Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sports Health ; : 19417381241230612, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436049

ABSTRACT

BACKGROUND: Female athletes lag behind their male counterparts in recovery from anterior cruciate ligament (ACL) injury. Quadriceps muscle size and strength are crucial factors for regaining function after ACL injury, but little is known about how these metrics vary due to biological sex. HYPOTHESIS: Female patients have reduced vastus lateralis fiber cross-sectional area (CSA) and lower quadriceps strength after ACL injury than male patients. STUDY DESIGN: Cross-sectional study. LEVEL OF EVIDENCE: Level 4. METHODS: A total of 60 participants with recent ACL tear were evaluated for vastus lateralis muscle fiber CSA, isometric quadriceps peak torque, and quadriceps rate of torque development. Linear mixed models were fit to determine differences across sex and limb for each variable of interest. RESULTS: The female group averaged almost 20% atrophy between limbs (P < 0.01), while the male group averaged just under 4% (P = 0.05). Strength deficits between limbs were comparable between female and male groups. CONCLUSION: Immediately after ACL injury, female patients have greater between-limb differences in muscle fiber CSA but between-limb strength deficits comparable with those of male patients. CLINICAL RELEVANCE: These results indicate that the underpinnings of strength loss differ based on biological sex, and thus individual patients could benefit from a sex-specific treatment approach to ACL injury.

2.
Free Radic Biol Med ; 212: 191-198, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38154571

ABSTRACT

Oxidative stress has been implicated in the etiology of skeletal muscle weakness following joint injury. We investigated longitudinal patient muscle samples following knee injury (anterior cruciate ligament tear). Following injury, transcriptomic analysis revealed downregulation of mitochondrial metabolism-related gene networks, which were supported by reduced mitochondrial respiratory flux rates. Additionally, enrichment of reactive oxygen species (ROS)-related pathways were upregulated in muscle following knee injury, and further investigation unveiled marked oxidative damage in a progressive manner following injury and surgical reconstruction. We then investigated whether antioxidant protection is effective in preventing muscle atrophy and weakness after knee injury in mice that overexpress Mn-superoxide dismutase (MnSOD+/-). MnSOD+/- mice showed attenuated oxidative damage, atrophy, and muscle weakness compared to wild type littermate controls following ACL transection surgery. Taken together, our results indicate that ROS-related damage is a causative mechanism of muscle dysfunction after knee injury, and that mitochondrial antioxidant protection may hold promise as a therapeutic target to prevent weakness and development of disability.


Subject(s)
Anterior Cruciate Ligament Injuries , Knee Injuries , Humans , Mice , Animals , Anterior Cruciate Ligament Injuries/complications , Anterior Cruciate Ligament Injuries/genetics , Anterior Cruciate Ligament Injuries/surgery , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Muscular Atrophy/genetics , Muscular Atrophy/prevention & control , Muscle Weakness/genetics , Muscle Weakness/complications , Knee Injuries/complications , Knee Injuries/surgery , Oxidative Stress/physiology , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
3.
Sci Rep ; 14(1): 15554, 2024 07 05.
Article in English | MEDLINE | ID: mdl-38969654

ABSTRACT

Human hallmarks of sarcopenia include muscle weakness and a blunted response to exercise. Nicotinamide N-methyltransferase inhibitors (NNMTis) increase strength and promote the regenerative capacity of aged muscle, thus offering a promising treatment for sarcopenia. Since human hallmarks of sarcopenia are recapitulated in aged (24-month-old) mice, we treated mice from 22 to 24 months of age with NNMTi, intensive exercise, or a combination of both, and compared skeletal muscle adaptations, including grip strength, longitudinal running capacity, plantarflexor peak torque, fatigue, and muscle mass, fiber type, cross-sectional area, and intramyocellular lipid (IMCL) content. Exhaustive proteome and metabolome analyses were completed to identify the molecular mechanisms underlying the measured changes in skeletal muscle pathophysiology. Remarkably, NNMTi-treated aged sedentary mice showed ~ 40% greater grip strength than sedentary controls, while aged exercised mice only showed a 20% increase relative to controls. Importantly, the grip strength improvements resulting from NNMTi treatment and exercise were additive, with NNMTi-treated exercised mice developing a 60% increase in grip strength relative to sedentary controls. NNMTi treatment also promoted quantifiable improvements in IMCL content and, in combination with exercise, significantly increased gastrocnemius fiber CSA. Detailed skeletal muscle proteome and metabolome analyses revealed unique molecular mechanisms associated with NNMTi treatment and distinct molecular mechanisms and cellular processes arising from a combination of NNMTi and exercise relative to those given a single intervention. These studies suggest that NNMTi-based drugs, either alone or combined with exercise, will be beneficial in treating sarcopenia and a wide range of age-related myopathies.


Subject(s)
Aging , Muscle, Skeletal , Nicotinamide N-Methyltransferase , Physical Conditioning, Animal , Sarcopenia , Animals , Nicotinamide N-Methyltransferase/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Mice , Aging/physiology , Sarcopenia/metabolism , Sarcopenia/drug therapy , Male , Muscle Strength/drug effects , Mice, Inbred C57BL , Enzyme Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL