Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Reproduction ; 153(2): 147-155, 2017 02.
Article in English | MEDLINE | ID: mdl-27815561

ABSTRACT

Chronic cold stress produces adrenergic overload that can affect fetal development. The placental norepinephrine transporter (NET) clears norepinephrine (NE) from both maternal circulation and the fetus during gestation. If this system fails, NE clearance can be reduced, leading to high fetal exposure to NE. The main aim of this study was to determine the changes in NET expression during gestation and their relationship with the functional capacity of NET to transport NE under stressful conditions. Additionally, this study correlated these findings with the reproductive capacity of 2nd-generation progeny. Pregnant rats were subjected to chronic cold stress at 4°C for 3 h each day throughout their pregnancies. We found that exposure of pregnant rats to sympathetic stress caused the following effects: increased NE and corticosterone levels throughout pregnancy, decreased capacity of the placenta to clear NE from the fetus to the mother's circulation, altered NET protein levels depending on the sex of the fetus and increased placental and body weights of pups. For the first time, we also described the disrupted fertility of progeny as adults. Increased NE plasma levels during pregnancy under sympathetic stress conditions correlated with decreased NET functionality that provoked changes in the development of progeny and their fertility in adulthood.


Subject(s)
Fertility/physiology , Norepinephrine Plasma Membrane Transport Proteins/physiology , Placenta/chemistry , Pregnancy Complications/physiopathology , Prenatal Exposure Delayed Effects/physiopathology , Stress, Physiological/physiology , Animals , Cold Temperature , Corticosterone/blood , Female , Male , Maternal-Fetal Exchange , Norepinephrine/blood , Norepinephrine/metabolism , Pregnancy , Rats , Rats, Sprague-Dawley , Sex Factors
2.
Reproduction ; 148(2): 137-45, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24811779

ABSTRACT

Chronic cold stress applied to adult rats activates ovarian sympathetic innervation and develops polycystic ovary (PCO) phenotype. The PCO syndrome in humans originates during early development and is expressed before or during puberty, which suggests that the condition derived from in utero exposure to neural- or metabolic-derived insults. We studied the effects of maternal sympathetic stress on the ovarian follicular development and on the onset of puberty of female offspring. Timed pregnant rats were exposed to chronic cold stress (4 °C, 3 h/daily from 1000 to 1300 h) during the entire pregnancy. Neonatal rats exposed to sympathetic stress during gestation had a lower number of primary, primordial, and secondary follicles in the ovary and a lower recruitment of primary and secondary follicles derived from the primordial follicular pool. The expression of the FSH receptor and response of the neonatal ovary to FSH were reduced. A decrease in nerve growth factor (NGF) mRNA was found without change in the low-affinity NGF receptor. The FSH-induced development of secondary follicles was decreased. At puberty, estradiol plasma levels decreased without changes in LH plasma levels. Puberty onset (as shown by the vaginal opening) was delayed. Ovarian norepinephrine (NE) was reduced; there was no change in its metabolite, 3-methoxy-4-hydroxyphenylglycol, in stressed rats and no change in NE turnover. The changes in ovarian NE in prepubertal rats stressed during gestation could represent a lower development of sympathetic nerves as a compensatory response to the chronically increased NE levels during gestation and hence participate in delaying reproductive performance in the rat.


Subject(s)
Maternal Behavior , Ovarian Follicle/pathology , Puberty , Sexual Maturation , Sympathetic Nervous System/pathology , Vagina/pathology , Animals , Cells, Cultured , Cyclic AMP/metabolism , Enzyme-Linked Immunosorbent Assay , Estradiol/blood , Estrous Cycle/metabolism , Female , Immunoenzyme Techniques , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Norepinephrine/metabolism , Ovarian Follicle/metabolism , Pregnancy , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Receptor, Nerve Growth Factor/genetics , Receptor, Nerve Growth Factor/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sympathetic Nervous System/metabolism , Vagina/metabolism
3.
Article in English | MEDLINE | ID: mdl-36901294

ABSTRACT

BACKGROUND: Sympathetic stress stimulates norepinephrine (NE) release from sympathetic nerves. During pregnancy, it modifies the fetal environment, increases NE to the fetus through the placental NE transporter, and affects adult physiological functions. Gestating rats were exposed to stress, and then the heart function and sensitivity to in vivo adrenergic stimulation were studied in male progeny. METHODS: Pregnant Sprague-Dawley rats were exposed to cold stress (4 °C/3 h/day); rats' male progeny were euthanized at 20 and 60 days old, and their hearts were used to determine the ß-adrenergic receptor (ßAR) (radioligand binding) and NE concentration. The in vivo arterial pressure response to isoproterenol (ISO, 1 mg/kg weight/day/10 days) was monitored in real time (microchip in the descending aorta). RESULTS: Stressed male progeny presented no differences in ventricular weight, the cardiac NE was lower, and high corticosterone plasma levels were recorded at 20 and 60 days old. The relative abundance of ß1 adrenergic receptors decreased by 36% and 45%, respectively (p < 0.01), determined by Western blot analysis without changes in ß2 adrenergic receptors. A decrease in the ratio between ß1/ß2 receptors was found. Displacement of 3H-dihydroalprenolol (DHA) from a membrane fraction with propranolol (ß antagonist), atenolol (ß1 antagonist), or zinterol (ß2 agonist) shows decreased affinity but no changes in the ß-adrenergic receptor number. In vivo exposure to ISO to induce a ß-adrenergic overload provoked death in 50% of stressed males by day 3 of ISO treatment. CONCLUSION: These data suggest permanent changes to the heart's adrenergic response after rat progeny were stressed in the uterus.


Subject(s)
Mothers , Placenta , Rats , Female , Male , Pregnancy , Animals , Humans , Rats, Sprague-Dawley , Placenta/metabolism , Norepinephrine , Receptors, Adrenergic, beta/metabolism , Adrenergic Agents
4.
Article in English | MEDLINE | ID: mdl-35270735

ABSTRACT

The exposure to sympathetic stress during the entire period of gestation (4 °C/3 h/day) strongly affects the postnatal reproductive performance of the first generation of female offspring and their fertility capacity. The aim of this work was to determine whether this exposure to sympathetic stress affects the reproductive capacity of the next three generations of female offspring as adults. Adult female Sprague-Dawley rats were mated with males of proven fertility. We studied the reproductive capacity of the second, third, and fourth generations of female offspring (the percentage of pregnancy and the number and weight of female offspring). The estrus cycle activity of the progenies was studied, and a morphological analysis of the ovaries was carried out to study the follicular population. The second generation had a lower number of pups per litter and a 20% decrease in fertile capacity. The estrus cycle activity of the third generation decreased even more, and they had a 50% decrease in their fertile capacity, and their ovaries presented polycystic morphology. The fourth generation however, recovered their reproductive capacity but not the amount of newborns pups. Most probably, the chronic intrauterine exposure to the sympathetic stress programs the female gonads to be stressed in a stressful environment; since the fourth generation was the first born with no direct exposure to stress during development, it opens studies on intrauterine factors affecting early follicular development.


Subject(s)
Fertility , Prenatal Exposure Delayed Effects , Animals , Estrus , Female , Male , Ovary , Pregnancy , Rats , Rats, Sprague-Dawley , Reproduction
5.
Physiol Rep ; 10(21): e15474, 2022 11.
Article in English | MEDLINE | ID: mdl-36325585

ABSTRACT

Acetylcholine (ACh) may be involved in the regulation of ovarian functions. A previous systemic study in rats showed that a 4-week, intrabursal local delivery of the ACh-esterase blocker Huperzine-A increased intraovarian ACh levels and changed ovarian follicular development, as evidenced by increased healthy antral follicle numbers and corpora lutea, as well as enhanced fertility. To further characterize the ovarian cholinergic system in the rat, we studied whether innervation may contribute to intraovarian ACh. We explored the cellular distribution of three muscarinic receptors (MRs; M1, M3, and M5), analyzed the involvement of MRs in ovarian steroidogenesis, and examined their roles in ovarian follicular development in normal conditions and in animals exposed to stressful conditions by employing the muscarinic antagonist, atropine. Denervation studies decreased ovarian norepinephrine, but ovarian ACh was not affected, evidencing a local, nonneuronal source of ACh. M1 was located on granulosa cells (GCs), especially in large antral follicles. M5 was associated with the ovarian vascular system and only traces of M3 were found. Ex vivo ovary organo-typic incubations showed that the MR agonist Carbachol did not modify steroid production or expression of steroid biosynthetic enzymes. Intrabursal, in vivo application of atropine (an MR antagonist) for 4 weeks, however, increased atresia of the secondary follicles. The results support the existence of an intraovarian cholinergic system in the rat ovary, located mainly in follicular GCs, which is not involved in steroid production but rather via MRs exerts trophic functions and regulates follicular atresia.


Subject(s)
Follicular Atresia , Ovary , Animals , Female , Rats , Ovary/metabolism , Receptors, Muscarinic/metabolism , Acetylcholine/physiology , Atropine/pharmacology , Muscarinic Antagonists/pharmacology , Steroids/metabolism
6.
Reprod Biol Endocrinol ; 9: 66, 2011 May 16.
Article in English | MEDLINE | ID: mdl-21575217

ABSTRACT

Cystic ovarian disease (COD) is an important cause of abnormal estrous behavior and infertility in dairy cows. COD is mainly observed in high-yielding dairy cows during the first months post-partum, a period of high stress. We have previously reported that, in lower mammals, stress induces a cystic condition similar to the polycystic ovary syndrome in humans and that stress is a definitive component in the human pathology. To know if COD in cows is also associated with high sympathetic activity, we studied isolated small antral (5 mm), preovulatory (10 mm) and cystic follicles (25 mm). Cystic follicles which present an area 600 fold greater compared with preovulatory follicles has only 10 times less concentration of NE as compared with small antral and preovulatory follicles but they had 10 times more NE in follicular fluid, suggesting a high efflux of neurotransmitter from the cyst wall. This suggestion was reinforced by the high basal release of recently taken-up 3H-NE found in cystic follicles. While lower levels of beta-adrenergic receptor were found in cystic follicles, there was a heightened response to the beta-adrenergic agonist isoproterenol and to hCG, as measured by testosterone secretion. There was however an unexpected capacity of the ovary in vitro to produce cortisol and to secrete it in response to hCG but not to isoproterenol. These data suggest that, during COD, the bovine ovary is under high sympathetic nerve activity that in addition to an increased response to hCG in cortisol secretion could participate in COD development.


Subject(s)
Adrenergic beta-Agonists/pharmacology , Cattle Diseases/pathology , Gonadal Steroid Hormones/metabolism , Ovarian Cysts/pathology , Ovarian Follicle/drug effects , Sympathetic Nervous System/physiology , Adrenergic beta-Agonists/administration & dosage , Animals , Cattle , Cattle Diseases/blood , Cattle Diseases/metabolism , Cattle Diseases/physiopathology , Cell Separation , Estradiol/blood , Female , Follicular Phase/genetics , Follicular Phase/physiology , Humans , Norepinephrine/blood , Norepinephrine/metabolism , Ovarian Cysts/blood , Ovarian Cysts/metabolism , Ovarian Cysts/physiopathology , Ovarian Follicle/innervation , Ovarian Follicle/pathology , Ovarian Follicle/physiology , Ovary/drug effects , Ovary/innervation , Ovary/metabolism , Ovary/pathology , Progesterone/blood , Sympathetic Nervous System/drug effects
7.
J Neuroendocrinol ; 33(1): e12914, 2021 01.
Article in English | MEDLINE | ID: mdl-33252842

ABSTRACT

Chronic cold stress affects ovarian morphology and impairs fertility in rats. It causes an ovarian polycystic ovary (PCOS)-like phenotype, which resembles PCOS in women. The mechanism of cold stress action involves increased ovarian noradrenaline (NA) levels, which remain elevated after cessation of cold stress. By contrast, ovarian acetylcholine (ACh) levels are only transiently elevated and returned to control levels after a 28-day post stress period. Because ACh can exert trophic actions in the ovary, we hypothesised that a sustained elevation of ovarian ACh levels by intraovarian exposure to the ACh-esterase blocker huperzine-A (Hup-A) may interfere with cold stress-induced ovarian changes. This possibility was examined in female Sprague-Dawley rats exposed to cold stress (4°C for 3 h day-1 for 28 days), followed by a 28-day period without stress. To elevate ACh, in a second group Hup-A was delivered into the ovary of cold stress-exposed rats. A third group was not exposed to cold stress. As expected, cold stress elevated ovarian NA, reduced the number of corpora lutea and increased the number of follicular cysts. It increased plasma testosterone and oestradiol but decreased plasma levels of progesterone. In the Hup-A group, ovarian levels of both, NA and ACh, were elevated, there were fewer cysts and normal testosterone and oestradiol plasma levels were found. However, progesterone levels remained low. Most likely, low progesterone was associated with impaired mating behaviour and low pregnancy rate. We propose that elevated intraovarian levels of ACh are involved in the rescue of ovarian function, opening a target to control ovarian diseases affecting follicular development.


Subject(s)
Alkaloids/pharmacology , Cholinesterase Inhibitors/pharmacology , Norepinephrine/metabolism , Ovary/drug effects , Sesquiterpenes/pharmacology , Stress, Physiological/physiology , Sympathetic Nervous System/physiopathology , Acetylcholine/metabolism , Animals , Cold Temperature , Disease Models, Animal , Estradiol/blood , Female , Ovary/metabolism , Ovary/physiopathology , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/physiopathology , Progesterone/blood , Rats , Rats, Sprague-Dawley , Sympathetic Nervous System/metabolism , Testosterone/blood
8.
Front Endocrinol (Lausanne) ; 12: 636600, 2021.
Article in English | MEDLINE | ID: mdl-33716987

ABSTRACT

The functioning of the ovary is influenced by the autonomic system (sympathetic and cholinergic intraovarian system) which contributes to the regulation of steroid secretion, follicular development, and ovulation. There is no information on the primary signal that activates both systems. The nerve growth factor (NGF) was the first neurotrophic factor found to regulate ovarian noradrenergic neurons and the cholinergic neurons in the central nervous system. The aim of this study was to determine whether NGF is one of the participating neurotrophic factors in the activation of the sympathetic and cholinergic system of the ovary in vivo and its role in follicular development during normal or pathological states. The administration of estradiol valerate (a polycystic ovary [PCO] phenotype model) increased norepinephrine (NE) (through an NGF-dependent mechanism) and acetylcholine (ACh) levels. Intraovarian exposure of rats for 28 days to NGF (by means of an osmotic minipump) increased the expression of tyrosine hydroxylase and acetylcholinesterase (AChE, the enzyme that degrades ACh) without affecting enzyme activity but reduced ovarian ACh levels. In vitro exposure of the ovary to NGF (100 ng/ml for 3 h) increased both choline acetyl transferase and vesicular ACh transporter expression in the ovary, with no effect in ACh level. In vivo NGF led to an anovulatory condition with the appearance of follicular cysts and decreased number of corpora lutea (corresponding to noradrenergic activation). To determine whether the predominance of a NE-induced polycystic condition after NGF is responsible for the PCO phenotype, rats were exposed to an intraovarian administration of carbachol (100 µM), a muscarinic cholinergic agonist not degraded by AChE. Decreased the number of follicular cysts and increased the number of corpora lutea, reinforcing that cholinergic activity of the ovary participates in controlling its functions. Although NGF increased the biosynthetic capacity for ACh, it was not available to act in the ovary. Hence, NGF also regulates the ovarian cholinergic system, implying that NGF is the main regulator of the dual autonomic control. These findings highlight the need for research in the treatment of PCO syndrome by modification of locally produced ACh as an in vivo regulator of follicular development.


Subject(s)
Nerve Growth Factor/metabolism , Ovary/metabolism , Receptors, Adrenergic/metabolism , Receptors, Cholinergic/metabolism , Acetylcholine/metabolism , Acetylcholinesterase/metabolism , Animals , Autonomic Nervous System , Carbachol/metabolism , Choline O-Acetyltransferase/metabolism , Estradiol/blood , Estradiol/pharmacology , Estrus , Female , Norepinephrine/metabolism , Osmosis , Ovulation/metabolism , Phenotype , Polycystic Ovary Syndrome/drug therapy , Protein Isoforms , Rats , Rats, Sprague-Dawley , Steroids/metabolism , Sympathetic Nervous System
9.
Reprod Biol Endocrinol ; 7: 64, 2009 Jun 16.
Article in English | MEDLINE | ID: mdl-19531218

ABSTRACT

BACKGROUND: Depletion of ovarian follicles is associated with the end of reproductive function in ageing females. Recently, it has been described that this process parallels increases in the concentration of norepinephrine (NE) in the rat ovary. In sexually mature rats, experimentally-induced increases in the sympathetic tone of the ovary is causally related to ovarian cyst formation and deranged follicular development. Thus, there is a possibility that increased ovarian NE concentrations represent changes in the activity of sympathetic nerves, which consequently participate in the process of ovarian cyst formation observed during ageing in the human and experimental animal models. METHODS: Sprague-Dawley rats between 6 and 14 months old were used to analyse the capacity of the ovary to release 3H-NE recently incorporated under transmural depolarisation in relation to changes in the ovarian follicular population. Morphometric analysis of ovarian follicles and real time PCR for Bcl2 and Bax mRNA were used to assess follicular atresia. RESULTS: From 8 months old, the induced release of recently incorporated 3H-norepinephrine (3H-NE) from the ovary and ovarian NE concentrations increased, reaching their peak values at 12 months old and remained elevated up to 14 months old. Increases in sympathetic nerve activity paralleled changes in the follicular population, as well as disappearance of the corpus luteum. In contrast, luteinised follicles, precystic follicles, and cystic follicles increased. During this period, the relationship between Bax and Bcl2 mRNAs (the proapoptotic/antiapoptotic signals) increased, suggesting atresia as the principal mechanism contributing to the decreased follicular population. When NE tone was increased, the mRNA ratio favoured Bcl2 to Bax and antiapoptotic signals dominated this period of development. Thus, these changing ratios could be responsible for the increase in luteinised follicles, as well as precystic and cystic follicles. CONCLUSION: These data suggest that the ageing process in the ovary of the Sprague-Dawley rat is accompanied by an increased sympathetic tone of the ovary. Consequently, this sympathetic change could be related to a neuroendocrine-driven formation of a polycystic condition similar to that observed in the sympathetic-activated adult ovary.


Subject(s)
Aging/physiology , Norepinephrine/metabolism , Ovarian Cysts/etiology , Ovary/metabolism , Animals , Catecholamines/metabolism , Female , Ovarian Follicle/physiology , Ovary/innervation , Rats , Rats, Sprague-Dawley , Sympathetic Nervous System/physiology , bcl-2-Associated X Protein/metabolism , bcl-Associated Death Protein/metabolism
10.
J Endocrinol ; 242(2): 115-124, 2019 08.
Article in English | MEDLINE | ID: mdl-31176305

ABSTRACT

An increase in the sympathetic tone in the rat ovary induces a polycystic ovary (PCOS-like) phenotype. No information exists about its impact on fertility. In contrast, increased follicular development and improved fertility in rats were found after pharmacological inhibition of acetylcholinesterase, which increased intraovarian acetylcholine (ACh). Now, we studied the impact of sympathetic stress, followed by a recovery period without stress, on the cholinergic and noradrenergic systems of the rat ovary and on fertility. To activate ovarian sympathetic nerves, female Sprague-Dawley rats were exposed to cold stress (4°C/3 h day for 28 days; first period), followed by a 28-day period without cold stress (second period). No changes in estrous cyclicity during the first period was found. At the end of this period, ovarian levels of NA and ACh were increased. Morphometric analysis showed lower numbers of secondary and antral follicles, enhanced follicular atresia and fewer corpora lutea. Plasma progesterone was lower and testosterone was higher than that in controls. At end of the second period, ovarian ACh levels had returned to control levels, but NA levels remained elevated. The second period was also characterized by the presence of cystic follicles in the ovary, by elevated plasma testosterone and estradiol levels, while progesterone levels were decreased. Estrous cyclicity and ovulation during that period were irregular and fertility decreased. Thus, cold stress initially activated both ovarian noradrenergic and cholinergic system. After stress, the ovary did not fully recover and activation of the noradrenergic system persisted and correlated with cystic ovarian morphology and decreased fertility.


Subject(s)
Acetylcholine/metabolism , Cold-Shock Response/physiology , Ovary/innervation , Ovary/metabolism , Sympathetic Nervous System/physiology , Animals , Estrous Cycle/physiology , Female , Fertility/physiology , Humans , Norepinephrine/metabolism , Rats, Sprague-Dawley
11.
Front Physiol ; 10: 349, 2019.
Article in English | MEDLINE | ID: mdl-31024331

ABSTRACT

Sympathetic innervation of the ovary in rodents occurs via two routes: the superior ovarian nerve (SON), which runs along the ovarian ligament, and the plexus nerve (PN), which is mainly associated with the vasculature. SON and ovarian norepinephrine (NE) levels play a major role in regulating ovarian cystic health. Although it was previously described that the polycystic ovarian phenotype (PCO) is causally related to hyperstimulation of the sympathetic nerves of the ovary, much less is known, however, regarding the role of PN in ovarian physiology. We studied the role of SON and PN in relation to the maintenance of the PCO phenotype induced in the rat by exposure to estradiol valerate (EV). EV exposure at 24 days old (juvenile exposure) increases NE in the ovary for up to 90 days after EV injection. SON or PN denervation (SONX and PNX) decreased NE. SONXreversed the acyclic condition from 30 days after surgery (p < 0.05), but PNXdid not. SONX was more effective than PNX to downregulate the increased number of cysts induced by EV, with the presence of the corpora lutea (CL, signifying ovulation) in the SONX group. Seventy percent of SONX rats presented with pregnancy at 60 days post-EV (6 of the 7 sperm-positive rats were pregnant); however, SONX rats had a reduced number (half) of pups compared with vehicle-treated rats and 60% more pups than EV rats. These data suggest that the SON plays a predominant role in follicular development, ovulation and pregnancy during ovarian diseases.

12.
Endocrinology ; 149(1): 50-6, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17947351

ABSTRACT

A substantial fraction of the noradrenergic innervation targeting the mammalian ovary is provided by neurons of the celiac ganglion. Although studies in the rat have shown that noradrenergic nerves reach the ovary near the time of birth, it is unknown how the functional capacity of this innervation unfolds during postnatal ovarian development. To address this issue, we assessed the ability of the developing ovary to incorporate and release (3)H-norepinephrine. Incorporation of (3)H-norepinephrine was low during the first 3 wk of postnatal life, but pharmacological inhibition of norepinephrine (NE) neuronal uptake with cocaine showed that an intact transport mechanism for NE into nerve terminals is already in place by the first week after birth. Consistent with this functional assessment, the mRNA encoding the NE transporter was also expressed in the celiac ganglion at this time. During neonatal-infantile development [postnatal (PN) d 5-20], the spontaneous, vesicle-independent outflow of recently taken up NE was high, but the NE output in response to K(+)-induced depolarization was low. After PN d 20, spontaneous outflow decreased and the response to K(+) increased markedly, reaching maximal values by the time of puberty. Tyramine-mediated displacement of NE stored in vesicles, which displace vesicular NE, showed that vesicle-dependent NE storage becomes functional by PN d 12 and that vesicular release increases during the juvenile-peripubertal phases of sexual development. These results indicate that vesicular release of NE from ovarian noradrenergic nerves begins to operate by the third week of postnatal life, becoming fully functional near the time of puberty.


Subject(s)
Adrenergic Fibers/physiology , Norepinephrine/metabolism , Ovary/growth & development , Ovary/innervation , Sympathetic Nervous System/growth & development , Adrenergic Fibers/metabolism , Animals , Animals, Newborn , Calcium/pharmacology , Female , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Ovary/physiology , Rats , Rats, Sprague-Dawley , Sexual Maturation/physiology , Transport Vesicles/metabolism , Tritium/metabolism
13.
Endocrinology ; 149(10): 4988-96, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18566131

ABSTRACT

Catecholamines present in the mammalian ovary are involved in many normal aspects of ovarian functions, including initial follicle growth, steroidogenesis, and pathological states such as polycystic ovary syndrome. Sympathetic nerve fibers are the largest source of norepinephrine (NE), but not the only one. Surgical denervation of the rat ovary reduces, but does not eliminate, the ovarian content of NE. The aim of this work was to explore which intraovarian cells may participate in the ovarian NE homeostasis and the mechanisms involved. It was found that denervated rat ovaries can take up NE and cocaine considerably, decreased its uptake, suggesting involvement of catecholamine transporters. Granulosa cells of rat ovarian follicles present dopamine transporter and NE transporter. Their functionality was confirmed in isolated rat granulosa cells while cocaine blocked the uptake of NE. Furthermore, the presence of the vesicular monoamine transporter 2, together with the exocytotic protein (synaptosome-associated protein of 25 kDa) in granulosa cells, implies catecholamine storage and regulated release. Regulated calcium-dependent release of NE was shown after depolarization by potassium, implying all neuron-like cellular machinery in granulosa cells. These results in rats may be of relevance for the human ovary because dopamine transporter, NE transporter, vesicular monoamine transporter 2, and synaptosome-associated protein of 25-kDa protein and mRNA are found in human ovarian follicles and/or isolated granulosa cells. Thus, ovarian nonneuronal granulosa cells, after taking up catecholamines, can serve as an intraovarian catecholamine-storing compartment, releasing them in a regulated way. This suggests a more complex involvement of catecholamines in ovarian functions as is currently being recognized.


Subject(s)
Granulosa Cells/metabolism , Norepinephrine/metabolism , Sympathetic Nervous System/metabolism , Animals , Calcium/metabolism , Cocaine/pharmacology , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Uptake Inhibitors/pharmacology , Female , Gene Expression/physiology , Granulosa Cells/drug effects , Granulosa Cells/physiology , Homeostasis/physiology , Norepinephrine Plasma Membrane Transport Proteins/genetics , Norepinephrine Plasma Membrane Transport Proteins/metabolism , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Rats, Wistar , Sympathectomy , Sympathetic Nervous System/drug effects , Synaptosomal-Associated Protein 25/genetics , Synaptosomal-Associated Protein 25/metabolism , Vesicular Monoamine Transport Proteins/genetics , Vesicular Monoamine Transport Proteins/metabolism
14.
Endocrinology ; 149(6): 2907-16, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18308852

ABSTRACT

Previous reports about the rat ovary have shown that cold stress promotes ovarian morphological alterations related to a polycystic ovary (PCO) condition through activation of the ovarian sympathetic nerves. Because the noradrenergic nucleus locus coeruleus (LC) is activated by cold stress and synaptically connected to the preganglionic cell bodies of the ovarian sympathetic pathway, this study aimed to evaluate the LC's role in cold stress-induced PCO in rats. Ovarian morphology and endocrine and sympathetic functions were evaluated after 8 wk of chronic intermittent cold stress (4 C, 3 h/d) in rats with or without LC lesion. The effect of acute and chronic cold stress upon the LC neuron activity was confirmed by Fos protein expression in tyrosine hydroxylase-immunoreactive neurons. Cold stress induced the formation of follicular cysts, type III follicles, and follicles with hyperthecosis alongside increased plasma estradiol and testosterone levels, irregular estrous cyclicity, and reduced ovulation. Considering estradiol release in vitro, cold stress potentiated the ovarian response to human chorionic gonadotropin. Ovarian norepinephrine (NE) was not altered after 8 wk of stress. However, LC lesion reduced NE activity in the ovary of cold-stressed rats, but not in controls, and prevented all the cold stress effects evaluated. Cold stress increased the number of Fos/tyrosine hydroxylase-immunoreactive neurons in the LC, but this effect was more pronounced for acute stress as compared with chronic stress. These results show that cold stress promotes PCO in rats, which apparently depends on ovarian NE activity that, under this condition, is regulated by the noradrenergic nucleus LC.


Subject(s)
Cold Temperature , Locus Coeruleus/physiopathology , Polycystic Ovary Syndrome/physiopathology , Animals , Disease Models, Animal , Female , Locus Coeruleus/pathology , Norepinephrine/physiology , Ovary/physiology , Ovary/physiopathology , Polycystic Ovary Syndrome/etiology , Rats , Rats, Wistar
15.
Front Physiol ; 9: 459, 2018.
Article in English | MEDLINE | ID: mdl-29765334

ABSTRACT

The polycystic ovary syndrome (PCOS) is the most prevalent ovarian pathology in women, with excessive sympathetic activity in the superior ovarian nerve (SON) playing an important role in inducing the PCOS symptoms in the rats and humans. Our previous studies have shown that surgical transection of the SON can reverse the disease progression, prompting us to explore the effect of the kilohertz frequency alternating current (KHFAC) modulation as a method of reversible non-surgical suppression of the nerve activity in the rodent model of PCOS. 56 animals were randomly allocated to three groups: the Control group (n = 18), the PCOS group (n = 15), and the PCOS + KHFAC group (n = 23). The physiological, anatomical, and biochemical parameters of ovarian function were evaluated during the progression of the experimentally-induced PCOS and during long-term KHFAC modulation applied for 2-3 weeks. The KHFAC modulation has been able to reverse the pathological changes in assessed PCOS parameters, namely the irregular or absent estrous cycling, formation of ovarian cysts, reduction in the number of corpora lutea, and ovarian norepinephrine concentration. The fertility capacity was similar in the PCOS and the PCOS + KHFAC groups, indicating the safety of KHFAC modulation approach. In summary, these results suggest that the KHFAC modulation approach of suppressing the SON activity could become a useful treatment modality for PCOS and potentially other pathological ovarian conditions.

16.
J Endocrinol ; 232(1): 97-105, 2017 01.
Article in English | MEDLINE | ID: mdl-27856623

ABSTRACT

Previous work has demonstrated that the increase in the activity of sympathetic nerves, which occurs during the subfertility period in female rats, causes an increase in follicular cyst development and impairs follicular development. In addition, the increase in ovarian sympathetic activity of aged rats correlates with an increased expression of kisspeptin (KISS1) in the ovary. This increase in KISS1 could participate in the decrease in follicular development that occurs during the subfertility period. We aimed to determine whether the blockade of ovarian sympathetic tone prevents the increase in KISS1 expression during reproductive aging and improves follicular development. We performed 2 experiments in rats: (1) an in vivo blockade of beta-adrenergic receptor with propranolol (5.0 mg/kg) and (2) an ovarian surgical denervation to modulate the sympathetic system at these ages. We measured Kisspeptin and follicle-stimulating hormone receptor (FSHR) mRNA and protein levels by qRT-PCR and western blot and counted primordial, primary and secondary follicles at 8, 10 and 12 months of age. The results showed that ovarian KISS1 decreased but FSHR increased after both propranolol administration and the surgical denervation in rats of 8, 10 and 12 months of age. An increase in FSHR was related to an increase in the number of smaller secondary follicles and a decreased number of primordial follicles at 8, 10 and 12 months of age. These results suggest that intraovarian KISS1 is regulated by sympathetic nerves via a beta-adrenergic receptor and participates locally in ovarian follicular development in reproductive aging.


Subject(s)
Aging/metabolism , Gene Expression Regulation , Kisspeptins/metabolism , Ovary/metabolism , Sympathetic Nervous System/metabolism , Adrenergic beta-Antagonists/pharmacology , Animals , Female , Kisspeptins/genetics , Ovary/drug effects , Propranolol/pharmacology , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, FSH/genetics , Receptors, FSH/metabolism , Sympathetic Nervous System/drug effects
17.
BMC Neurosci ; 7: 40, 2006 May 19.
Article in English | MEDLINE | ID: mdl-16712723

ABSTRACT

BACKGROUND: Corticosterone reduction produced by adrenalectomy (ADX) induces apoptosis in dentate gyrus (DG) of the hippocampus, an effect related to an increase in the expression of the pro-apoptotic gene bax. However it has been reported that there is also an increase of the anti-apoptotic gene bcl-2, suggesting the promotion of a neuroprotective phenomenon, perhaps related to the expression of transforming growth factor beta1 (TGF-beta1). Thus, we have investigated whether TGF-beta1 levels are induced by ADX, and whether apoptosis is increased by blocking the expression of TGF-beta1 with an antisense oligonucleotide (ASO) administered intracerebrally in corticosterone depleted rats. RESULTS: It was observed an increase of apoptosis in DG, 2 and 5 days after ADX, in agreement with a reduction of corticosterone levels. However, the effect of ADX on the number of apoptotic positive cells in DG was decreased 5 days after the lesion. In CA1-CA3 regions, the effect was only observed 2 days after ADX. TGF-beta1 mRNA levels were increased 2 days after ADX. The sustained intracerebro-ventricular administration of a TGF-beta1 ASO via an osmotic mini pump increased apoptosis levels in CA and DG regions 5 days after ADX as well as sham-operated control animals. No significant effect was observed following a scrambled-oligodeoxynucleotide treatment. CONCLUSION: The changes in both the pattern and the magnitude of apoptotic-cell morphology observed 2 and 5 days after ADX suggest that, as a consequence of the reduction of corticosteroids, some trophic mechanisms restricting cell death to a particular time window are elicited. Sustained intracerebral administration of TGF-beta1 ASO increased the apoptosis promoted by ADX, suggesting that TGF-beta1 plays an anti-apoptotic role in vivo in hippocampus.


Subject(s)
Apoptosis , Corticosterone/blood , Hippocampus/metabolism , Oligodeoxyribonucleotides, Antisense/pharmacology , Transforming Growth Factor beta/antagonists & inhibitors , Adrenalectomy , Animals , Cerebral Ventricles , Gene Expression , Hippocampus/cytology , Hippocampus/drug effects , Male , Oligodeoxyribonucleotides, Antisense/administration & dosage , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Transforming Growth Factor beta/biosynthesis , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta1
18.
Reprod Biol Endocrinol ; 4: 57, 2006 Nov 10.
Article in English | MEDLINE | ID: mdl-17096853

ABSTRACT

BACKGROUND: Angiogenesis is a crucial process in follicular development and luteogenesis. The nerve growth factor (NGF) promotes angiogenesis in various tissues. An impaired production of this neurotrophin has been associated with delayed wound healing. A variety of ovarian functions are regulated by NGF, but its effects on ovarian angiogenesis remain unknown. The aim of this study was to elucidate if NGF modulates 1) the amount of follicular blood vessels and 2) ovarian expression of two angiogenic factors: vascular endothelial growth factor (VEGF) and transforming growth factor beta 1 (TGFbeta1), in the rat ovary. RESULTS: In cultured neonatal rat ovaries, NGF increased VEGF mRNA and protein levels, whereas TGFbeta1 expression did not change. Sectioning of the superior ovarian nerve, which increases ovarian NGF protein content, augmented VEGF immunoreactivity and the area of capillary vessels in ovaries of prepubertal rats compared to control ovaries. CONCLUSION: Results indicate that NGF may be important in the maintenance of the follicular and luteal vasculature in adult rodents, either indirectly, by increasing the expression of VEGF in the ovary, or directly via promoting the proliferation of vascular cells. This data suggests that a disruption on NGF regulation could be a component in ovarian disorders related with impaired angiogenesis.


Subject(s)
Neovascularization, Physiologic , Nerve Growth Factor/pharmacology , Ovary/blood supply , Transforming Growth Factor beta1/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Animals, Newborn , Blood Vessels/drug effects , Denervation , Female , Gene Expression Regulation/drug effects , Immunohistochemistry , Ovary/drug effects , Ovary/metabolism , Rats , Rats, Sprague-Dawley , Transforming Growth Factor beta1/genetics , Vascular Endothelial Growth Factor A/genetics
19.
Sci Rep ; 6: 30129, 2016 07 21.
Article in English | MEDLINE | ID: mdl-27440195

ABSTRACT

Growth and differentiation of ovarian follicles are regulated by systemic and local factors, which may include acetylcholine (ACh). Granulosa cells (GCs) of growing follicles and luteal cells produce ACh and in cultured GCs it exerts trophic actions via muscarinic receptors. However, such actions were not studied in vivo. After having established that rat ovarian GCs and luteal cells express the ACh-metabolizing enzyme ACh esterase (AChE), we examined the consequences of local application of an AChE inhibitor, huperzine A (HupA), by osmotic minipump delivery into the ovarian bursa of hemiovariectomized rats. Saline was used in the control group. Local delivery of HupA for 4 weeks increased ovarian ACh content. Estrus cyclicity was not changed indicating a locally restricted range of HupA action. The number of primordial and primary follicles was unaffected, but small secondary follicles significantly increased in the HupA group. Furthermore, a significant increase in the number of corpora lutea suggested increased ovulatory events. In support, as shown upon mating, HupA-treated females had significantly increased implantation sites and more pups. Thus the data are in support of a trophic role of ACh in follicular development and ovulation and point to an important role of ACh in female fertility.


Subject(s)
Acetylcholine/metabolism , Acetylcholinesterase/drug effects , Cholinesterase Inhibitors/pharmacology , Fertility/drug effects , Ovarian Follicle/drug effects , Ovary/drug effects , Animals , Female , Ovarian Follicle/enzymology , Ovarian Follicle/growth & development , Ovary/metabolism , Rats , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
20.
Biomed Res Int ; 2015: 734367, 2015.
Article in English | MEDLINE | ID: mdl-25793205

ABSTRACT

Ethanol consumption during pregnancy may induce profound changes in fetal CNS development. We postulate that some of the effects of ethanol on striatal glutamatergic transmission and neurotrophin expression could be modulated by allopregnanolone, a neurosteroid modulator of GABAA receptor activity. We describe the acute pharmacological effect of allopregnanolone (65 µg/kg, s.c.) administered to juvenile male rats (day 21 of age) on the corticostriatal glutamatergic pathway, in both control and prenatally ethanol-exposed rats (two ip injections of 2.9 g/kg in 24% v/v saline solution on gestational day 8). Prenatal ethanol administration decreased the K(+)-induced release of glutamate regarding the control group. Interestingly, this effect was reverted by allopregnanolone. Regarding BDNF, allopregnanolone decreases the content of this neurotrophic factor in the striatum of control groups. However, both ethanol alone and ethanol plus allopregnanolone treated animals did not show any change regarding control values. We suggest that prenatal ethanol exposure may produce an alteration of GABAA receptors which blocks the GABA agonist-like effect of allopregnanolone on rapid glutamate release, thus disturbing normal neural transmission. Furthermore, the reciprocal interactions found between GABAergic neurosteroids and BDNF could underlie mechanisms operating during the neuronal plasticity of fetal development.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Ethanol/pharmacology , Glutamic Acid/metabolism , Pregnanolone/pharmacology , Alcohol Drinking/metabolism , Animals , Female , Male , Pregnancy , Rats , Rats, Sprague-Dawley , Receptors, GABA-A
SELECTION OF CITATIONS
SEARCH DETAIL