Myocardial infarction size (IS) was assessed as proportion of the area at risk (AAR). Human translational study: forearm IRI was induced in the presence or absence of intra-arterial rotigaptide. In a randomized double-blind study, forearm arterial blood flow was measured at rest and during intra-arterial infusion of acetylcholine (5-20 µg min(-1) ; n = 11) or sodium nitroprusside (2-8 mg min(-1) ; n = 10) before and after intra-arterial infusion of placebo or rotigaptide, and again following IRI. RESULTS: Myocardial infarction study: Rotigaptide treatment was associated with a reduction of infarct size (IS/AAR[%]: 18.7 ± 4.1 [rotigaptide] vs. 43.6 ± 4.2 [placebo], P = 0.006). Human translational study: Endothelium-dependent vasodilatation to acetylcholine was attenuated after ischaemia-reperfusion in the presence of placebo (P = 0.007), but not in the presence of rotigaptide (P = NS). Endothelium-independent vasodilatation evoked by sodium nitroprusside was unaffected by IRI or rotigaptide (P = NS). CONCLUSIONS: Rotigaptide reduces myocardial infarction size in a porcine model and protects from IRI-related endothelial dysfunction in man. Rotigaptide may have therapeutic potential in the treatment of myocardial infarction.