Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Mol Ther ; 32(7): 2373-2392, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38745414

ABSTRACT

Interleukin (IL)18 is a potent pro-inflammatory cytokine that is activated upon caspase 1 cleavage of the latent precursor, pro-IL18. Therapeutic T cell armoring with IL18 promotes autocrine stimulation and positive modulation of the tumor microenvironment (TME). However, existing strategies are imperfect since they involve constitutive/poorly regulated activity or fail to modify the TME. Here, we have substituted the caspase 1 cleavage site within pro-IL18 with that preferred by granzyme B, yielding GzB-IL18. We demonstrate that GzB-IL18 is constitutively released but remains functionally latent unless chimeric antigen receptor (CAR) T cells are activated, owing to concomitant granzyme B release. Armoring with GzB-IL18 enhances cytolytic activity, proliferation, interferon (IFN)-γ release, and anti-tumor efficacy by a similar magnitude to constitutively active IL18. We also demonstrate that GzB-IL18 provides a highly effective armoring strategy for γδ CAR T cells, leading to enhanced metabolic fitness and significant potentiation of therapeutic activity. Finally, we show that constitutively active IL18 can unmask CAR T cell-mediated cytokine release syndrome in immunocompetent mice. By contrast, GzB-IL18 promotes anti-tumor activity and myeloid cell re-programming without inducing such toxicity. Using this stringent system, we have tightly coupled the biological activity of IL18 to the activation state of the host CAR T cell, favoring safer clinical implementation of this technology.


Subject(s)
Granzymes , Immunotherapy, Adoptive , Interleukin-18 , Receptors, Chimeric Antigen , Interleukin-18/metabolism , Granzymes/metabolism , Animals , Mice , Humans , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , Cell Line, Tumor , Tumor Microenvironment/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Lymphocyte Activation/immunology , Cytotoxicity, Immunologic , Xenograft Model Antitumor Assays , Interferon-gamma/metabolism
2.
Biology (Basel) ; 13(3)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38534465

ABSTRACT

γδ T-cells provide immune surveillance against cancer, straddling both innate and adaptive immunity. G115 is a clonal γδ T-cell receptor (TCR) of the Vγ9Vδ2 subtype which can confer responsiveness to phosphoantigens (PAgs) when genetically introduced into conventional αß T-cells. Cancer immunotherapy using γδ TCR-engineered T-cells is currently under clinical evaluation. In this study, we sought to broaden the cancer specificity of the G115 γδ TCR by insertion of a tumour-binding peptide into the complementarity-determining region (CDR) three regions of the TCR δ2 chain. Peptides were selected from the foot and mouth disease virus A20 peptide which binds with high affinity and selectivity to αvß6, an epithelial-selective integrin that is expressed by a range of solid tumours. Insertion of an A20-derived 12mer peptide achieved the best results, enabling the resulting G115 + A12 T-cells to kill both PAg and αvß6-expressing tumour cells. Cytolytic activity of G115 + A12 T-cells against PAg-presenting K562 target cells was enhanced compared to G115 control cells, in keeping with the critical role of CDR3 δ2 length for optimal PAg recognition. Activation was accompanied by interferon (IFN)-γ release in the presence of either target antigen, providing a novel dual-specificity approach for cancer immunotherapy.

3.
STAR Protoc ; 3(2): 101414, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35620078

ABSTRACT

Dual co-stimulation may be harnessed using parallel chimeric antigen receptors (pCARs) in which two distinct co-stimulatory units are adjacently localized on the plasma membrane. This protocol summarizes construct design, human T cell isolation, retroviral transduction, tissue culture expansion, and preclinical testing of pCAR T cells, exemplified by receptors that co-target avb6 integrin and ErbB dimers. For complete details on the use and execution of this protocol, please refer to Muliaditan et al. (2021).


Subject(s)
Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , Retroviridae , T-Lymphocytes
4.
Front Immunol ; 13: 836549, 2022.
Article in English | MEDLINE | ID: mdl-35222427

ABSTRACT

Co-stimulation is critical to the function of chimeric antigen receptor (CAR) T-cells. Previously, we demonstrated that dual co-stimulation can be effectively harnessed by a parallel (p)CAR architecture in which a CD28-containing second generation CAR is co-expressed with a 4-1BB containing chimeric co-stimulatory receptor (CCR). When compared to linear CARs, pCAR-engineered T-cells elicit superior anti-tumor activity in a range of pre-clinical models. Since CD19 is the best validated clinical target for cellular immunotherapy, we evaluated a panel of CD19-specific CAR and pCAR T-cells in this study. First, we generated a panel of single chain antibody fragments (scFvs) by alanine scanning mutagenesis of the CD19-specific FMC63 scFv (VH domain) and these were incorporated into second generation CD28+CD3ζ CARs. The resulting panel of CAR T-cells demonstrated a broad range of CD19 binding ability and avidity for CD19-expressing tumor cells. Each scFv-modified CAR was then converted into a pCAR by co-expression of an FMC63 scFv-targeted CCR with a 4-1BB endodomain. When compared to second generation CARs that contained an unmodified or mutated FMC63 scFv, each pCAR demonstrated a significant enhancement of tumor re-stimulation potential and IL-2 release, reduced exhaustion marker expression and enhanced therapeutic efficacy in mice with established Nalm-6 leukemic xenografts. These data reinforce the evidence that the pCAR platform delivers enhanced anti-tumor activity through effective provision of dual co-stimulation. Greatest anti-tumor activity was noted for intermediate avidity CAR T-cells and derived pCARs, raising the possibility that effector to target cell avidity is an important determinant of efficacy.


Subject(s)
CD28 Antigens , Receptors, Chimeric Antigen , Animals , Antigens, CD19/genetics , CD28 Antigens/genetics , CD28 Antigens/metabolism , Cell Line, Tumor , Humans , Immunotherapy, Adoptive/methods , Mice
5.
Cell Rep Med ; 2(4): 100227, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33948568

ABSTRACT

Utilizing T cells expressing chimeric antigen receptors (CARs) to identify and attack solid tumors has proven challenging, in large part because of the lack of tumor-specific targets to direct CAR binding. Tumor selectivity is crucial because on-target, off-tumor activation of CAR T cells can result in potentially lethal toxicities. This study presents a stringent hypoxia-sensing CAR T cell system that achieves selective expression of a pan-ErbB-targeted CAR within a solid tumor, a microenvironment characterized by inadequate oxygen supply. Using murine xenograft models, we demonstrate that, despite widespread expression of ErbB receptors in healthy organs, the approach provides anti-tumor efficacy without off-tumor toxicity. This dynamic on/off oxygen-sensing safety switch has the potential to facilitate unlimited expansion of the CAR T cell target repertoire for treating solid malignancies.


Subject(s)
Hypoxia/metabolism , Immunotherapy, Adoptive , Receptors, Chimeric Antigen/genetics , T-Lymphocytes/metabolism , Tumor Microenvironment/immunology , Animals , Cell Line, Tumor/metabolism , Disease Models, Animal , Genes, erbB/genetics , Humans , Hypoxia/genetics , Immunotherapy, Adoptive/methods , Mice, Transgenic , T-Lymphocytes/immunology , Xenograft Model Antitumor Assays/methods
6.
Cell Rep Med ; 2(12): 100457, 2021 12 21.
Article in English | MEDLINE | ID: mdl-35028604

ABSTRACT

Second generation (2G) chimeric antigen receptors (CARs) contain a CD28 or 41BB co-stimulatory endodomain and elicit remarkable efficacy in hematological malignancies. Third generation (3G) CARs extend this linear blueprint by fusing both co-stimulatory units in series. However, clinical impact has been muted despite compelling evidence that co-signaling by CD28 and 41BB can powerfully amplify natural immune responses. We postulate that effective dual co-stimulation requires juxta-membrane positioning of endodomain components within separate synthetic receptors. Consequently, we designed parallel (p)CARs in which a 2G (CD28+CD3ζ) CAR is co-expressed with a 41BB-containing chimeric co-stimulatory receptor. We demonstrate that the pCAR platform optimally harnesses synergistic and tumor-dependent co-stimulation to resist T cell exhaustion and senescence, sustaining proliferation, cytokine release, cytokine signaling, and metabolic fitness upon repeated stimulation. When engineered using targeting moieties of diverse composition, affinity, and specificity, pCAR T cells consistently elicit superior anti-tumor activity compared with T cells that express traditional linear CARs.


Subject(s)
CD28 Antigens/metabolism , Cell Membrane/metabolism , Receptors, Chimeric Antigen/metabolism , Signal Transduction , T-Lymphocytes/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism , Animals , Antigens, Neoplasm/metabolism , Cell Line, Tumor , Humans , Integrins/metabolism , Lymphoma/immunology , Mice, Inbred NOD , Mice, SCID , Mucin-1/metabolism , Protein Multimerization , Receptors, Colony-Stimulating Factor/metabolism , Xenograft Model Antitumor Assays
7.
Sci Rep ; 10(1): 8869, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32483228

ABSTRACT

Antibody-Drug Conjugates (ADCs) developed as a targeted treatment approach to deliver toxins directly to cancer cells are one of the fastest growing classes of oncology therapeutics, with eight ADCs and two immunotoxins approved for clinical use. However, selection of an optimum target and payload combination, to achieve maximal therapeutic efficacy without excessive toxicity, presents a significant challenge. We have developed a platform to facilitate rapid and cost-effective screening of antibody and toxin combinations for activity and safety, based on streptavidin-biotin conjugation. For antibody selection, we evaluated internalization by target cells using streptavidin-linked antibodies conjugated to biotinylated saporin, a toxin unable to cross cell membranes. For payload selection, we biotinylated toxins and conjugated them to antibodies linked to streptavidin to evaluate antitumour activity and pre-clinical safety. As proof of principle, we compared trastuzumab conjugated to emtansine via streptavidin-biotin (Trastuzumab-SB-DM1) to the clinically approved trastuzumab emtansine (T-DM1). We showed comparable potency in reduction of breast cancer cell survival in vitro and in growth restriction of orthotopic breast cancer xenografts in vivo. Our findings indicate efficient generation of functionally active ADCs. This approach can facilitate the study of antibody and payload combinations for selection of promising candidates for future ADC development.


Subject(s)
Antineoplastic Agents/chemistry , Immunoconjugates/chemistry , Toxins, Biological/chemistry , Trastuzumab/chemistry , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biotin/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Female , Humans , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Maytansine/chemistry , Mice , Mice, Inbred NOD , Mice, SCID , Saporins/chemistry , Streptavidin/chemistry , Transplantation, Heterologous , Trastuzumab/therapeutic use
8.
Clin Cancer Res ; 24(20): 5098-5111, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30068707

ABSTRACT

Purpose: Highly aggressive triple-negative breast cancers (TNBCs) lack validated therapeutic targets and have high risk of metastatic disease. Folate receptor alpha (FRα) is a central mediator of cell growth regulation that could serve as an important target for cancer therapy.Experimental Design: We evaluated FRα expression in breast cancers by genomic (n = 3,414) and IHC (n = 323) analyses and its association with clinical parameters and outcomes. We measured the functional contributions of FRα in TNBC biology by RNA interference and the antitumor functions of an antibody recognizing FRα (MOv18-IgG1), in vitro, and in human TNBC xenograft models.Results: FRα is overexpressed in significant proportions of aggressive basal like/TNBC tumors, and in postneoadjuvant chemotherapy-residual disease associated with a high risk of relapse. Expression is associated with worse overall survival. TNBCs show dysregulated expression of thymidylate synthase, folate hydrolase 1, and methylenetetrahydrofolate reductase, involved in folate metabolism. RNA interference to deplete FRα decreased Src and ERK signaling and resulted in reduction of cell growth. An anti-FRα antibody (MOv18-IgG1) conjugated with a Src inhibitor significantly restricted TNBC xenograft growth. Moreover, MOv18-IgG1 triggered immune-dependent cancer cell death in vitro by human volunteer and breast cancer patient immune cells, and significantly restricted orthotopic and patient-derived xenograft growth.Conclusions: FRα is overexpressed in high-grade TNBC and postchemotherapy residual tumors. It participates in cancer cell signaling and presents a promising target for therapeutic strategies such as ADCs, or passive immunotherapy priming Fc-mediated antitumor immune cell responses. Clin Cancer Res; 24(20); 5098-111. ©2018 AACR.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Folate Receptor 1/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Animals , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/adverse effects , Cell Line, Tumor , Cell Proliferation , Cell Survival/genetics , Disease Models, Animal , Female , Folate Receptor 1/genetics , Folate Receptor 1/metabolism , Gene Expression , Humans , Immunohistochemistry , Mice , Models, Biological , Molecular Targeted Therapy , Neoplasms, Basal Cell , RNA Interference , Signal Transduction , Triple Negative Breast Neoplasms/pathology , Tumor Burden , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL