Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Nature ; 596(7870): 126-132, 2021 08.
Article in English | MEDLINE | ID: mdl-34290408

ABSTRACT

PD-1 blockade unleashes CD8 T cells1, including those specific for mutation-associated neoantigens (MANA), but factors in the tumour microenvironment can inhibit these T cell responses. Single-cell transcriptomics have revealed global T cell dysfunction programs in tumour-infiltrating lymphocytes (TIL). However, the majority of TIL do not recognize tumour antigens2, and little is known about transcriptional programs of MANA-specific TIL. Here, we identify MANA-specific T cell clones using the MANA functional expansion of specific T cells assay3 in neoadjuvant anti-PD-1-treated non-small cell lung cancers (NSCLC). We use their T cell receptors as a 'barcode' to track and analyse their transcriptional programs in the tumour microenvironment using coupled single-cell RNA sequencing and T cell receptor sequencing. We find both MANA- and virus-specific clones in TIL, regardless of response, and MANA-, influenza- and Epstein-Barr virus-specific TIL each have unique transcriptional programs. Despite exposure to cognate antigen, MANA-specific TIL express an incompletely activated cytolytic program. MANA-specific CD8 T cells have hallmark transcriptional programs of tissue-resident memory (TRM) cells, but low levels of interleukin-7 receptor (IL-7R) and are functionally less responsive to interleukin-7 (IL-7) compared with influenza-specific TRM cells. Compared with those from responding tumours, MANA-specific clones from non-responding tumours express T cell receptors with markedly lower ligand-dependent signalling, are largely confined to HOBIThigh TRM subsets, and coordinately upregulate checkpoints, killer inhibitory receptors and inhibitors of T cell activation. These findings provide important insights for overcoming resistance to PD-1 blockade.


Subject(s)
Antigens, Neoplasm/immunology , Carcinoma, Non-Small-Cell Lung/drug therapy , Gene Expression Regulation , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Antigens, Neoplasm/genetics , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Cells, Cultured , Humans , Immunologic Memory , Lung Neoplasms/genetics , Programmed Cell Death 1 Receptor/antagonists & inhibitors , RNA-Seq , Receptors, Interleukin-7/immunology , Single-Cell Analysis , Transcriptome/genetics , Tumor Microenvironment
4.
Curr Protoc ; 4(2): e976, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38400601

ABSTRACT

Antigen-presenting cells (APCs), such as dendritic cells and macrophages, have a unique ability to survey the body and present information to T cells via peptide-loaded major histocompatibility complexes (signal 1). This presentation, along with a co-stimulatory signal (signal 2), leads to activation and subsequent expansion of T cells. This process can be harnessed and utilized for therapeutic applications, but the use of patient-derived APCs can be complex and inefficient. Alternatively, artificial APCs (aAPCs) provide a simplified method to achieve T cell activation by presenting the two necessary stimulatory signals. This protocol describes the utilization of magnetic nanoparticles and stimulatory proteins to create aAPCs that can be employed for activating and expanding antigen-specific T cells for both basic and translational immunology and immunotherapy studies. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Protein and particle modification for aAPC fabrication Basic Protocol 2: aAPC validation by immunolabeling of conjugated protein Support Protocol 1: Quantification of aAPC stock concentration Basic Protocol 3: Determination of aAPC usage for murine CD8+ T cell activation Support Protocol 2: Isolation of murine CD8+ T cells.


Subject(s)
Antigen-Presenting Cells , CD8-Positive T-Lymphocytes , Humans , Animals , Mice , Antigen-Presenting Cells/metabolism , Lymphocyte Activation , Immunotherapy/methods , Macrophages
5.
Adv Mater ; 36(23): e2310043, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38358310

ABSTRACT

T cells are critical mediators of antigen-specific immune responses and are common targets for immunotherapy. Biomaterial scaffolds have previously been used to stimulate antigen-presenting cells to elicit antigen-specific immune responses; however, structural and molecular features that directly stimulate and expand naïve, endogenous, tumor-specific T cells in vivo have not been defined. Here, an artificial lymph node (aLN) matrix is created, which consists of an extracellular matrix hydrogel conjugated with peptide-loaded-MHC complex (Signal 1), the co-stimulatory signal anti-CD28 (Signal 2), and a tethered IL-2 (Signal 3), that can bypass challenges faced by other approaches to activate T cells in situ such as vaccines. This dynamic immune-stimulating platform enables direct, in vivo antigen-specific CD8+ T cell stimulation, as well as recruitment and coordination of host immune cells, providing an immuno-stimulatory microenvironment for antigen-specific T cell activation and expansion. Co-injecting the aLN with naïve, wild-type CD8+ T cells results in robust activation and expansion of tumor-targeted T cells that kill target cells and slow tumor growth in several distal tumor models. The aLN platform induces potent in vivo antigen-specific CD8+ T cell stimulation without the need for ex vivo priming or expansion and enables in situ manipulation of antigen-specific responses for immunotherapies.


Subject(s)
CD8-Positive T-Lymphocytes , Lymph Nodes , Animals , Lymph Nodes/immunology , CD8-Positive T-Lymphocytes/immunology , Mice , Lymphocyte Activation , Hydrogels/chemistry , Immunotherapy/methods , Extracellular Matrix/metabolism , CD28 Antigens/immunology , CD28 Antigens/metabolism , Humans , Interleukin-2/metabolism , Peptides/chemistry , Cell Line, Tumor , Mice, Inbred C57BL
6.
J Immunother Cancer ; 11(10)2023 10.
Article in English | MEDLINE | ID: mdl-37793854

ABSTRACT

Stereotactic ablative body radiation (SABR) delivers high rates of local control in early-stage non-small cell lung cancer (NSCLC); however, systemic immune effects are poorly understood. Here, we evaluate the early pathologic and immunologic effects of SABR. Blood/core-needle tumor biopsies were collected from six patients with stage I NSCLC before and 5-7 days after SABR (48 Gy/4 or 50 Gy/5 fractions). Serial blood was collected up to 1-year post-SABR. We used immunohistochemistry to evaluate pathological changes, immune-cell populations (CD8, FoxP3), and PD-L1/PD-1 expression within the tumor. We evaluated T-cell receptor (TCR) profile changes in the tumor using TCR sequencing. We used the MANAFEST (Mutation-Associated Neoantigen Functional Expansion of Specific T-cells) assay to detect peripheral neoantigen-specific T-cell responses and dynamics. At a median follow-up of 40 months, 83% of patients (n=5) were alive without tumor progression. Early post-SABR biopsies showed viable tumor and similar distribution of immune-cell populations as compared with baseline samples. Core-needle samples proved insufficient to detect population-level TCR-repertoire changes. Functionally, neoantigen-specific T-cells were detected in the blood prior to SABR. A subset of these patients had a transient increase in the frequency of neoantigen-specific T-cells between 1 week and 3-6 months after SABR. SABR alone could induce a delayed, transient neoantigen-specific T-cell immunologic response in patients with stage I NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Prospective Studies , Treatment Outcome , Receptors, Antigen, T-Cell/genetics
7.
Nat Med ; 27(11): 1910-1920, 2021 11.
Article in English | MEDLINE | ID: mdl-34750557

ABSTRACT

Mesothelioma is a rare and fatal cancer with limited therapeutic options until the recent approval of combination immune checkpoint blockade. Here we report the results of the phase 2 PrE0505 trial ( NCT02899195 ) of the anti-PD-L1 antibody durvalumab plus platinum-pemetrexed chemotherapy for 55 patients with previously untreated, unresectable pleural mesothelioma. The primary endpoint was overall survival compared to historical control with cisplatin and pemetrexed chemotherapy; secondary and exploratory endpoints included safety, progression-free survival and biomarkers of response. The combination of durvalumab with chemotherapy met the pre-specified primary endpoint, reaching a median survival of 20.4 months versus 12.1 months with historical control. Treatment-emergent adverse events were consistent with known side effects of chemotherapy, and all adverse events due to immunotherapy were grade 2 or lower. Integrated genomic and immune cell repertoire analyses revealed that a higher immunogenic mutation burden coupled with a more diverse T cell repertoire was linked to favorable clinical outcome. Structural genome-wide analyses showed a higher degree of genomic instability in responding tumors of epithelioid histology. Patients with germline alterations in cancer predisposing genes, especially those involved in DNA repair, were more likely to achieve long-term survival. Our findings indicate that concurrent durvalumab with platinum-based chemotherapy has promising clinical activity and that responses are driven by the complex genomic background of malignant pleural mesothelioma.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Cisplatin/therapeutic use , Mesothelioma, Malignant/drug therapy , Nucleic Acid Synthesis Inhibitors/therapeutic use , Pemetrexed/therapeutic use , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal/adverse effects , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carboplatin/therapeutic use , DNA Repair/genetics , Female , Genetic Predisposition to Disease/genetics , Germ-Line Mutation/genetics , Humans , Male , Mesothelioma, Malignant/genetics , Mesothelioma, Malignant/mortality , Middle Aged , Nucleic Acid Synthesis Inhibitors/adverse effects , Pemetrexed/adverse effects , Progression-Free Survival , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics
8.
J Immunother Cancer ; 8(2)2020 09.
Article in English | MEDLINE | ID: mdl-32929052

ABSTRACT

BACKGROUND: We conducted the first trial of neoadjuvant PD-1 blockade in resectable non-small cell lung cancer (NSCLC), finding nivolumab monotherapy to be safe and feasible with an encouraging rate of pathologic response. Building on these results, and promising data for nivolumab plus ipilimumab (anti-CTLA-4) in advanced NSCLC, we expanded our study to include an arm investigating neoadjuvant nivolumab plus ipilimumab. METHODS: Patients with resectable stage IB (≥4 cm)-IIIA (American Joint Committee on Cancer Tumor Node Metastases seventh edition), histologically confirmed, treatment-naïve NSCLC received nivolumab 3 mg/kg intravenously plus ipilimumab 1 mg/kg intravenously 6 weeks prior to planned resection. Nivolumab 3 mg/kg was given again approximately 4 and 2 weeks preoperatively. Primary endpoints were safety and feasibility with a planned enrollment of 15 patients. Pathologic response was a key secondary endpoint. RESULTS: While the treatment regimen was feasible per protocol, due to toxicity, the study arm was terminated early by investigator consensus after 9 of 15 patients were enrolled. All patients received every scheduled dose of therapy and were fit for planned surgery; however, 6 of 9 (67%) experienced treatment-related adverse events (TRAEs) and 3 (33%) experienced grade ≥3 TRAEs. Three of 9 patients (33%) had biopsy-confirmed tumor progression precluding definitive surgery. Of the 6 patients who underwent resection, 3 are alive and disease-free, 2 experienced recurrence and are actively receiving systemic treatment, and one died postoperatively due to acute respiratory distress syndrome. Two patients who underwent resection had tumor pathologic complete responses (pCRs) and continue to remain disease-free over 24 months since surgery. Pathologic response correlated with pre-treatment tumor PD-L1 expression, but not tumor mutation burden. Tumor KRAS/STK11 co-mutations were identified in 5 of 9 patients (59%), of whom two with disease progression precluding surgery had tumor KRAS/STK11/KEAP1 co-mutations. CONCLUSIONS: Though treatment was feasible, due to toxicity the study arm was terminated early by investigator consensus. In light of this, and while the long-term disease-free status of patients who achieved pCR is encouraging, further investigation of neoadjuvant nivolumab plus ipilimumab in patients with resectable NSCLC requires the identification of predictive biomarkers that enrich for response.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Ipilimumab/therapeutic use , Lung Neoplasms/drug therapy , Neoadjuvant Therapy/methods , Nivolumab/therapeutic use , Aged , Female , Humans , Ipilimumab/pharmacology , Male , Middle Aged , Nivolumab/pharmacology
9.
Nat Cancer ; 1(1): 99-111, 2020 01.
Article in English | MEDLINE | ID: mdl-32984843

ABSTRACT

Despite progress in immunotherapy, identifying patients that respond has remained a challenge. Through analysis of whole-exome and targeted sequence data from 5,449 tumors, we found a significant correlation between tumor mutation burden (TMB) and tumor purity, suggesting that low tumor purity tumors are likely to have inaccurate TMB estimates. We developed a new method to estimate a corrected TMB (cTMB) that was adjusted for tumor purity and more accurately predicted outcome to immune checkpoint blockade (ICB). To identify improved predictive markers together with cTMB, we performed whole-exome sequencing for 104 lung tumors treated with ICB. Through comprehensive analyses of sequence and structural alterations, we discovered a significant enrichment in activating mutations in receptor tyrosine kinase (RTK) genes in nonresponding tumors in three immunotherapy treated cohorts. An integrated multivariable model incorporating cTMB, RTK mutations, smoking-related mutational signature and human leukocyte antigen status provided an improved predictor of response to immunotherapy that was independently validated.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy/methods , Lung Neoplasms/drug therapy
10.
Stud Health Technol Inform ; 220: 335-40, 2016.
Article in English | MEDLINE | ID: mdl-27046601

ABSTRACT

Fast, robust, nondestructive 3D imaging is needed for the characterization of microscopic tissue structures across various clinical applications. A custom microelectromechanical system (MEMS)-based 2D scanner was developed to achieve, together with a multi-level GPU architecture, 55 kHz fast-axis A-scan acquisition in a Gabor-domain optical coherence microscopy (GD-OCM) custom instrument. GD-OCM yields high-definition micrometer-class volumetric images. A dynamic depth of focusing capability through a bio-inspired liquid lens-based microscope design, as in whales' eyes, was developed to enable the high definition instrument throughout a large field of view of 1 mm3 volume of imaging. Developing this technology is prime to enable integration within the workflow of clinical environments. Imaging at an invariant resolution of 2 µm has been achieved throughout a volume of 1 × 1 × 0.6 mm3, acquired in less than 2 minutes. Volumetric scans of human skin in vivo and an excised human cornea are presented.


Subject(s)
Image Enhancement/instrumentation , Imaging, Three-Dimensional/instrumentation , Micro-Electrical-Mechanical Systems/instrumentation , Microscopy/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Tomography, Optical Coherence/instrumentation , Computer Systems , Equipment Design , Equipment Failure Analysis , Image Enhancement/methods , Imaging, Three-Dimensional/methods , Micro-Electrical-Mechanical Systems/methods , Microscopy/methods , Reproducibility of Results , Sensitivity and Specificity , Tomography, Optical Coherence/methods
SELECTION OF CITATIONS
SEARCH DETAIL