Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
IEEE Trans Med Imaging ; 35(6): 1522-31, 2016 06.
Article in English | MEDLINE | ID: mdl-26800530

ABSTRACT

Image textures in computed tomography colonography (CTC) have great potential for differentiating non-neoplastic from neoplastic polyps and thus can advance the current CTC detection-only paradigm to a new level with diagnostic capability. However, image textures are frequently compromised, particularly in low-dose CT imaging. Furthermore, texture feature extraction may vary, depending on the polyp spatial orientation variation, resulting in variable results. To address these issues, this study proposes an adaptive approach to extract and analyze the texture features for polyp differentiation. Firstly, derivative (e.g. gradient and curvature) operations are performed on the CT intensity image to amplify the textures with adequate noise control. Then Haralick co-occurrence matrix (CM) is used to calculate texture measures along each of the 13 directions (defined by the first and second order image voxel neighbors) through the polyp volume in the intensity, gradient and curvature images. Instead of taking the mean and range of each CM measure over the 13 directions as the so-called Haralick texture features, Karhunen-Loeve transform is performed to map the 13 directions into an orthogonal coordinate system so that the resulted texture features are less dependent on the polyp orientation variation. These simple ideas for amplifying textures and stabilizing spatial variation demonstrated a significant impact for the differentiating task by experiments using 384 polyp datasets, of which 52 are non-neoplastic polyps and the rest are neoplastic polyps. By the merit of area under the curve of receiver operating characteristic, the innovative ideas achieved differentiation capability of 0.8016, indicating the CTC diagnostic feasibility.


Subject(s)
Colonic Polyps/diagnostic imaging , Colonography, Computed Tomographic/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Algorithms , Databases, Factual , Humans
2.
Phys Med Biol ; 60(18): 7207-28, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26348125

ABSTRACT

Most previous efforts in developing computer-aided detection (CADe) of colonic polyps apply similar measures or parameters to detect polyps regardless of their locations under an implicit assumption that all the polyps reside in a similar local environment, e.g. on a relatively flat colon wall. In reality, this implicit assumption is frequently invalid, because the haustral folds can have a very different local environment from that of the relatively flat colon wall. We conjecture that this assumption may be a major cause of missing the detection of polyps, especially small polyps (<10 mm linear size) located on the haustral folds. In this paper, we take the concept of adaptiveness and present an adaptive paradigm for CADe of colonic polyps. Firstly, we decompose the complicated colon structure into two simplified sub-structures, each of which has similar properties, of (1) relatively flat colon wall and (2) ridge-shaped haustral folds. Then we develop local environment descriptions to adaptively reflect each of these two simplified sub-structures. To show the impact of the adaptiveness of the local environment descriptions upon the polyp detection task, we focus on the local geometrical measures of the volume data for both the detection of initial polyp candidates (IPCs) and the reduction of false positives (FPs) in the IPC pool. The experimental outcome using the local geometrical measures is very impressive such that not only the previously-missed small polyps on the folds are detected, but also the previously miss-removed small polyps on the folds during FP reduction are retained. It is expected that this adaptive paradigm will have a great impact on detecting the small polyps, measuring their volumes and volume changes over time, and optimizing their management plan.


Subject(s)
Algorithms , Colon/pathology , Colonic Polyps/diagnosis , Colonography, Computed Tomographic/methods , Diagnosis, Computer-Assisted , Pattern Recognition, Automated/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL