Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Proc Natl Acad Sci U S A ; 120(34): e2302910120, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37579143

ABSTRACT

Gene editing in the brain has been challenging because of the restricted transport imposed by the blood-brain barrier (BBB). Current approaches mainly rely on local injection to bypass the BBB. However, such administration is highly invasive and not amenable to treating certain delicate regions of the brain. We demonstrate a safe and effective gene editing technique by using focused ultrasound (FUS) to transiently open the BBB for the transport of intravenously delivered CRISPR/Cas9 machinery to the brain.


Subject(s)
Brain , Gene Editing , Brain/diagnostic imaging , Blood-Brain Barrier , Biological Transport , Microbubbles
2.
Nano Lett ; 23(3): 757-764, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36648291

ABSTRACT

Effective delivery of the CRISPR-Cas9 components is crucial to realizing the therapeutic potential. Although many delivery approaches have been developed for this application, oral delivery has not been explored due to the degradative nature of the gastrointestinal tract. For this issue, we developed a series of novel phenylboronic acid (PBA)-functionalized chitosan-polyethylenimine (CS-PEI) polymers for oral CRISPR delivery. PBA functionalization equipped the polyplex with higher stability, smooth transport across the mucus, and efficient endosomal escape and cytosolic unpackaging in the cells. From a library of 12 PBA-functionalized CS-PEI polyplexes, we identified a formulation that showed the most effective penetration in the intestinal mucosa after oral gavage to mice. The optimized formulation performed feasible CRISPR-mediated downregulation of the target protein and reduction in the downstream cholesterol. As the first oral CRISPR carrier, this study suggests the potential of addressing the needs of both local and systemic editing in a patient-compliant manner.


Subject(s)
Boronic Acids , Chitosan , Animals , Mice , Polymers , Gene Transfer Techniques
3.
Proc Natl Acad Sci U S A ; 115(19): 4903-4908, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29686087

ABSTRACT

Effective and safe delivery of the CRISPR/Cas9 gene-editing elements remains a challenge. Here we report the development of PEGylated nanoparticles (named P-HNPs) based on the cationic α-helical polypeptide poly(γ-4-((2-(piperidin-1-yl)ethyl)aminomethyl)benzyl-l-glutamate) for the delivery of Cas9 expression plasmid and sgRNA to various cell types and gene-editing scenarios. The cell-penetrating α-helical polypeptide enhanced cellular uptake and promoted escape of pCas9 and/or sgRNA from the endosome and transport into the nucleus. The colloidally stable P-HNPs achieved a Cas9 transfection efficiency up to 60% and sgRNA uptake efficiency of 67.4%, representing an improvement over existing polycation-based gene delivery systems. After performing single or multiplex gene editing with an efficiency up to 47.3% in vitro, we demonstrated that P-HNPs delivering Cas9 plasmid/sgRNA targeting the polo-like kinase 1 (Plk1) gene achieved 35% gene deletion in HeLa tumor tissue to reduce the Plk1 protein level by 66.7%, thereby suppressing the tumor growth by >71% and prolonging the animal survival rate to 60% within 60 days. Capable of delivering Cas9 plasmids to various cell types to achieve multiplex gene knock-out, gene knock-in, and gene activation in vitro and in vivo, the P-HNP system offers a versatile gene-editing platform for biological research and therapeutic applications.


Subject(s)
CRISPR-Cas Systems , Cell-Penetrating Peptides , Gene Editing/methods , Gene Transfer Techniques , Nanoparticles/chemistry , Plasmids , Animals , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacology , HEK293 Cells , HeLa Cells , Humans , K562 Cells , Mice , NIH 3T3 Cells , Plasmids/chemistry , Plasmids/genetics , Plasmids/pharmacology
4.
Nano Lett ; 19(3): 1701-1705, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30773888

ABSTRACT

Mesenchymal stem cell (MSC) has been increasingly applied to cancer therapy because of its tumor-tropic capability. However, short retention at target tissue and limited payload option hinder the progress of MSC-based cancer therapy. Herein, we proposed a hybrid spheroid/nanomedicine system, comprising MSC spheroid entrapping drug-loaded nanocomposite, to address these limitations. Spheroid formulation enhanced MSC's tumor tropism and facilitated loading of different types of therapeutic payloads. This system acted as an active drug delivery platform seeking and specifically targeting glioblastoma cells. It enabled effective delivery of combinational protein and chemotherapeutic drugs by engineered MSC and nanocomposite, respectively. In an in vivo migration model, the hybrid spheroid showed higher nanocomposite retention in the tumor tissue compared with the single MSC approach, leading to enhanced tumor inhibition in a heterotopic glioblastoma murine model. Taken together, this system integrates the merits of cell- and nanoparticle- mediated drug delivery with the tumor-homing characteristics of MSC to advance targeted combinational cancer therapy.


Subject(s)
Drug Delivery Systems , Glioblastoma/drug therapy , Mesenchymal Stem Cells/chemistry , Spheroids, Cellular/transplantation , Cell Engineering/trends , Cell Movement/drug effects , Combined Modality Therapy , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Mesenchymal Stem Cells/cytology , Nanomedicine/trends , Spheroids, Cellular/chemistry , Viral Tropism/drug effects
5.
Methods ; 84: 3-16, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25770356

ABSTRACT

Researchers have applied mesenchymal stem cells (MSC) to a variety of therapeutic scenarios by harnessing their multipotent, regenerative, and immunosuppressive properties with tropisms toward inflamed, hypoxic, and cancerous sites. Although MSC-based therapies have been shown to be safe and effective to a certain degree, the efficacy remains low in most cases when MSC are applied alone. To enhance their therapeutic efficacy, researchers have equipped MSC with targeted delivery functions using genetic engineering, therapeutic agent incorporation, and cell surface modification. MSC can be genetically modified virally or non-virally to overexpress therapeutic proteins that complement their innate properties. MSC can also be primed with non-peptidic drugs or magnetic nanoparticles for enhanced efficacy and externally regulated targeting, respectively. Furthermore, MSC can be functionalized with targeting moieties to augment their homing toward therapeutic sites using enzymatic modification, chemical conjugation, or non-covalent interactions. These engineering techniques are still works in progress, requiring optimization to improve the therapeutic efficacy and targeting effectiveness while minimizing any loss of MSC function. In this review, we will highlight the advanced techniques of engineering MSC, describe their promise and the challenges of translation into clinical settings, and suggest future perspectives on realizing their full potential for MSC-based therapy.


Subject(s)
Cell Engineering/methods , Drug Delivery Systems/methods , Mesenchymal Stem Cells , Regenerative Medicine/methods , Animals , Bone Regeneration , Genetic Engineering/methods , Humans , Inflammation/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/physiology , Myocardial Infarction/therapy , Translational Research, Biomedical/methods
6.
Nat Commun ; 15(1): 4267, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769317

ABSTRACT

The membrane-fusion-based internalization without lysosomal entrapment is advantageous for intracellular delivery over endocytosis. However, protein corona formed on the membrane-fusogenic liposome surface converts its membrane-fusion performance to lysosome-dependent endocytosis, causing poorer delivery efficiency in biological conditions. Herein, we develop an antifouling membrane-fusogenic liposome for effective intracellular delivery in vivo. Leveraging specific lipid composition at an optimized ratio, such antifouling membrane-fusogenic liposome facilitates fusion capacity even in protein-rich conditions, attributed to the copious zwitterionic phosphorylcholine groups for protein-adsorption resistance. Consequently, the antifouling membrane-fusogenic liposome demonstrates robust membrane-fusion-mediated delivery in the medium with up to 38% fetal bovine serum, outclassing two traditional membrane-fusogenic liposomes effective at 4% and 6% concentrations. When injected into mice, antifouling membrane-fusogenic liposomes can keep their membrane-fusion-transportation behaviors, thereby achieving efficient luciferase transfection and enhancing gene-editing-mediated viral inhibition. This study provides a promising tool for effective intracellular delivery under complex physiological environments, enlightening future nanomedicine design.


Subject(s)
Liposomes , Membrane Fusion , Liposomes/metabolism , Animals , Mice , Humans , Endocytosis , Transfection , Gene Editing/methods , Protein Corona/metabolism , Protein Corona/chemistry , Biofouling/prevention & control , Female , Lipids/chemistry
7.
Biomater Sci ; 12(9): 2203-2228, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38293828

ABSTRACT

Unmethylated cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), which were therapeutic DNA with high immunostimulatory activity, have been applied in widespread applications from basic research to clinics as therapeutic agents for cancer immunotherapy, viral infection, allergic diseases and asthma since their discovery in 1995. The major factors to consider for clinical translation using CpG motifs are the protection of CpG ODNs from DNase degradation and the delivery of CpG ODNs to the Toll-like receptor-9 expressed human B-cells and plasmacytoid dendritic cells. Therefore, great efforts have been devoted to the advances of efficient delivery systems for CpG ODNs. In this review, we outline new horizons and recent developments in this field, providing a comprehensive summary of the nanoparticle-based CpG delivery systems developed to improve the efficacy of CpG-mediated immune responses, including DNA nanostructures, inorganic nanoparticles, polymer nanoparticles, metal-organic-frameworks, lipid-based nanosystems, proteins and peptides, as well as exosomes and cell membrane nanoparticles. Moreover, future challenges in the establishment of CpG delivery systems for immunotherapeutic applications are discussed. We expect that the continuously growing interest in the development of CpG-based immunotherapy will certainly fuel the excitement and stimulation in medicine research.


Subject(s)
Nanoparticles , Oligodeoxyribonucleotides , Humans , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/administration & dosage , Nanoparticles/chemistry , Animals , Immunotherapy/methods , Toll-Like Receptor 9/metabolism , Drug Delivery Systems
8.
Adv Mater ; 36(13): e2300665, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37437039

ABSTRACT

Clustered regularly interspaced short palindromic repeats/associated protein 9 (CRISPR/Cas9) gene-editing technology shows promise for manipulating single or multiple tumor-associated genes and engineering immune cells to treat cancers. Currently, most gene-editing strategies rely on viral delivery; yet, while being efficient, many limitations, mainly from safety and packaging capacity considerations, hinder the use of viral CRISPR vectors in cancer therapy. In contrast, recent advances in non-viral CRISPR/Cas9 nanoformulations have paved the way for better cancer gene editing, as these nanoformulations can be engineered to improve safety, efficiency, and specificity through optimizing the packaging capacity, pharmacokinetics, and targetability. In this review, the advance in non-viral CRISPR delivery is highlighted, and there is a discussion on how these approaches can be potentially used to treat cancers in addressing the aforementioned limitations, followed by the perspectives in designing a proper CRISPR/Cas9-based cancer nanomedicine system with translational potential.


Subject(s)
Gene Editing , Neoplasms , Humans , CRISPR-Cas Systems/genetics , Genetic Therapy , Genetic Vectors , Neoplasms/genetics , Neoplasms/therapy
9.
Biomater Sci ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808607

ABSTRACT

The clustered regularly interspaced short palindromic repeat (CRISPR) system, an emerging tool for genome editing, has garnered significant public interest for its potential in treating genetic diseases. Despite the rapid advancements in CRISPR technology, the progress in developing effective delivery strategies lags, impeding its clinical application. Extracellular nanovesicles (EVs), either in their endogenous forms or with engineered modifications, have emerged as a promising solution for CRISPR delivery. These EVs offer several advantages, including high biocompatibility, biological permeability, negligible immunogenicity, and straightforward production. Herein, we first summarize various types of functional EVs for CRISPR delivery, such as unmodified, modified, engineered virus-like particles (VLPs), and exosome-liposome hybrid vesicles, and examine their distinct intracellular pathways. Then, we outline the cutting-edge techniques for functionalizing extracellular vesicles, involving producer cell engineering, vesicle engineering, and virus-like particle engineering, emphasizing the diverse CRISPR delivery capabilities of these nanovesicles. Lastly, we address the current challenges and propose rational design strategies for their clinical translation, offering future perspectives on the development of functionalized EVs.

10.
Chem Commun (Camb) ; 60(17): 2301-2319, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38251733

ABSTRACT

The emerging field of liquid biopsy has garnered significant interest in precision diagnostics, offering a non-invasive and repetitive method for analyzing bodily fluids to procure real-time diagnostic data. The precision and accuracy offered by the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas) technology have advanced and broadened the applications of liquid biopsy. Significantly, when combined with swiftly advancing nanotechnology, CRISPR/Cas-mediated nanodevices show vast potential in precise liquid biopsy applications. However, persistent challenges are still associated with off-target effects, and the current platforms also constrain the performance of the assays. In this review, we highlight the merits of CRISPR/Cas systems in liquid biopsy, tracing the development of CRISPR/Cas systems and their current applications in disease diagnosis particularly in liquid biopsies. We also outline ongoing efforts to design nanoscale devices with improved sensing and readout capabilities, aiming to enhance the performance of CRISPR/Cas detectors in liquid biopsy. Finally, we identify the critical obstacles hindering the widespread adoption of CRISPR/Cas liquid biopsy and explore potential solutions. This feature article presents a comprehensive overview of CRISPR/Cas-mediated liquid biopsies, emphasizing the progress in integrating nanodevices to improve specificity and sensitivity. It also sheds light on future research directions in employing nanodevices for CRISPR/Cas-based liquid biopsies in the realm of precision medicine.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Gene Editing/methods , Precision Medicine
11.
Lab Chip ; 24(3): 396-407, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38180130

ABSTRACT

The effects of immunotherapeutics on interactions between immune and cancer cells are modulated by multiple components in the tumour microenvironment (TME), including endothelium and tumour stroma, which provide both a physical barrier and immunosuppressive stimuli. Herein, we report a recirculating chip to enable continuous immune cell recirculation through a microfluidic cell array to include these crucial players. This system consists of a three-layered cell array (µFCA) spatially emulating the TME, with tailored fluidic circuits establishing T cell recirculation. This platform enables the study of dynamics among the TME, immune cells in a circulatory system and cancer cell responses thereof. Through this system, we found that tumour endothelium hindered T cell infiltration into the reconstructed breast cancer tumour compartment. This negative effect was alleviated when treated with anti-human PD-L1 (programmed cell death ligand 1) antibody. Another key stromal component - cancer associated fibroblasts - attenuated T cell infiltration, compared against normal fibroblasts, and led to reduced apoptotic activity in cancer cells. These results confirm the capability of our tumour-on-a-chip system in identifying some key axes to target in overcoming barriers to immunotherapy by recapitulating immune cell interactions with the reconstructed TME. Our results also attest to the feasibility of scaling up this system for high-throughput cancer immunotherapeutic screening.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Microfluidics , Immunotherapy , T-Lymphocytes
12.
Adv Sci (Weinh) ; : e2309940, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874114

ABSTRACT

Liver fibrosis is a chronic pathological condition lacking specific clinical treatments. Stem cells, with notable potential in regenerative medicine, offer promise in treating liver fibrosis. However, stem cell therapy is hindered by potential immunological rejection, carcinogenesis risk, efficacy variation, and high cost. Stem cell secretome-based cell-free therapy offers potential solutions to address these challenges, but it is limited by low delivery efficiency and rapid clearance. Herein, an innovative approach for in situ implantation of smart microneedle (MN) arrays enabling precisely controlled delivery of multiple therapeutic agents directly into fibrotic liver tissues is developed. By integrating cell-free and platinum-based nanocatalytic combination therapy, the MN arrays can deactivate hepatic stellate cells. Moreover, they promote excessive extracellular matrix degradation by more than 75%, approaching normal levels. Additionally, the smart MN arrays can provide hepatocyte protection while reducing inflammation levels by ≈70-90%. They can also exhibit remarkable capability in scavenging almost 100% of reactive oxygen species and alleviating hypoxia. Ultimately, this treatment strategy can effectively restrain fibrosis progression. The comprehensive in vitro and in vivo experiments, supplemented by proteome and transcriptome analyses, substantiate the effectiveness of the approach in treating liver fibrosis, holding immense promise for clinical applications.

13.
Biomaterials ; 311: 122645, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38850717

ABSTRACT

Immunotherapy through the activation of the stimulator of interferon genes (STING) signaling pathway is increasingly recognized for its robust anti-tumor efficacy. However, the effectiveness of STING activation is often compromised by inadequate anti-tumor immunity and a scarcity of primed immune cells in the tumor microenvironment. Herein, we design and fabricate a co-axial 3D-printed scaffold integrating a non-nucleotide STING agonist, SR-717, and an AKT inhibitor, MK-2206, in its respective shell and core layers, to synergistically enhance STING activation, thereby suppressing tumor recurrence and growth. SR-717 initiates the STING activation to enhance the phosphorylation of the factors along the STING pathway, while MK-2206 concurrently inhibits the AKT phosphorylation to facilitate the TBK1 phosphorylation of the STING pathway. The sequential and sustained release of SR-717 and MK-2206 from the scaffold results in a synergistic STING activation, demonstrating substantial anti-tumor efficacy across multiple tumor models. Furthermore, the scaffold promotes the recruitment and enrichment of activated dendritic cells and M1 macrophages, subsequently stimulating anti-tumor T cell activity, thereby amplifying the immunotherapeutic effect. This precise and synergistic activation of STING by the scaffold offers promising potential in tumor immunotherapy.

14.
Biomaterials ; 308: 122559, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38583366

ABSTRACT

Lipid nanoparticles (LNPs) have recently emerged as successful gene delivery platforms for a diverse array of disease treatments. Efforts to optimize their design for common administration methods such as intravenous injection, intramuscular injection, or inhalation, revolve primarily around the addition of targeting ligands or the choice of ionizable lipid. Here, we employed a multi-step screening method to optimize the type of helper lipid and component ratios in a plasmid DNA (pDNA) LNP library to efficiently deliver pDNA through intraduodenal delivery as an indicative route for oral administration. By addressing different physiological barriers in a stepwise manner, we down-selected effective LNP candidates from a library of over 1000 formulations. Beyond reporter protein expression, we assessed the efficiency in non-viral gene editing in mouse liver mediated by LNPs to knockdown PCSK9 and ANGPTL3 expression, thereby lowering low-density lipoprotein (LDL) cholesterol levels. Utilizing an all-in-one pDNA construct with Strep. pyogenes Cas9 and gRNAs, our results showcased that intraduodenal administration of selected LNPs facilitated targeted gene knockdown in the liver, resulting in a 27% reduction in the serum LDL cholesterol level. This LNP-based all-in-one pDNA-mediated gene editing strategy highlights its potential as an oral therapeutic approach for hypercholesterolemia, opening up new possibilities for DNA-based gene medicine applications.


Subject(s)
Gene Editing , Lipids , Liver , Nanoparticles , Animals , Gene Editing/methods , Liver/metabolism , Nanoparticles/chemistry , Lipids/chemistry , Mice , Plasmids/genetics , Plasmids/administration & dosage , Gene Transfer Techniques , Mice, Inbred C57BL , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Humans , DNA/administration & dosage , DNA/genetics , Duodenum/metabolism
15.
bioRxiv ; 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38328122

ABSTRACT

Vascular malformation, a key clinical phenotype of Proteus syndrome, lacks effective models for pathophysiological study and drug development due to limited patient sample access. To bridge this gap, we built a human vascular organoid model replicating Proteus syndrome's vasculature. Using CRISPR/Cas9 genome editing and gene overexpression, we created induced pluripotent stem cells (iPSCs) embodying the Proteus syndrome-specific AKTE17K point mutation for organoid generation. Our findings revealed that AKT overactivation in these organoids resulted in smaller sizes yet increased vascular connectivity, although with less stable connections. This could be due to the significant vasculogenesis induced by AKT overactivation. This phenomenon likely stems from boosted vasculogenesis triggered by AKT overactivation, leading to increased vascular sprouting. Additionally, a notable increase in dysfunctional PDGFRß+ mural cells, impaired in matrix secretion, was observed in these AKT-overactivated organoids. The application of AKT inhibitors (ARQ092, AZD5363, or GDC0068) reversed the vascular malformations; the inhibitors' effectiveness was directly linked to reduced connectivity in the organoids. In summary, our study introduces an innovative in vitro model combining organoid technology and gene editing to explore vascular pathophysiology in Proteus syndrome. This model not only simulates Proteus syndrome vasculature but also holds potential for mimicking vasculatures of other genetically driven diseases. It represents an advance in drug development for rare diseases, historically plagued by slow progress.

16.
Nat Biotechnol ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38514799

ABSTRACT

Spatially resolved gene expression profiling provides insight into tissue organization and cell-cell crosstalk; however, sequencing-based spatial transcriptomics (ST) lacks single-cell resolution. Current ST analysis methods require single-cell RNA sequencing data as a reference for rigorous interpretation of cell states, mostly do not use associated histology images and are not capable of inferring shared neighborhoods across multiple tissues. Here we present Starfysh, a computational toolbox using a deep generative model that incorporates archetypal analysis and any known cell type markers to characterize known or new tissue-specific cell states without a single-cell reference. Starfysh improves the characterization of spatial dynamics in complex tissues using histology images and enables the comparison of niches as spatial hubs across tissues. Integrative analysis of primary estrogen receptor (ER)-positive breast cancer, triple-negative breast cancer (TNBC) and metaplastic breast cancer (MBC) tissues led to the identification of spatial hubs with patient- and disease-specific cell type compositions and revealed metabolic reprogramming shaping immunosuppressive hubs in aggressive MBC.

17.
Biomaterials ; 293: 121942, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36512863

ABSTRACT

Tumor-positive resection margins after surgery can result in tumor recurrence and metastasis. Although adjuvant postoperative radiotherapy and chemotherapy have been adopted in clinical practice, they lack efficacy and result in unavoidable side effects. Herein, a self-intensified in-situ therapy approach using electrospun fibers loaded with a biomimetic nanozyme and doxorubicin (DOX) is developed. The fabricated PEG-coated zeolite imidazole framework-67 (PZIF67) is demonstrated as a versatile nanozyme triggering reactions in cancer cells based on endogenous H2O2 and •O2-. The PZIF67-generated •OH induces reactive oxygen species (ROS) overload, implementing chemodynamic therapy (CDT). The O2 produced by PZIF67 inhibits the expression of hypoxia-up-regulated proteins, thereby suppressing tumor progression. PZIF67 also catalyzes the degradation of glutathione, further disturbing the intracellular redox homeostasis and enhancing CDT. Furthermore, the introduced DOX not only kills cancer cells individually, but also replenishes the continuously consumed substrates for PZIF67-catalyzed reactions. The PZIF67-weakened drug resistance strengthens the cytotoxicity of DOX. The combined application of PZIF67 and DOX also suppresses metastasis-associated genes. Both in vitro and in vivo results demonstrate that the self-intensified synergy of PZIF67 and DOX on electrospun fibers efficiently prevents postsurgical tumor recurrence and metastasis, offering a feasible therapeutic regimen for operable malignant tumors.


Subject(s)
Hydrogen Peroxide , Neoplasms , Humans , Biomimetics , Neoplasm Recurrence, Local/prevention & control , Neoplasm Recurrence, Local/drug therapy , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Glutathione/metabolism , Cell Line, Tumor , Neoplasms/drug therapy , Tumor Microenvironment
18.
Bioact Mater ; 28: 112-131, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37250866

ABSTRACT

Reactive oxygen species (ROS)-associated oxidative stress, inflammation storm, and massive hepatocyte necrosis are the typical manifestations of acute liver failure (ALF), therefore specific therapeutic interventions are essential for the devastating disease. Here, we developed a platform consisting of versatile biomimetic copper oxide nanozymes (Cu NZs)-loaded PLGA nanofibers (Cu NZs@PLGA nanofibers) and decellularized extracellular matrix (dECM) hydrogels for delivery of human adipose-derived mesenchymal stem/stromal cells-derived hepatocyte-like cells (hADMSCs-derived HLCs) (HLCs/Cu NZs@fiber/dECM). Cu NZs@PLGA nanofibers could conspicuously scavenge excessive ROS at the early stage of ALF, and reduce the massive accumulation of pro-inflammatory cytokines, herein efficiently preventing the deterioration of hepatocytes necrosis. Moreover, Cu NZs@PLGA nanofibers also exhibited a cytoprotection effect on the transplanted HLCs. Meanwhile, HLCs with hepatic-specific biofunctions and anti-inflammatory activity acted as a promising alternative cell source for ALF therapy. The dECM hydrogels further provided the desirable 3D environment and favorably improved the hepatic functions of HLCs. In addition, the pro-angiogenesis activity of Cu NZs@PLGA nanofibers also facilitated the integration of the whole implant with the host liver. Hence, HLCs/Cu NZs@fiber/dECM performed excellent synergistic therapeutic efficacy on ALF mice. This strategy using Cu NZs@PLGA nanofiber-reinforced dECM hydrogels for HLCs in situ delivery is a promising approach for ALF therapy and shows great potential for clinical translation.

19.
Biomaterials ; 302: 122349, 2023 11.
Article in English | MEDLINE | ID: mdl-37844429

ABSTRACT

Targeting the activated epidermal growth factor receptor (EGFR) via clustered regularly interspaced short palindromic repeat (CRISPR) technology is appealing to overcome the drug resistance of hepatocellular carcinoma (HCC) towards tyrosine kinase inhibitor (TKI) therapy. However, combining these two distinct drugs using traditional liposomes results in a suboptimal synergistic anti-HCC effect due to the limited CRISPR/Cas9 delivery efficiency caused by lysosomal entrapment after endocytosis. Herein, we developed a liver-targeting gene-hybridizing-TKI fusogenic liposome (LIGHTFUL) that can achieve high CRISPR/Cas9 expression to reverse the EGFR-mediated drug resistance for enhanced TKI-based HCC therapy efficiently. Coated with a galactose-modified membrane-fusogenic lipid layer, LIGHTFUL reached the targeting liver site to fuse with HCC tumor cells, directly and efficiently transporting interior CDK5- and PLK1-targeting CRISPR/Cas9 plasmids (pXG333-CPs) into the HCC cell cytoplasm and then the cell nucleus for efficient expression. Such membrane-fusion-mediated pXG333-CP delivery resulted in effective downregulation of both CDK5 and PLK1, sufficiently inactivating EGFR to improve the anti-HCC effects of the co-delivered TKI, lenvatinib. This membrane-fusion-participant codelivery strategy optimized the synergetic effect of CRISPR/Cas9 and TKI combinational therapy as indicated by the 0.35 combination index in vitro and the dramatic reduction of subcutaneous and orthotopic TKI-insensitive HCC tumor growth in mice. Therefore, the established LIGHTFUL provides a unique co-delivery platform to combine gene editing and TKI therapies for enhanced synergetic therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Mice , Carcinoma, Hepatocellular/therapy , Cell Line, Tumor , Drug Resistance, Neoplasm , ErbB Receptors/metabolism , Liver Neoplasms/therapy , Nanomedicine , Tyrosine
20.
Theranostics ; 13(12): 4102-4120, 2023.
Article in English | MEDLINE | ID: mdl-37554284

ABSTRACT

Rationale: Bilateral sonication with focused ultrasound (FUS) in conjunction with microbubbles has been shown to separately reduce amyloid plaques and hyperphosphorylated tau protein in the hippocampal formation and the entorhinal cortex in different mouse models of Alzheimer's disease (AD) without any therapeutic agents. However, the two pathologies are expressed concurrently in human disease. Therefore, the objective of this study is to investigate the effects of repeated bilateral sonications in the presence of both pathologies. Methods: Herein, we investigate its functional and morphological outcomes on brains bearing both pathologies simultaneously. Eleven transgenic mice of the 3xTg-AD line (14 months old) expressing human amyloid beta and human tau and eleven age-matched wild-type littermates received four weekly bilateral sonications covering the hippocampus followed by working memory testing. Afterwards, immunohistochemistry and immunoassays (western blot and ELISA) were employed to assess any changes in amyloid beta and human tau. Furthermore, we present preliminary data from our clinical trial using a neuronavigation-guided FUS system for sonications in AD patients (NCT04118764). Results: Interestingly, both wild-type and transgenic animals that received FUS experienced improved working memory and spent significantly more time in the escape platform-quadrant, with wild-type animals spending 43.2% (sham: 37.7%) and transgenic animals spending 35.3% (sham: 31.0%) of the trial in the target quadrant. Furthermore, this behavioral amelioration in the transgenic animals correlated with a 58.3% decrease in the neuronal length affected by tau and a 27.2% reduction in total tau levels. Amyloid plaque population, volume and overall load were also reduced overall. Consistently, preliminary data from a clinical trial involving AD patients showed a 1.8% decrease of amyloid PET signal 3-weeks after treatment in the treated hemisphere compared to baseline. Conclusion: For the first time, it is shown that bilateral FUS-induced BBB opening significantly and simultaneously ameliorates both coexistent pathologies, which translated to improvements in spatial memory of transgenic animals with complex AD, the human mimicking phenotype. The level of cognitive improvement was significantly correlated with the volume of BBB opening. Non-transgenic animals were also shown to exhibit similar memory amelioration for the first time, indicating that BBB opening results into benefits in the neuronal function regardless of the existence of AD pathology. A potential mechanism of action for the reduction of the both pathologies investigated was the cholesterol metabolism, specifically the LRP1b receptor, which exhibited increased expression levels in transgenic mice following FUS-induced BBB opening. Initial clinical evidence supported that the beta amyloid reduction shown in rodents could be translatable to humans with significant amyloid reduction shown in the treated hemisphere.


Subject(s)
Alzheimer Disease , Humans , Mice , Animals , Infant, Newborn , Infant , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Spatial Memory , Brain/metabolism , Mice, Transgenic , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL