Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 188
Filter
Add more filters

Publication year range
1.
Hum Mol Genet ; 33(3): 254-269, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-37930228

ABSTRACT

CACNA1S-related myopathy, due to pathogenic variants in the CACNA1S gene, is a recently described congenital muscle disease. Disease associated variants result in loss of gene expression and/or reduction of Cav1.1 protein stability. There is an incomplete understanding of the underlying disease pathomechanisms and no effective therapies are currently available. A barrier to the study of this myopathy is the lack of a suitable animal model that phenocopies key aspects of the disease. To address this barrier, we generated knockouts of the two zebrafish CACNA1S paralogs, cacna1sa and cacna1sb. Double knockout fish exhibit severe weakness and early death, and are characterized by the absence of Cav1.1 α1 subunit expression, abnormal triad structure, and impaired excitation-contraction coupling, thus mirroring the severe form of human CACNA1S-related myopathy. A double mutant (cacna1sa homozygous, cacna1sb heterozygote) exhibits normal development, but displays reduced body size, abnormal facial structure, and cores on muscle pathologic examination, thus phenocopying the mild form of human CACNA1S-related myopathy. In summary, we generated and characterized the first cacna1s zebrafish loss-of-function mutants, and show them to be faithful models of severe and mild forms of human CACNA1S-related myopathy suitable for future mechanistic studies and therapy development.


Subject(s)
Calcium Channels, L-Type , Muscular Diseases , Zebrafish Proteins , Zebrafish , Animals , Humans , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Muscle, Skeletal/metabolism , Muscular Diseases/pathology , Mutation , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/metabolism
2.
Circ Res ; 132(11): e188-e205, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37139790

ABSTRACT

BACKGROUND: Transverse tubules (t-tubules) form gradually in the developing heart, critically enabling maturation of cardiomyocyte Ca2+ homeostasis. The membrane bending and scaffolding protein BIN1 (bridging integrator 1) has been implicated in this process. However, it is unclear which of the various reported BIN1 isoforms are involved, and whether BIN1 function is regulated by its putative binding partners MTM1 (myotubularin), a phosphoinositide 3'-phosphatase, and DNM2 (dynamin-2), a GTPase believed to mediate membrane fission. METHODS: We investigated the roles of BIN1, MTM1, and DNM2 in t-tubule formation in developing mouse cardiomyocytes, and in gene-modified HL-1 and human-induced pluripotent stem cell-derived cardiomyocytes. T-tubules and proteins of interest were imaged by confocal and Airyscan microscopy, and expression patterns were examined by RT-qPCR and Western blotting. Ca2+ release was recorded using Fluo-4. RESULTS: We observed that in the postnatal mouse heart, BIN1 localizes along Z-lines from early developmental stages, consistent with roles in initial budding and scaffolding of t-tubules. T-tubule proliferation and organization were linked to a progressive and parallel increase in 4 detected BIN1 isoforms. All isoforms were observed to induce tubulation in cardiomyocytes but produced t-tubules with differing geometries. BIN1-induced tubulations contained the L-type Ca2+ channel, were colocalized with caveolin-3 and the ryanodine receptor, and effectively triggered Ca2+ release. BIN1 upregulation during development was paralleled by increasing expression of MTM1. Despite no direct binding between MTM1 and murine cardiac BIN1 isoforms, which lack exon 11, high MTM1 levels were necessary for BIN1-induced tubulation, indicating a central role of phosphoinositide homeostasis. In contrast, the developing heart exhibited declining levels of DNM2. Indeed, we observed that high levels of DNM2 are inhibitory for t-tubule formation, although this protein colocalizes with BIN1 along Z-lines, and binds all 4 isoforms. CONCLUSIONS: These findings indicate that BIN1, MTM1, and DNM2 have balanced and collaborative roles in controlling t-tubule growth in cardiomyocytes.


Subject(s)
Dynamin II , Myocytes, Cardiac , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Dynamin II/genetics , Dynamin II/metabolism , Myocytes, Cardiac/metabolism , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Protein Isoforms/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Tumor Suppressor Proteins/metabolism
3.
Proc Natl Acad Sci U S A ; 119(40): e2202236119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161941

ABSTRACT

X-linked centronuclear myopathy (XLCNM) is a severe human disease without existing therapies caused by mutations in the phosphoinositide 3-phosphatase MTM1. Loss of MTM1 function is associated with muscle fiber defects characterized by impaired localization of ß-integrins and other components of focal adhesions. Here we show that defective focal adhesions and reduced active ß-integrin surface levels in a cellular model of XLCNM are rescued by loss of phosphatidylinositiol 3-kinase C2ß (PI3KC2ß) function. Inactivation of the Mtm1 gene impaired myoblast differentiation into myotubes and resulted in reduced surface levels of active ß1-integrins as well as corresponding defects in focal adhesions. These phenotypes were rescued by concomitant genetic loss of Pik3c2b or pharmacological inhibition of PI3KC2ß activity. We further demonstrate that a hitherto unknown role of PI3KC2ß in the endocytic trafficking of active ß1-integrins rather than rescue of phosphatidylinositol 3-phosphate levels underlies the ability of Pik3c2b to act as a genetic modifier of cellular XLCNM phenotypes. Our findings reveal a crucial antagonistic function of MTM1 and PI3KC2ß in the control of active ß-integrin surface levels, thereby providing a molecular mechanism for the adhesion and myofiber defects observed in XLCNM. They further suggest specific pharmacological inhibition of PI3KC2ß catalysis as a viable treatment option for XLCNM patients.


Subject(s)
Myopathies, Structural, Congenital , Phosphatidylinositol 3-Kinase , Humans , Integrins/genetics , Muscle, Skeletal , Myopathies, Structural, Congenital/genetics , Protein Tyrosine Phosphatases, Non-Receptor/genetics
4.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35217605

ABSTRACT

The mechanoenzyme dynamin 2 (DNM2) is crucial for intracellular organization and trafficking. DNM2 is mutated in dominant centronuclear myopathy (DNM2-CNM), a muscle disease characterized by defects in organelle positioning in myofibers. It remains unclear how the in vivo functions of DNM2 are regulated in muscle. Moreover, there is no therapy for DNM2-CNM to date. Here, we overexpressed human amphiphysin 2 (BIN1), a membrane remodeling protein mutated in other CNM forms, in Dnm2RW/+ and Dnm2RW/RW mice modeling mild and severe DNM2-CNM, through transgenesis or with adeno-associated virus (AAV). Increasing BIN1 improved muscle atrophy and main histopathological features of Dnm2RW/+ mice and rescued the perinatal lethality and survival of Dnm2RW/RW mice. In vitro experiments showed that BIN1 binds and recruits DNM2 to membrane tubules, and that the BIN1-DNM2 complex regulates tubules fission. Overall, BIN1 is a potential therapeutic target for dominant centronuclear myopathy linked to DNM2 mutations.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Dynamin II/physiology , Muscular Atrophy/physiopathology , Muscular Diseases/pathology , Nuclear Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Dynamin II/genetics , Dynamin II/metabolism , Humans , Mice , Mice, Knockout , Protein Binding
5.
Brain ; 146(10): 4158-4173, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37490306

ABSTRACT

Centronuclear and myotubular myopathies (CNM) are rare and severe genetic diseases associated with muscle weakness and atrophy as well as intracellular disorganization of myofibres. The main mutated proteins control lipid and membrane dynamics and are the lipid phosphatase myotubularin (MTM1), and the membrane remodelling proteins amphiphysin 2 (BIN1) and dynamin 2 (DNM2). There is no available therapy. Here, to validate a novel therapeutic strategy for BIN1- and DNM2-CNM, we evaluated adeno-associated virus-mediated MTM1 (AAV-MTM1 ) overexpression in relevant mouse models. Early systemic MTM1 overexpression prevented the development of the CNM pathology in Bin1mck-/- mice, while late intramuscular MTM1 expression partially reverted the established phenotypes after only 4 weeks of treatment. However, AAV-MTM1 injection did not change the DNM2-CNM mouse phenotypes. We investigated the mechanism of the rescue of the myopathy in BIN1-CNM and found that the lipid phosphatase activity of MTM1 was essential for the rescue of muscle atrophy and myofibre hypotrophy but dispensable for the rescue of myofibre disorganization including organelle mis-position and T-tubule defects. Furthermore, the improvement of T-tubule organization correlated with normalization of key regulators of T-tubule morphogenesis, dysferlin and caveolin. Overall, these data support the inclusion of BIN1-CNM patients in an AAV-MTM1 clinical trial.


Subject(s)
Muscle, Skeletal , Myopathies, Structural, Congenital , Protein Tyrosine Phosphatases, Non-Receptor , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Dynamin II/genetics , Dynamin II/metabolism , Lipids , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Mutation , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/therapy , Nuclear Proteins/genetics , Phenotype , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Genetic Therapy
6.
Brain ; 146(7): 3029-3048, 2023 07 03.
Article in English | MEDLINE | ID: mdl-36562127

ABSTRACT

Congenital myopathies define a genetically heterogeneous group of disorders associated with severe muscle weakness, for which no therapies are currently available. Here we investigated the repurposing of tamoxifen in mouse models of mild or severe forms of centronuclear myopathies due to mutations in BIN1 (encoding amphiphysin 2) or DNM2 (encoding dynamin 2), respectively. Exposure to a tamoxifen-enriched diet from 3 weeks of age resulted in significant improvement in muscle contractility without increase in fibre size in both models, underlying an increase in the capacity of the muscle fibres to produce more force. In addition, the histological alterations were fully rescued in the BIN1-centronuclear myopathies mouse model. To assess the mechanism of the rescue, transcriptome analyses and targeted protein studies were performed. Although tamoxifen is known to modulate the transcriptional activity of the oestrogen receptors, correction of the disease transcriptomic signature was marginal on tamoxifen treatment. Conversely, tamoxifen lowered the abnormal increase in dynamin 2 protein level in both centronuclear myopathies models. Of note, it was previously reported that dynamin 2 increase is a main pathological cause of centronuclear myopathies. The Akt/mTOR muscle hypertrophic pathway and protein markers of the ubiquitin-proteasome system (the E3 ubiquitin ligase cullin 3) and autophagy (p62) were increased in both models of centronuclear myopathies. Normalization of dynamin 2 level mainly correlated with the normalization of cullin 3 protein level on tamoxifen treatment, supporting the idea that the ubiquitin-proteasome system is a main target for the tamoxifen effect in the amelioration of these diseases. Overall, our data suggest that tamoxifen antagonizes disease development probably through dynamin 2 level regulation. In conclusion, the beneficial effect of tamoxifen on muscle function supports the suggestion that tamoxifen may serve as a common therapy for several autosomal forms of centronuclear myopathies.


Subject(s)
Dynamin II , Myopathies, Structural, Congenital , Animals , Mice , Adaptor Proteins, Signal Transducing/genetics , Cullin Proteins/genetics , Cullin Proteins/metabolism , Dynamin II/genetics , Dynamin II/metabolism , Muscle, Skeletal/pathology , Muscles/metabolism , Muscles/pathology , Mutation , Myopathies, Structural, Congenital/drug therapy , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/pathology , Nerve Tissue Proteins/genetics , Proteasome Endopeptidase Complex/metabolism , Tumor Suppressor Proteins/genetics , Ubiquitins/genetics , Ubiquitins/metabolism
7.
Am J Hum Genet ; 107(6): 1078-1095, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33217308

ABSTRACT

The myosin-directed chaperone UNC-45B is essential for sarcomeric organization and muscle function from Caenorhabditis elegans to humans. The pathological impact of UNC-45B in muscle disease remained elusive. We report ten individuals with bi-allelic variants in UNC45B who exhibit childhood-onset progressive muscle weakness. We identified a common UNC45B variant that acts as a complex hypomorph splice variant. Purified UNC-45B mutants showed changes in folding and solubility. In situ localization studies further demonstrated reduced expression of mutant UNC-45B in muscle combined with abnormal localization away from the A-band towards the Z-disk of the sarcomere. The physiological relevance of these observations was investigated in C. elegans by transgenic expression of conserved UNC-45 missense variants, which showed impaired myosin binding for one and defective muscle function for three. Together, our results demonstrate that UNC-45B impairment manifests as a chaperonopathy with progressive muscle pathology, which discovers the previously unknown conserved role of UNC-45B in myofibrillar organization.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/physiology , Molecular Chaperones/genetics , Molecular Chaperones/physiology , Muscular Diseases/genetics , Mutation, Missense , Adolescent , Adult , Alleles , Animals , Caenorhabditis elegans , Female , Genetic Variation , Humans , Loss of Function Mutation , Male , Muscle, Skeletal/pathology , Myofibrils , Myosins , Sarcomeres/metabolism , Sequence Analysis, RNA , Transgenes , Exome Sequencing , Young Adult
8.
Neuropathol Appl Neurobiol ; : e12952, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38124360

ABSTRACT

AIMS: Limb-girdle congenital myasthenic syndrome (LG-CMS) is a genetically heterogeneous disorder characterized by muscle weakness and fatigability. The LG-CMS gene DPAGT1 codes for an essential enzyme of the glycosylation pathway, a posttranslational modification mechanism shaping the structure and function of proteins. In DPAGT1-related LG-CMS, reduced glycosylation of the acetylcholine receptor (AChR) reduces its localization at the neuromuscular junction (NMJ), and results in diminished neuromuscular transmission. LG-CMS patients also show tubular aggregates on muscle biopsy, but the origin and potential contribution of the aggregates to disease development are not understood. Here, we describe two LG-CMS patients with the aim of providing a molecular diagnosis and to shed light on the pathways implicated in tubular aggregate formation. METHODS: Following clinical examination of the patients, we performed next-generation sequencing (NGS) to identify the genetic causes, analysed the biopsies at the histological and ultrastructural levels, investigated the composition of the tubular aggregates, and performed experiments on protein glycosylation. RESULTS: We identified novel pathogenic DPAGT1 variants in both patients, and pyridostigmine treatment quantitatively improved muscle force and function. The tubular aggregates contained proteins of the sarcoplasmic reticulum (SR) and structurally conformed to the aggregates observed in tubular aggregate myopathy (TAM). TAM arises from overactivation of the plasma membrane calcium channel ORAI1, and functional studies on muscle extracts from our LG-CMS patients evidenced abnormal ORAI1 glycosylation. CONCLUSIONS: We expand the genetic variant spectrum of LG-CMS and provide a genotype/phenotype correlation for pathogenic DPAGT1 variants. The discovery of ORAI1 hypoglycosylation in our patients highlights a physiopathological link between LG-CMS and TAM.

9.
Mol Ther ; 30(2): 868-880, 2022 02 02.
Article in English | MEDLINE | ID: mdl-34371181

ABSTRACT

Mutations in the BIN1 (Bridging Interactor 1) gene, encoding the membrane remodeling protein amphiphysin 2, cause centronuclear myopathy (CNM) associated with severe muscle weakness and myofiber disorganization and hypotrophy. There is no available therapy, and the validation of therapeutic proof of concept is impaired by the lack of a faithful and easy-to-handle mammalian model. Here, we generated and characterized the Bin1mck-/- mouse through Bin1 knockout in skeletal muscle. Bin1mck-/- mice were viable, unlike the constitutive Bin1 knockout, and displayed decreased muscle force and most histological hallmarks of CNM, including myofiber hypotrophy and intracellular disorganization. Notably, Bin1mck-/- myofibers presented strong defects in mitochondria and T-tubule networks associated with deficient calcium homeostasis and excitation-contraction coupling at the triads, potentially representing the main pathomechanisms. Systemic injection of antisense oligonucleotides (ASOs) targeting Dnm2 (Dynamin 2), which codes for dynamin 2, a BIN1 binding partner regulating membrane fission and mutated in other forms of CNM, improved muscle force and normalized the histological Bin1mck-/- phenotypes within 5 weeks. Overall, we generated a faithful mammalian model for CNM linked to BIN1 defects and validated Dnm2 ASOs as a first translatable approach to efficiently treat BIN1-CNM.


Subject(s)
Dynamin II , Myopathies, Structural, Congenital , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Down-Regulation , Dynamin II/genetics , Mammals , Mice , Muscle, Skeletal/metabolism , Mutation , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/therapy , Nerve Tissue Proteins/genetics , Phenotype , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
10.
Hum Mutat ; 43(12): 1745-1756, 2022 12.
Article in English | MEDLINE | ID: mdl-36116040

ABSTRACT

ACTN2 encodes alpha-actinin-2, a protein expressed in human cardiac and skeletal muscle. The protein, located in the sarcomere Z-disk, functions as a link between the anti-parallel actin filaments. This important structural protein also binds N-terminal titins, and thus contributes to sarcomere stability. Previously, ACTN2 mutations have been solely associated with cardiomyopathy, without skeletal muscle disease. Recently, however, ACTN2 mutations have been associated with novel congenital and distal myopathy. Previously reported variants are in varying locations across the gene, but the potential clustering effect of pathogenic locations is not clearly understood. Further, the genotype-phenotype correlations of these variants remain unclear. Here we review the previously reported ACTN2-related molecular and clinical findings and present an additional variant, c.1840-2A>T, that further expands the mutation and phenotypic spectrum. Our results show a growing body of clinical, genetic, and functional evidence, which underlines the central role of ACTN2 in the muscle tissue and myopathy. However, limited segregation and functional data are available to support the pathogenicity of most previously reported missense variants and clear-cut genotype-phenotype correlations are currently only demonstrated for some ACTN2-related myopathies.


Subject(s)
Actinin , Heart , Humans , Actinin/genetics , Actinin/chemistry , Mutation , Muscle, Skeletal/metabolism , Mutation, Missense
11.
Nature ; 529(7586): 408-12, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26760201

ABSTRACT

Phosphoinositides are a minor class of short-lived membrane phospholipids that serve crucial functions in cell physiology ranging from cell signalling and motility to their role as signposts of compartmental membrane identity. Phosphoinositide 4-phosphates such as phosphatidylinositol 4-phosphate (PI(4)P) and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) are concentrated at the plasma membrane, on secretory organelles, and on lysosomes, whereas phosphoinositide 3-phosphates, most notably phosphatidylinositol 3-phosphate (PI(3)P), are a hallmark of the endosomal system. Directional membrane traffic between endosomal and secretory compartments, although inherently complex, therefore requires regulated phosphoinositide conversion. The molecular mechanism underlying this conversion of phosphoinositide identity during cargo exit from endosomes by exocytosis is unknown. Here we report that surface delivery of endosomal cargo requires hydrolysis of PI(3)P by the phosphatidylinositol 3-phosphatase MTM1, an enzyme whose loss of function leads to X-linked centronuclear myopathy (also called myotubular myopathy) in humans. Removal of endosomal PI(3)P by MTM1 is accompanied by phosphatidylinositol 4-kinase-2α (PI4K2α)-dependent generation of PI(4)P and recruitment of the exocyst tethering complex to enable membrane fusion. Our data establish a mechanism for phosphoinositide conversion from PI(3)P to PI(4)P at endosomes en route to the plasma membrane and suggest that defective phosphoinositide conversion at endosomes underlies X-linked centronuclear myopathy caused by mutation of MTM1 in humans.


Subject(s)
Endosomes/metabolism , Exocytosis , Phosphatidylinositol Phosphates/metabolism , Phosphatidylinositols/metabolism , 1-Phosphatidylinositol 4-Kinase/metabolism , Biological Transport , Cell Line , Cell Membrane/metabolism , HeLa Cells , Humans , Hydrolysis , Membrane Fusion , Myopathies, Structural, Congenital/enzymology , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/pathology , Phosphoric Monoester Hydrolases/deficiency , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/deficiency , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Protein Tyrosine Phosphatases, Non-Receptor/metabolism
12.
Mol Ther ; 29(8): 2514-2534, 2021 08 04.
Article in English | MEDLINE | ID: mdl-33940157

ABSTRACT

Omics analyses are powerful methods to obtain an integrated view of complex biological processes, disease progression, or therapy efficiency. However, few studies have compared different disease forms and different therapy strategies to define the common molecular signatures representing the most significant implicated pathways. In this study, we used RNA sequencing and mass spectrometry to profile the transcriptomes and proteomes of mouse models for three forms of centronuclear myopathies (CNMs), untreated or treated with either a drug (tamoxifen), antisense oligonucleotides reducing the level of dynamin 2 (DNM2), or following modulation of DNM2 or amphiphysin 2 (BIN1) through genetic crosses. Unsupervised analysis and differential gene and protein expression were performed to retrieve CNM molecular signatures. Longitudinal studies before, at, and after disease onset highlighted potential disease causes and consequences. Main pathways in the common CNM disease signature include muscle contraction, regeneration and inflammation. The common therapy signature revealed novel potential therapeutic targets, including the calcium regulator sarcolipin. We identified several novel biomarkers validated in muscle and/or plasma through RNA quantification, western blotting, and enzyme-linked immunosorbent assay (ELISA) assays, including ANXA2 and IGFBP2. This study validates the concept of using multi-omics approaches to identify molecular signatures common to different disease forms and therapeutic strategies.


Subject(s)
Gene Expression Profiling/methods , Myopathies, Structural, Congenital/drug therapy , Oligonucleotides, Antisense/therapeutic use , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Proteomics/methods , Tamoxifen/therapeutic use , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Animals , Disease Models, Animal , Dynamin II/antagonists & inhibitors , Humans , Longitudinal Studies , Mass Spectrometry , Mice , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/metabolism , Nerve Tissue Proteins/antagonists & inhibitors , Sequence Analysis, RNA , Tumor Suppressor Proteins/antagonists & inhibitors
13.
Int J Mol Sci ; 23(13)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35805973

ABSTRACT

Tubular aggregate myopathy (TAM) and Stormorken syndrome (STRMK) form a clinical continuum associating progressive muscle weakness with additional multi-systemic anomalies of the bones, skin, spleen, and platelets. TAM/STRMK arises from excessive extracellular Ca2+ entry due to gain-of-function mutations in the Ca2+ sensor STIM1 or the Ca2+ channel ORAI1. Currently, no treatment is available. Here we assessed the therapeutic potential of ORAI1 downregulation to anticipate and reverse disease development in a faithful mouse model carrying the most common TAM/STRMK mutation and recapitulating the main signs of the human disorder. To this aim, we crossed Stim1R304W/+ mice with Orai1+/- mice expressing 50% of ORAI1. Systematic phenotyping of the offspring revealed that the Stim1R304W/+Orai1+/- mice were born with a normalized ratio and showed improved postnatal growth, bone architecture, and partly ameliorated muscle function and structure compared with their Stim1R304W/+ littermates. We also produced AAV particles containing Orai1-specific shRNAs, and intramuscular injections of Stim1R304W/+ mice improved the skeletal muscle contraction and relaxation properties, while muscle histology remained unchanged. Altogether, we provide the proof-of-concept that Orai1 silencing partially prevents the development of the multi-systemic TAM/STRMK phenotype in mice, and we also established an approach to target Orai1 expression in postnatal tissues.


Subject(s)
Blood Platelet Disorders , Dyslexia , Ichthyosis , Myopathies, Structural, Congenital , ORAI1 Protein , Animals , Blood Platelet Disorders/genetics , Blood Platelet Disorders/metabolism , Calcium/metabolism , Dyslexia/genetics , Dyslexia/metabolism , Erythrocytes, Abnormal , Ichthyosis/genetics , Ichthyosis/metabolism , Mice , Migraine Disorders/genetics , Migraine Disorders/metabolism , Miosis , Muscle Fatigue , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/metabolism , Myopathies, Structural, Congenital/pathology , ORAI1 Protein/genetics , ORAI1 Protein/metabolism , Phenotype , Spleen/abnormalities , Spleen/metabolism , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism
14.
Neurogenetics ; 22(1): 33-41, 2021 03.
Article in English | MEDLINE | ID: mdl-33405017

ABSTRACT

The nuclear envelope (NE) separates the nucleus from the cytoplasm in all eukaryotic cells. A disruption of the NE structure compromises normal gene regulation and leads to severe human disorders collectively classified as nuclear envelopathies and affecting skeletal muscle, heart, brain, skin, and bones. The ubiquitous NE component LAP1B is encoded by TOR1AIP1, and the use of an alternative start codon gives rise to the shorter LAP1C isoform. TOR1AIP1 mutations have been identified in patients with diverging clinical presentations such as muscular dystrophy, progressive dystonia with cerebellar atrophy, and a severe multi-systemic disorder, but the correlation between the mutational effect and the clinical spectrum remains to be determined. Here, we describe a novel TOR1AIP1 patient manifesting childhood-onset muscle weakness and contractures, and we provide clinical, histological, ultrastructural, and genetic data. We demonstrate that the identified TOR1AIP1 frameshift mutation leads to the selective loss of the LAP1B isoform, while the expression of LAP1C was preserved. Through comparative review of all previously reported TOR1AIP1 cases, we delineate a genotype/phenotype correlation and conclude that LAP1B-specific mutations cause a progressive skeletal muscle phenotype, while mutations involving a loss of both LAP1B and LAP1C isoforms induce a syndromic disorder affecting skeletal muscle, brain, eyes, ear, skin, and bones.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/genetics , Mutation/genetics , Nuclear Envelope/genetics , Protein Isoforms/genetics , Child , Female , Frameshift Mutation/genetics , Humans , Male , Muscles/metabolism , Muscles/pathology , Nuclear Envelope/metabolism , Nuclear Envelope/ultrastructure , Nuclear Proteins/genetics , Phenotype
15.
Hum Mol Genet ; 28(24): 4067-4077, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31628461

ABSTRACT

Dynamin 2 (DNM2) is a ubiquitously expressed GTPase implicated in many cellular functions such as membrane trafficking and cytoskeleton regulation. Dominant mutations in DNM2 result in tissue-specific diseases affecting peripheral nerves (Charcot-Marie-Tooth neuropathy, CMT) or skeletal muscles (centronuclear myopathy, CNM). However, the reason for this tissue specificity is unknown, and it remains unclear if these diseases share a common pathomechanism. To compare the disease pathophysiological mechanisms in skeletal muscle, we exogenously expressed wild-type DNM2 (WT-DNM2), the DNM2-CMT mutation K562E or DNM2-CNM mutations R465W and S619L causing adult and neonatal forms, respectively, by intramuscular adeno-associated virus (AAV) injections. All muscles expressing exogenous WT-DNM2 and CNM or CMT mutations exhibited reduced muscle force. However, only expression of CNM mutations and WT-DNM2 correlated with CNM-like histopathological hallmarks of nuclei centralization and reduced fiber size. The extent of alterations correlated with clinical severity in patients. Ultrastructural and immunofluorescence analyses highlighted defects of the triads, mitochondria and costameres as major causes of the CNM phenotype. Despite the reduction in force upon expression of the DNM2-CMT mutation, muscle histology and ultrastructure were almost normal. However, the neuromuscular junction was affected in all DNM2-injected muscles, with the DNM2-CMT mutation inducing the most severe alterations, potentially explaining the reduction in force observed with this mutant. In conclusion, expression of WT and CNM mutants recreate a CNM-like phenotype, suggesting CNM mutations are gain-of-function. Histological, ultrastructural and molecular analyses pointed to key pathways uncovering the different pathomechanisms involved in centronuclear myopathy or Charcot-Marie-Tooth neuropathy linked to DNM2 mutations.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Dynamin II/genetics , Myopathies, Structural, Congenital/genetics , Animals , Charcot-Marie-Tooth Disease/metabolism , Dynamin II/metabolism , Fluorescent Antibody Technique , HEK293 Cells , Humans , Male , Mice , Mice, 129 Strain , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Mutation , Myopathies, Structural, Congenital/metabolism , Neuromuscular Junction/genetics , Neuromuscular Junction/metabolism , Neuromuscular Junction/physiopathology , Peripheral Nerves/metabolism , Peripheral Nerves/physiopathology , Phenotype
16.
Hum Mol Genet ; 28(10): 1579-1593, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30576443

ABSTRACT

Strict regulation of Ca2+ homeostasis is essential for normal cellular physiology. Store-operated Ca2+ entry (SOCE) is a major mechanism controlling basal Ca2+ levels and intracellular Ca2+ store refilling, and abnormal SOCE severely impacts on human health. Overactive SOCE results in excessive extracellular Ca2+ entry due to dominant STIM1 or ORAI1 mutations and has been associated with tubular aggregate myopathy (TAM) and Stormorken syndrome (STRMK). Both disorders are spectra of the same disease and involve muscle weakness, myalgia and cramps, and additional multi-systemic signs including miosis, bleeding diathesis, hyposplenism, dyslexia, short stature and ichthyosis. To elucidate the physiological consequences of STIM1 over-activation, we generated a murine model harboring the most common TAM/STRMK mutation and characterized the phenotype at the histological, ultrastructural, metabolic, physiological and functional level. In accordance with the clinical picture of TAM/STRMK, the Stim1R304W/+ mice manifested muscle weakness, thrombocytopenia, skin and eye anomalies and spleen dysfunction, as well as additional features not yet observed in patients such as abnormal bone architecture and immune system dysregulation. The murine muscles exhibited contraction and relaxation defects as well as dystrophic features, and functional investigations unraveled increased Ca2+ influx in myotubes. In conclusion, we provide insight into the pathophysiological effect of the STIM1 R304W mutation in different cells, tissues and organs and thereby significantly contribute to a deeper understanding of the pathomechanisms underlying TAM/STRMK and other human disorders involving aberrant Ca2+ homeostasis and affecting muscle, bones, platelets or the immune system.


Subject(s)
Blood Platelet Disorders/genetics , Dyslexia/genetics , Ichthyosis/genetics , Migraine Disorders/genetics , Miosis/genetics , Myopathies, Structural, Congenital/genetics , Neoplasm Proteins/genetics , Spleen/abnormalities , Stromal Interaction Molecule 1/genetics , Animals , Blood Platelet Disorders/physiopathology , Bone and Bones/metabolism , Bone and Bones/pathology , Calcium Signaling/genetics , Disease Models, Animal , Dyslexia/physiopathology , Erythrocytes, Abnormal , Eye/metabolism , Eye/pathology , Gene Knock-In Techniques , Humans , Ichthyosis/pathology , Ichthyosis/physiopathology , Immune System/pathology , Intracellular Calcium-Sensing Proteins/genetics , Membrane Proteins/genetics , Mice , Migraine Disorders/physiopathology , Miosis/physiopathology , Muscle Fatigue/genetics , Muscle Weakness/genetics , Muscle Weakness/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mutation/genetics , Myopathies, Structural, Congenital/physiopathology , ORAI1 Protein/genetics , Skin/metabolism , Skin/pathology , Spleen/physiopathology
17.
Ann Neurol ; 88(2): 274-282, 2020 08.
Article in English | MEDLINE | ID: mdl-32386344

ABSTRACT

OBJECTIVE: Glycogen storage diseases (GSDs) are severe human disorders resulting from abnormal glucose metabolism, and all previously described GSDs segregate as autosomal recessive or X-linked traits. In this study, we aimed to molecularly characterize the first family with a dominant GSD. METHODS: We describe a dominant GSD family with 13 affected members presenting with adult-onset muscle weakness, and we provide clinical, metabolic, histological, and ultrastructural data. We performed exome sequencing to uncover the causative gene, and functional experiments in the cell model and on recombinant proteins to investigate the pathogenic effect of the identified mutation. RESULTS: We identified a heterozygous missense mutation in PYGM segregating with the disease in the family. PYGM codes for myophosphorylase, the enzyme catalyzing the initial step of glycogen breakdown. Enzymatic tests revealed that the PYGM mutation impairs the AMP-independent myophosphorylase activity, whereas the AMP-dependent activity was preserved. Further functional investigations demonstrated an altered conformation and aggregation of mutant myophosphorylase, and the concurrent accumulation of the intermediate filament desmin in the myofibers of the patients. INTERPRETATION: Overall, this study describes the first example of a dominant glycogen storage disease in humans, and elucidates the underlying pathomechanisms by deciphering the sequence of events from the PYGM mutation to the accumulation of glycogen in the muscle fibers. ANN NEUROL 2020;88:274-282.


Subject(s)
Glycogen Phosphorylase, Muscle Form/genetics , Glycogen Storage Disease/diagnosis , Glycogen Storage Disease/genetics , Mutation/genetics , Adult , Female , Humans , Male , Middle Aged , Pedigree
18.
Ann Neurol ; 87(2): 217-232, 2020 02.
Article in English | MEDLINE | ID: mdl-31794073

ABSTRACT

OBJECTIVE: Recently, the ASC-1 complex has been identified as a mechanistic link between amyotrophic lateral sclerosis and spinal muscular atrophy (SMA), and 3 mutations of the ASC-1 gene TRIP4 have been associated with SMA or congenital myopathy. Our goal was to define ASC-1 neuromuscular function and the phenotypical spectrum associated with TRIP4 mutations. METHODS: Clinical, molecular, histological, and magnetic resonance imaging studies were made in 5 families with 7 novel TRIP4 mutations. Fluorescence activated cell sorting and Western blot were performed in patient-derived fibroblasts and muscles and in Trip4 knocked-down C2C12 cells. RESULTS: All mutations caused ASC-1 protein depletion. The clinical phenotype was purely myopathic, ranging from lethal neonatal to mild ambulatory adult patients. It included early onset axial and proximal weakness, scoliosis, rigid spine, dysmorphic facies, cutaneous involvement, respiratory failure, and in the older cases, dilated cardiomyopathy. Muscle biopsies showed multiminicores, nemaline rods, cytoplasmic bodies, caps, central nuclei, rimmed fibers, and/or mild endomysial fibrosis. ASC-1 depletion in C2C12 and in patient-derived fibroblasts and muscles caused accelerated proliferation, altered expression of cell cycle proteins, and/or shortening of the G0/G1 cell cycle phase leading to cell size reduction. INTERPRETATION: Our results expand the phenotypical and molecular spectrum of TRIP4-associated disease to include mild adult forms with or without cardiomyopathy, associate ASC-1 depletion with isolated primary muscle involvement, and establish TRIP4 as a causative gene for several congenital muscle diseases, including nemaline, core, centronuclear, and cytoplasmic-body myopathies. They also identify ASC-1 as a novel cell cycle regulator with a key role in cell proliferation, and underline transcriptional coregulation defects as a novel pathophysiological mechanism. ANN NEUROL 2020;87:217-232.


Subject(s)
Amino Acid Transport System y+/physiology , Cell Cycle/physiology , Muscular Diseases/physiopathology , Transcription Factors/genetics , Adult , Amino Acid Transport System y+/metabolism , Cells, Cultured , Child , Child, Preschool , Female , Fibroblasts/physiology , Humans , Infant , Male , Middle Aged , Muscle Proteins/genetics , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Diseases/genetics , Mutation , Pedigree , Phenotype
19.
Ann Neurol ; 88(2): 332-347, 2020 08.
Article in English | MEDLINE | ID: mdl-32403198

ABSTRACT

OBJECTIVE: A hitherto undescribed phenotype of early onset muscular dystrophy associated with sensorineural hearing loss and primary ovarian insufficiency was initially identified in 2 siblings and in subsequent patients with a similar constellation of findings. The goal of this study was to understand the genetic and molecular etiology of this condition. METHODS: We applied whole exome sequencing (WES) superimposed on shared haplotype regions to identify the initial biallelic variants in GGPS1 followed by GGPS1 Sanger sequencing or WES in 5 additional families with the same phenotype. Molecular modeling, biochemical analysis, laser membrane injury assay, and the generation of a Y259C knock-in mouse were done. RESULTS: A total of 11 patients in 6 families carrying 5 different biallelic pathogenic variants in specific domains of GGPS1 were identified. GGPS1 encodes geranylgeranyl diphosphate synthase in the mevalonate/isoprenoid pathway, which catalyzes the synthesis of geranylgeranyl pyrophosphate, the lipid precursor of geranylgeranylated proteins including small guanosine triphosphatases. In addition to proximal weakness, all but one patient presented with congenital sensorineural hearing loss, and all postpubertal females had primary ovarian insufficiency. Muscle histology was dystrophic, with ultrastructural evidence of autophagic material and large mitochondria in the most severe cases. There was delayed membrane healing after laser injury in patient-derived myogenic cells, and a knock-in mouse of one of the mutations (Y259C) resulted in prenatal lethality. INTERPRETATION: The identification of specific GGPS1 mutations defines the cause of a unique form of muscular dystrophy with hearing loss and ovarian insufficiency and points to a novel pathway for this clinical constellation. ANN NEUROL 2020;88:332-347.


Subject(s)
Dimethylallyltranstransferase/genetics , Farnesyltranstransferase/genetics , Geranyltranstransferase/genetics , Hearing Loss/genetics , Muscular Dystrophies/genetics , Mutation/genetics , Primary Ovarian Insufficiency/genetics , Adolescent , Adult , Animals , Female , Gene Knock-In Techniques/methods , Hearing Loss/diagnostic imaging , Humans , Male , Mice , Mice, Transgenic , Middle Aged , Muscular Dystrophies/diagnostic imaging , Pedigree , Primary Ovarian Insufficiency/diagnostic imaging , Protein Structure, Secondary , Sequence Analysis, DNA/methods , Exome Sequencing/methods , Young Adult
20.
Proc Natl Acad Sci U S A ; 115(43): 11066-11071, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30291191

ABSTRACT

Centronuclear myopathies (CNM) are a group of severe muscle diseases for which no effective therapy is currently available. We have previously shown that reduction of the large GTPase DNM2 in a mouse model of the X-linked form, due to loss of myotubularin phosphatase MTM1, prevents the development of the skeletal muscle pathophysiology. As DNM2 is mutated in autosomal dominant forms, here we tested whether DNM2 reduction can rescue DNM2-related CNM in a knock-in mouse harboring the p.R465W mutation (Dnm2RW/+) and displaying a mild CNM phenotype similar to patients with the same mutation. A single intramuscular injection of adeno-associated virus-shRNA targeting Dnm2 resulted in reduction in protein levels 5 wk post injection, with a corresponding improvement in muscle mass and fiber size distribution, as well as an improvement in histopathological CNM features. To establish a systemic treatment, weekly i.p. injections of antisense oligonucleotides targeting Dnm2 were administered to Dnm2RW/+mice for 5 wk. While muscle mass, histopathology, and muscle ultrastructure were perturbed in Dnm2RW/+mice compared with wild-type mice, these features were indistinguishable from wild-type mice after reducing DNM2. Therefore, DNM2 knockdown via two different strategies can efficiently correct the myopathy due to DNM2 mutations, and it provides a common therapeutic strategy for several forms of centronuclear myopathy. Furthermore, we provide an example of treating a dominant disease by targeting both alleles, suggesting that this strategy may be applied to other dominant diseases.


Subject(s)
Dynamin II/genetics , Myopathies, Structural, Congenital/genetics , Animals , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Mutation/genetics , Protein Tyrosine Phosphatases, Non-Receptor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL