Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Alcohol Clin Exp Res ; 32(1): 43-51, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18028531

ABSTRACT

BACKGROUND: Chronic alcohol administration impairs protein synthesis ultimately causing a loss of proteins in cardiac muscle. Inhibition of protein synthesis resides in the process of mRNA translation. The present set of experiments were designed to examine the potential regulatory effect of chronic alcohol consumption on mammalian target of rapamycin (mTOR), a serine/threonine kinase important in controlling signaling cascades in the mRNA translation initiation pathway in rat hearts. METHODS: Rats were fed a diet containing ethanol for 20 to 26 weeks. Pair-fed rats served as controls. Rates of protein synthesis were measured following intravenous infusion of [(3)H]-L-phenylalanine (150 mM, 30 microCi/ml; 1 ml/100 g body weight). The phosphorylation state of mTOR, eukaryotic initiation factor 4G (eIF4G), protein kinase B (PKB) and S6K1 in heart were measured using immunoblot techniques with phospho-specific antibodies. RESULTS: Protein synthesis was reduced by 35% in animals consuming a diet containing ethanol. The fall in protein synthesis was accompanied by diminished S6K1(Thr(389)) and eIF4G (Ser(1108)) phosphorylation, both downstream effectors of mTOR signaling. These changes in phosphorylation of S6K1 and eIF4G were not associated with differences in the distribution of mTOR between TORC1 and TORC2. Instead, phosphorylation of mTOR on Ser(2448) but not on Ser(2481) was significantly reduced following feeding rats an ethanol containing diet. Decreased phosphorylation of mTOR(Ser(2448)) was not associated with a corresponding lessening of tumor suppressor complex 2 phosphorylation or expression of regulated in development and DNA damage 1, both upstream regulators of mTOR. Likewise, phosphorylation of PKB on either Ser(473) or Thr(308) was unaffected by long-term alcohol consumption. CONCLUSIONS: Chronic ethanol consumption does not alter the distribution of mTOR between TORC1 and TORC2, but instead diminishes mTOR phosphorylation on Ser(2448) independent of changes in tumor suppressor complex 2 and PKB phosphorylation. Furthermore, the data suggest that protein synthesis in rats fed a diet containing ethanol is limited by mTOR-dependent reduction in phosphorylation of S6K1(Thr(389)) and eIF4G(Ser(1108)) secondary to reduced phosphorylation of mTOR(Ser(2448)).


Subject(s)
Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Myocardium/metabolism , Phosphotransferases/metabolism , Protein Kinases/drug effects , Animals , Carrier Proteins/metabolism , Immunoblotting , Male , Phosphorylation/drug effects , Protein Biosynthesis/drug effects , Protein Kinases/metabolism , Rats , Rats, Sprague-Dawley , TOR Serine-Threonine Kinases
2.
Am J Physiol Endocrinol Metab ; 295(4): E964-73, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18713959

ABSTRACT

The mechanism by which human immunodeficiency virus (HIV)-1 infection in humans leads to the erosion of lean body mass is poorly defined. Therefore, the purpose of the present study was to determine whether transgenic (Tg) rats that constitutively overexpress HIV-1 viral proteins exhibit muscle wasting and to elucidate putative mechanisms. Over 7 mo, Tg rats gained less body weight than pair-fed controls exclusively as a result of a proportional reduction in lean, not fat, mass. Fast- and slow-twitch muscle atrophy in Tg rats did not result from a reduction in the in vivo-determined rate of protein synthesis. In contrast, urinary excretion of 3-methylhistidine, as well as the content of atrogin-1 and the 14-kDa actin fragment, was elevated in gastrocnemius of Tg rats, suggesting increased muscle proteolysis. Similarly, Tg rats had reduced cardiac mass, which was independent of a change in protein synthesis. This decreased cardiac mass was associated with a reduction in stroke volume, but cardiac output was maintained by a compensatory increase in heart rate. The HIV-induced muscle atrophy was associated with increased whole body energy expenditure, which was not due to an elevated body temperature or secondary bacterial infection. Furthermore, the atrophic response could not be attributed to the development of insulin resistance, decreased levels of circulating amino acids, or increased tissue cytokines. However, skeletal muscle and, to a lesser extent, circulating insulin-like growth factor I was reduced in Tg rats. Although hepatic injury was implicated by increased plasma levels of aspartate and alanine aminotransferases, hepatic protein synthesis was not different between control and Tg rats. Hence, HIV-1 Tg rats develop atrophy of cardiac and skeletal muscle, the latter of which results primarily from an increased protein degradation and may be related to the marked reduction in muscle insulin-like growth factor I.


Subject(s)
HIV Wasting Syndrome/genetics , HIV Wasting Syndrome/pathology , HIV-1/genetics , Muscle, Skeletal/pathology , Muscular Diseases/genetics , Myocytes, Cardiac/pathology , Amino Acids/blood , Animals , Animals, Genetically Modified , Atrophy/pathology , Blotting, Northern , Body Composition/physiology , Body Temperature/physiology , Body Weight/physiology , Calorimetry, Indirect , Cytokines/metabolism , Energy Metabolism/physiology , Human Immunodeficiency Virus Proteins/biosynthesis , Human Immunodeficiency Virus Proteins/genetics , Insulin/metabolism , Insulin-Like Growth Factor I/metabolism , Kidney/physiopathology , Male , Muscle Proteins/biosynthesis , Muscular Diseases/pathology , Nuclease Protection Assays , Organ Size/physiology , Rats , Rats, Inbred F344
SELECTION OF CITATIONS
SEARCH DETAIL