Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Genes Dev ; 36(19-20): 1079-1095, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36418052

ABSTRACT

Much has been learned about the mechanisms of action of pluripotency factors Oct4 and Sox2. However, as with other regulators of cell identity, little is known about the impact of disrupting their binding motifs in a native environment or the characteristics of genes they regulate. By quantitatively examining dynamic ranges of gene expression instead of focusing on conventional measures of differential expression, we found that Oct4 and Sox2 enhancer binding is strongly enriched near genes subject to large dynamic ranges of expression among cell types, with binding sites near these genes usually within superenhancers. Mutagenesis of representative Oct4:Sox2 motifs near such active, dynamically regulated genes revealed critical roles in transcriptional activation during reprogramming, with more limited roles in transcriptional maintenance in the pluripotent state. Furthermore, representative motifs near silent genes were critical for establishing but not maintaining the fully silent state, while genes whose transcript levels varied by smaller magnitudes among cell types were unaffected by nearby Oct4:Sox2 motifs. These results suggest that Oct4 and Sox2 directly establish both active and silent transcriptional states in pluripotent cells at a large number of genes subject to dynamic regulation during mammalian development, but are less important than expected for maintaining transcriptional states.


Subject(s)
Learning , Mammals , Animals , Transcriptional Activation , Binding Sites , Mutagenesis
2.
Nat Nanotechnol ; 19(3): 354-363, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38082117

ABSTRACT

Cells secrete numerous bioactive molecules that are essential for the function of healthy organisms. However, scalable methods are needed to link individual cell secretions to their transcriptional state over time. Here, by developing and using secretion-encoded single-cell sequencing (SEC-seq), which exploits hydrogel particles with subnanolitre cavities (nanovials) to capture individual cells and their secretions, we simultaneously measured the secretion of vascular endothelial growth factor A (VEGF-A) and the transcriptome for thousands of individual mesenchymal stromal cells. Our data indicate that VEGF-A secretion is heterogeneous across the cell population and is poorly correlated with the VEGFA transcript level. The highest VEGF-A secretion occurs in a subpopulation of mesenchymal stromal cells characterized by a unique gene expression signature comprising a surface marker, interleukin-13 receptor subunit alpha 2 (IL13RA2), which allowed the enrichment of this subpopulation. SEC-seq enables the identification of gene signatures linked to specific secretory states, facilitating mechanistic studies, the isolation of secretory subpopulations and the development of means to modulate cellular secretion.


Subject(s)
Mesenchymal Stem Cells , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Transcriptome , Mesenchymal Stem Cells/metabolism
3.
bioRxiv ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38948715

ABSTRACT

The distal bronchioles in Idiopathic Pulmonary Fibrosis (IPF) exhibit histopathological abnormalities such as bronchiolization, peribronchiolar fibrosis and honeycomb cysts that contribute to the overall architectural remodeling of lung tissue seen in the disease. Here we describe an additional histopathologic finding of epithelial desquamation in patients with IPF, wherein epithelial cells detach from the basement membrane of the distal bronchioles. To understand the mechanism driving this pathology, we performed spatial transcriptomics of the epithelial cells and spatial proteomics of the basement membrane of the distal bronchioles from IPF patients and patients with no prior history of lung disease. Our findings reveal a downregulation of cell junctional components, upregulation of epithelial-mesenchymal transition signatures and dysregulated basement membrane matrix in IPF distal bronchioles, facilitating epithelial desquamation. Further, functional assays identified regulation between Collagen IV in the matrix, and the junctional genes JUP and PLEC , that is crucial for maintaining distal bronchiolar homeostasis. In IPF, this balanced regulation between matrix and cell-junctions is disrupted, leading to loss of epithelial adhesion, peribronchiolar fibrosis and epithelial desquamation. Overall, our study suggests that in IPF the interplay between the loss of cell junctions and a dysregulated matrix results in desquamation of distal bronchiolar epithelium and lung remodeling, exacerbating the disease. One Sentence Summary: Two-way regulation of cell junctional proteins and matrix proteins drives cellular desquamation and fibrosis in the distal bronchioles of patients with Idiopathic Pulmonary Fibrosis.

4.
Cell Rep ; 43(6): 114289, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38833371

ABSTRACT

Type I interferon (IFN-I) and IFN-γ foster antitumor immunity by facilitating T cell responses. Paradoxically, IFNs may promote T cell exhaustion by activating immune checkpoints. The downstream regulators of these disparate responses are incompletely understood. Here, we describe how interferon regulatory factor 1 (IRF1) orchestrates these opposing effects of IFNs. IRF1 expression in tumor cells blocks Toll-like receptor- and IFN-I-dependent host antitumor immunity by preventing interferon-stimulated gene (ISG) and effector programs in immune cells. In contrast, expression of IRF1 in the host is required for antitumor immunity. Mechanistically, IRF1 binds distinctly or together with STAT1 at promoters of immunosuppressive but not immunostimulatory ISGs in tumor cells. Overexpression of programmed cell death ligand 1 (PD-L1) in Irf1-/- tumors only partially restores tumor growth, suggesting multifactorial effects of IRF1 on antitumor immunity. Thus, we identify that IRF1 expression in tumor cells opposes host IFN-I- and IRF1-dependent antitumor immunity to facilitate immune escape and tumor growth.


Subject(s)
Interferon Regulatory Factor-1 , Animals , Humans , Mice , B7-H1 Antigen/metabolism , Cell Line, Tumor , Immunity , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/genetics , STAT1 Transcription Factor/metabolism , Male , Female
5.
bioRxiv ; 2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36711480

ABSTRACT

Cells secrete numerous bioactive molecules essential for the function of healthy organisms. However, there are no scalable methods to link individual cell secretions to their transcriptional state. By developing and using secretion encoded single-cell sequencing (SEC-seq), which exploits hydrogel nanovials to capture individual cells and their secretions, we simultaneously measured the secretion of vascular endothelial growth factor A (VEGF-A) and the transcriptome for thousands of individual mesenchymal stromal cells (MSCs). We found that VEGF-A secretion is heterogeneous across the cell population and lowly correlated with the VEGFA transcript level. While there is a modest population-wide increase in VEGF-A secretion by hypoxic induction, highest VEGF-A secretion across normoxic and hypoxic culture conditions occurs in a subpopulation of MSCs characterized by a unique gene expression signature. Taken together, SEC-seq enables the identification of specific genes involved in the control of secretory states, which may be exploited for developing means to modulate cellular secretion for disease treatment.

6.
Nat Cell Biol ; 25(8): 1121-1134, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37460697

ABSTRACT

The epigenetic mechanisms that maintain differentiated cell states remain incompletely understood. Here we employed histone mutants to uncover a crucial role for H3K36 methylation in the maintenance of cell identities across diverse developmental contexts. Focusing on the experimental induction of pluripotency, we show that H3K36M-mediated depletion of H3K36 methylation endows fibroblasts with a plastic state poised to acquire pluripotency in nearly all cells. At a cellular level, H3K36M facilitates epithelial plasticity by rendering fibroblasts insensitive to TGFß signals. At a molecular level, H3K36M enables the decommissioning of mesenchymal enhancers and the parallel activation of epithelial/stem cell enhancers. This enhancer rewiring is Tet dependent and redirects Sox2 from promiscuous somatic to pluripotency targets. Our findings reveal a previously unappreciated dual role for H3K36 methylation in the maintenance of cell identity by integrating a crucial developmental pathway into sustained expression of cell-type-specific programmes, and by opposing the expression of alternative lineage programmes through enhancer methylation.


Subject(s)
Epigenesis, Genetic , Histones , Methylation , Histones/genetics , Histones/metabolism , Cell Differentiation/genetics , Fibroblasts/metabolism , Cell Lineage/genetics
7.
Stem Cell Reports ; 16(4): 899-912, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33770494

ABSTRACT

CpG islands often exhibit low DNA methylation, high histone H3 lysine 4 trimethylation, low nucleosome density, and high DNase I hypersensitivity, yet the rules by which CpG islands are sensed remain poorly understood. In this study, we first evaluated the relationships between the DNA and the chromatin properties of CpG islands in embryonic stem cells using modified bacterial artificial chromosomes. Then, using a bioinformatic approach, we identified strict CpG-island density and length thresholds in mouse embryonic stem and differentiated cells that consistently specify low DNA methylation levels. Surprisingly, the human genome exhibited a dramatically different relationship between DNA properties and DNA methylation levels of CpG islands. Further analysis allowed speculation that this difference is accommodated in part by evolutionary changes in the nucleotide composition of orthologous promoters. Thus, a change in the rules by which CpG-island properties are sensed may have co-evolved with compensatory genome adaptation events during mammalian evolution.


Subject(s)
Cell Differentiation/genetics , Chromatin/metabolism , CpG Islands/genetics , DNA/metabolism , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Animals , DNA Methylation/genetics , Embryonic Development/genetics , Genome, Human , Humans , Mice , Models, Biological , Nucleotides/genetics , Promoter Regions, Genetic , Species Specificity
8.
Stem Cell Reports ; 16(10): 2548-2564, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34506726

ABSTRACT

The specification of inhibitory neurons has been described for the mouse and human brain, and many studies have shown that pluripotent stem cells (PSCs) can be used to create interneurons in vitro. It is unclear whether in vitro methods to produce human interneurons generate all the subtypes found in brain, and how similar in vitro and in vivo interneurons are. We applied single-nuclei and single-cell transcriptomics to model interneuron development from human cortex and interneurons derived from PSCs. We provide a direct comparison of various in vitro interneuron derivation methods to determine the homogeneity achieved. We find that PSC-derived interneurons capture stages of development prior to mid-gestation, and represent a minority of potential subtypes found in brain. Comparison with those found in fetal or adult brain highlighted decreased expression of synapse-related genes. These analyses highlight the potential to tailor the method of generation to drive formation of particular subtypes.


Subject(s)
Interneurons/metabolism , Neural Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Transcriptome , Cell Differentiation , Cellular Reprogramming Techniques/methods , Humans , Single-Cell Analysis , Transcription Factors/metabolism
9.
Nat Commun ; 12(1): 1876, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33767183

ABSTRACT

Viruses hijack host cell metabolism to acquire the building blocks required for replication. Understanding how SARS-CoV-2 alters host cell metabolism may lead to potential treatments for COVID-19. Here we profile metabolic changes conferred by SARS-CoV-2 infection in kidney epithelial cells and lung air-liquid interface (ALI) cultures, and show that SARS-CoV-2 infection increases glucose carbon entry into the TCA cycle via increased pyruvate carboxylase expression. SARS-CoV-2 also reduces oxidative glutamine metabolism while maintaining reductive carboxylation. Consistent with these changes, SARS-CoV-2 infection increases the activity of mTORC1 in cell lines and lung ALI cultures. Lastly, we show evidence of mTORC1 activation in COVID-19 patient lung tissue, and that mTORC1 inhibitors reduce viral replication in kidney epithelial cells and lung ALI cultures. Our results suggest that targeting mTORC1 may be a feasible treatment strategy for COVID-19 patients, although further studies are required to determine the mechanism of inhibition and potential efficacy in patients.


Subject(s)
COVID-19/pathology , Citric Acid Cycle/physiology , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 1/metabolism , Protein Kinase Inhibitors/pharmacology , Animals , Benzamides/pharmacology , Cell Line , Chlorocebus aethiops , Glucose/metabolism , Glutamine/metabolism , HEK293 Cells , Humans , Lung/metabolism , Lung/virology , Morpholines/pharmacology , Naphthyridines/pharmacology , Pyrimidines/pharmacology , Pyruvate Carboxylase/biosynthesis , SARS-CoV-2/metabolism , Vero Cells , Virus Replication/drug effects
10.
Nat Med ; 27(5): 806-814, 2021 05.
Article in English | MEDLINE | ID: mdl-33958799

ABSTRACT

Cystic fibrosis (CF) is a lethal autosomal recessive disorder that afflicts more than 70,000 people. People with CF experience multi-organ dysfunction resulting from aberrant electrolyte transport across polarized epithelia due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CF-related lung disease is by far the most important determinant of morbidity and mortality. Here we report results from a multi-institute consortium in which single-cell transcriptomics were applied to define disease-related changes by comparing the proximal airway of CF donors (n = 19) undergoing transplantation for end-stage lung disease with that of previously healthy lung donors (n = 19). Disease-dependent differences observed include an overabundance of epithelial cells transitioning to specialized ciliated and secretory cell subsets coupled with an unexpected decrease in cycling basal cells. Our study yields a molecular atlas of the proximal airway epithelium that will provide insights for the development of new targeted therapies for CF airway disease.


Subject(s)
Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , Epithelial Cells/cytology , Lung/pathology , Respiratory Mucosa/pathology , Cell Differentiation/genetics , Cilia/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/biosynthesis , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelial Cells/pathology , Gene Expression Profiling , Humans , Single-Cell Analysis/methods , Transcriptome/genetics
11.
bioRxiv ; 2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32766588

ABSTRACT

Most demographic studies are now associating current smoking status with increased risk of severe COVID-19 and mortality from the disease but there remain many questions about how direct cigarette smoke exposure affects SARS-CoV-2 airway cell infection. We directly exposed mucociliary air-liquid interface (ALI) cultures derived from primary human nonsmoker airway basal stem cells (ABSCs) to short term cigarette smoke and infected them with live SARS-CoV-2. We found an increase in the number of infected airway cells after cigarette smoke exposure as well as an increased number of apoptotic cells. Cigarette smoke exposure alone caused airway injury that resulted in an increased number of ABSCs, which proliferate to repair the airway. But we found that acute SARS-CoV-2 infection or the combination of exposure to cigarette smoke and SARS-CoV-2 did not induce ABSC proliferation. We set out to examine the underlying mechanism governing the increased susceptibility of cigarette smoke exposed ALI to SARS-CoV-2 infection. Single cell profiling of the cultures showed that infected airway cells displayed a global reduction in gene expression across all airway cell types. Interestingly, interferon response genes were induced in SARS-CoV-2 infected airway epithelial cells in the ALI cultures but smoking exposure together with SARS-CoV-2 infection reduced the interferon response. Treatment of cigarette smoke-exposed ALI cultures with Interferon ß-1 abrogated the viral infection, suggesting that the lack of interferon response in the cigarette smoke-exposed ALI cultures allows for more severe viral infection and cell death. In summary, our data show that acute smoke exposure allows for more severe proximal airway epithelial disease from SARS-CoV-2 by reducing the mucosal innate immune response and ABSC proliferation and has implications for disease spread and severity in people exposed to cigarette smoke.

12.
Cell Stem Cell ; 27(1): 158-176.e10, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32396864

ABSTRACT

The developmental trajectory of human skeletal myogenesis and the transition between progenitor and stem cell states are unclear. We used single-cell RNA sequencing to profile human skeletal muscle tissues from embryonic, fetal, and postnatal stages. In silico, we identified myogenic as well as other cell types and constructed a "roadmap" of human skeletal muscle ontogeny across development. In a similar fashion, we also profiled the heterogeneous cell cultures generated from multiple human pluripotent stem cell (hPSC) myogenic differentiation protocols and mapped hPSC-derived myogenic progenitors to an embryonic-to-fetal transition period. We found differentially enriched biological processes and discovered co-regulated gene networks and transcription factors present at distinct myogenic stages. This work serves as a resource for advancing our knowledge of human myogenesis. It also provides a tool for a better understanding of hPSC-derived myogenic progenitors for translational applications in skeletal muscle-based regenerative medicine.


Subject(s)
Muscle Development , Pluripotent Stem Cells , Cell Differentiation , Humans , Muscle, Skeletal , Transcription Factors
13.
Cell Stem Cell ; 27(6): 869-875.e4, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33259798

ABSTRACT

Current smoking is associated with increased risk of severe COVID-19, but it is not clear how cigarette smoke (CS) exposure affects SARS-CoV-2 airway cell infection. We directly exposed air-liquid interface (ALI) cultures derived from primary human nonsmoker airway basal stem cells (ABSCs) to short term CS and then infected them with SARS-CoV-2. We found an increase in the number of infected airway cells after CS exposure with a lack of ABSC proliferation. Single-cell profiling of the cultures showed that the normal interferon response was reduced after CS exposure with infection. Treatment of CS-exposed ALI cultures with interferon ß-1 abrogated the viral infection, suggesting one potential mechanism for more severe viral infection. Our data show that acute CS exposure allows for more severe airway epithelial disease from SARS-CoV-2 by reducing the innate immune response and ABSC proliferation and has implications for disease spread and severity in people exposed to CS.


Subject(s)
COVID-19/physiopathology , Respiratory Mucosa/physiopathology , Smoking/adverse effects , Stem Cells/virology , COVID-19/genetics , COVID-19/immunology , COVID-19/therapy , Cells, Cultured , Down-Regulation , Humans , Immunity, Innate , Interferon-beta/therapeutic use , Patient Acuity , Respiratory Mucosa/virology
14.
Neuron ; 103(5): 785-801.e8, 2019 09 04.
Article in English | MEDLINE | ID: mdl-31303374

ABSTRACT

We performed RNA sequencing on 40,000 cells to create a high-resolution single-cell gene expression atlas of developing human cortex, providing the first single-cell characterization of previously uncharacterized cell types, including human subplate neurons, comparisons with bulk tissue, and systematic analyses of technical factors. These data permit deconvolution of regulatory networks connecting regulatory elements and transcriptional drivers to single-cell gene expression programs, significantly extending our understanding of human neurogenesis, cortical evolution, and the cellular basis of neuropsychiatric disease. We tie cell-cycle progression with early cell fate decisions during neurogenesis, demonstrating that differentiation occurs on a transcriptomic continuum; rather than only expressing a few transcription factors that drive cell fates, differentiating cells express broad, mixed cell-type transcriptomes before telophase. By mapping neuropsychiatric disease genes to cell types, we implicate dysregulation of specific cell types in ASD, ID, and epilepsy. We developed CoDEx, an online portal to facilitate data access and browsing.


Subject(s)
Databases, Genetic , Gene Expression Regulation, Developmental , Gene Regulatory Networks/genetics , Neocortex/embryology , Neurogenesis/genetics , Neurons/metabolism , Autism Spectrum Disorder/genetics , Cell Cycle , Cerebral Cortex/cytology , Cerebral Cortex/embryology , Cerebral Cortex/metabolism , Ependymoglial Cells/metabolism , Epilepsy/embryology , Epilepsy/genetics , Female , Gene Expression Profiling , Gestational Age , Humans , Intellectual Disability/embryology , Intellectual Disability/genetics , Interneurons/metabolism , Neocortex/cytology , Neocortex/metabolism , Neural Stem Cells/metabolism , Pregnancy , Pregnancy Trimester, Second , RNA-Seq , Single-Cell Analysis , Telophase/genetics
15.
Stem Cell Reports ; 10(5): 1537-1550, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29681539

ABSTRACT

A dramatic difference in global DNA methylation between male and female cells characterizes mouse embryonic stem cells (ESCs), unlike somatic cells. We analyzed DNA methylation changes during reprogramming of male and female somatic cells and in resulting induced pluripotent stem cells (iPSCs). At an intermediate reprogramming stage, somatic and pluripotency enhancers are targeted for partial methylation and demethylation. Demethylation within pluripotency enhancers often occurs at ESC binding sites of pluripotency transcription factors. Late in reprogramming, global hypomethylation is induced in a female-specific manner. Genome-wide hypomethylation in female cells affects many genomic landmarks, including enhancers and imprint control regions, and accompanies the reactivation of the inactive X chromosome. The loss of one of the two X chromosomes in propagating female iPSCs is associated with genome-wide methylation gain. Collectively, our findings highlight the dynamic regulation of DNA methylation at enhancers during reprogramming and reveal that X chromosome dosage dictates global DNA methylation levels in iPSCs.


Subject(s)
Cellular Reprogramming/genetics , Chromosomes, Mammalian/genetics , DNA Methylation/genetics , Induced Pluripotent Stem Cells/metabolism , X Chromosome/genetics , Animals , Binding Sites , CpG Islands/genetics , Embryonic Stem Cells/metabolism , Enhancer Elements, Genetic/genetics , Female , Genome , Genomic Imprinting , Induced Pluripotent Stem Cells/cytology , Male , Mice , Transcription Factors/metabolism
16.
Stem Cell Reports ; 10(6): 1895-1907, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29779895

ABSTRACT

Human embryonic stem cells (hESCs) display substantial heterogeneity in gene expression, implying the existence of discrete substates within the stem cell compartment. To determine whether these substates impact fate decisions of hESCs we used a GFP reporter line to investigate the properties of fractions of putative undifferentiated cells defined by their differential expression of the endoderm transcription factor, GATA6, together with the hESC surface marker, SSEA3. By single-cell cloning, we confirmed that substates characterized by expression of GATA6 and SSEA3 include pluripotent stem cells capable of long-term self-renewal. When clonal stem cell colonies were formed from GATA6-positive and GATA6-negative cells, more of those derived from GATA6-positive cells contained spontaneously differentiated endoderm cells than similar colonies derived from the GATA6-negative cells. We characterized these discrete cellular states using single-cell transcriptomic analysis, identifying a potential role for SOX17 in the establishment of the endoderm-biased stem cell state.


Subject(s)
Cell Self Renewal , Endoderm/cytology , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Biomarkers , Cell Differentiation/genetics , GATA6 Transcription Factor/genetics , GATA6 Transcription Factor/metabolism , Gene Expression Profiling , Genes, Reporter , Humans , Immunophenotyping , Single-Cell Analysis/methods
17.
Stem Cell Reports ; 10(5): 1453-1463, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29742391

ABSTRACT

To determine the role for mutations of MECP2 in Rett syndrome, we generated isogenic lines of human induced pluripotent stem cells, neural progenitor cells, and neurons from patient fibroblasts with and without MECP2 expression in an attempt to recapitulate disease phenotypes in vitro. Molecular profiling uncovered neuronal-specific gene expression changes, including induction of a senescence-associated secretory phenotype (SASP) program. Patient-derived neurons made without MECP2 showed signs of stress, including induction of P53, and senescence. The induction of P53 appeared to affect dendritic branching in Rett neurons, as P53 inhibition restored dendritic complexity. The induction of P53 targets was also detectable in analyses of human Rett patient brain, suggesting that this disease-in-a-dish model can provide relevant insights into the human disorder.


Subject(s)
Cellular Senescence , Methyl-CpG-Binding Protein 2/deficiency , Neurons/metabolism , Neurons/pathology , Tumor Suppressor Protein p53/metabolism , Brain/metabolism , DNA Damage , Dendrites/metabolism , Gene Expression Regulation , Humans , Methyl-CpG-Binding Protein 2/metabolism , Models, Biological , Rett Syndrome/pathology , Transcriptome/genetics
18.
Cell Stem Cell ; 20(1): 87-101, 2017 01 05.
Article in English | MEDLINE | ID: mdl-27989770

ABSTRACT

Naive human embryonic stem cells (hESCs) can be derived from primed hESCs or directly from blastocysts, but their X chromosome state has remained unresolved. Here, we show that the inactive X chromosome (Xi) of primed hESCs was reactivated in naive culture conditions. Like cells of the blastocyst, the resulting naive cells contained two active X chromosomes with XIST expression and chromosome-wide transcriptional dampening and initiated XIST-mediated X inactivation upon differentiation. Both establishment of and exit from the naive state (differentiation) happened via an XIST-negative XaXa intermediate. Together, these findings identify a cell culture system for functionally exploring the two X chromosome dosage compensation processes in early human development: X dampening and X inactivation. However, remaining differences between naive hESCs and embryonic cells related to mono-allelic XIST expression and non-random X inactivation highlight the need for further culture improvement. As the naive state resets Xi abnormalities seen in primed hESCs, it may provide cells better suited for downstream applications.


Subject(s)
Chromosomes, Human, X/genetics , Pluripotent Stem Cells/metabolism , X Chromosome Inactivation/genetics , Base Sequence , Blastocyst/cytology , Blastocyst/metabolism , Cell Differentiation/genetics , Cells, Cultured , DNA Methylation/genetics , Female , Histones/metabolism , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Lysine/metabolism , Methylation , Pluripotent Stem Cells/cytology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
19.
Cell Rep ; 18(1): 54-67, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27989715

ABSTRACT

Applications of embryonic stem cells (ESCs) require faithful chromatin changes during differentiation, but the fate of the X chromosome state in differentiating ESCs is unclear. Female human ESC lines either carry two active X chromosomes (XaXa), an Xa and inactive X chromosome with or without XIST RNA coating (XiXIST+Xa;XiXa), or an Xa and an eroded Xi (XeXa) where the Xi no longer expresses XIST RNA and has partially reactivated. Here, we established XiXa, XeXa, and XaXa ESC lines and followed their X chromosome state during differentiation. Surprisingly, we found that the X state pre-existing in primed ESCs is maintained in differentiated cells. Consequently, differentiated XeXa and XaXa cells lacked XIST, did not induce X inactivation, and displayed higher X-linked gene expression than XiXa cells. These results demonstrate that X chromosome dosage compensation is not required for ESC differentiation. Our data imply that XiXIST+Xa ESCs are most suited for downstream applications and show that all other X states are abnormal byproducts of our ESC derivation and propagation method.


Subject(s)
Cell Differentiation/genetics , Human Embryonic Stem Cells/metabolism , X Chromosome Inactivation/genetics , Cell Differentiation/drug effects , Cell Line , DNA Methylation/genetics , Female , Gene Expression Regulation/drug effects , Gene Silencing/drug effects , Human Embryonic Stem Cells/drug effects , Humans , In Situ Hybridization, Fluorescence , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Male , Sequence Analysis, RNA , Tretinoin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL