Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 232
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Genes Dev ; 37(3-4): 86-102, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36732025

ABSTRACT

Glioblastomas (GBMs) are heterogeneous, treatment-resistant tumors driven by populations of cancer stem cells (CSCs). However, few molecular mechanisms critical for CSC population maintenance have been exploited for therapeutic development. We developed a spatially resolved loss-of-function screen in GBM patient-derived organoids to identify essential epigenetic regulators in the SOX2-enriched, therapy-resistant niche and identified WDR5 as indispensable for this population. WDR5 is a component of the WRAD complex, which promotes SET1 family-mediated Lys4 methylation of histone H3 (H3K4me), associated with positive regulation of transcription. In GBM CSCs, WDR5 inhibitors blocked WRAD complex assembly and reduced H3K4 trimethylation and expression of genes involved in CSC-relevant oncogenic pathways. H3K4me3 peaks lost with WDR5 inhibitor treatment occurred disproportionally on POU transcription factor motifs, including the POU5F1(OCT4)::SOX2 motif. Use of a SOX2/OCT4 reporter demonstrated that WDR5 inhibitor treatment diminished cells with high reporter activity. Furthermore, WDR5 inhibitor treatment and WDR5 knockdown altered the stem cell state, disrupting CSC in vitro growth and self-renewal, as well as in vivo tumor growth. These findings highlight the role of WDR5 and the WRAD complex in maintaining the CSC state and provide a rationale for therapeutic development of WDR5 inhibitors for GBM and other advanced cancers.


Subject(s)
Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Histone-Lysine N-Methyltransferase/metabolism , Transcription Factors , Neoplastic Stem Cells/pathology , Intracellular Signaling Peptides and Proteins/genetics
2.
Cell ; 153(1): 139-52, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23540695

ABSTRACT

Glioblastomas (GBMs) are highly vascular and lethal brain tumors that display cellular hierarchies containing self-renewing tumorigenic glioma stem cells (GSCs). Because GSCs often reside in perivascular niches and may undergo mesenchymal differentiation, we interrogated GSC potential to generate vascular pericytes. Here, we show that GSCs give rise to pericytes to support vessel function and tumor growth. In vivo cell lineage tracing with constitutive and lineage-specific fluorescent reporters demonstrated that GSCs generate the majority of vascular pericytes. Selective elimination of GSC-derived pericytes disrupts the neovasculature and potently inhibits tumor growth. Analysis of human GBM specimens showed that most pericytes are derived from neoplastic cells. GSCs are recruited toward endothelial cells via the SDF-1/CXCR4 axis and are induced to become pericytes predominantly by transforming growth factor ß. Thus, GSCs contribute to vascular pericytes that may actively remodel perivascular niches. Therapeutic targeting of GSC-derived pericytes may effectively block tumor progression and improve antiangiogenic therapy.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Neoplastic Stem Cells/pathology , Pericytes/pathology , Animals , Brain/pathology , Brain Neoplasms/blood supply , Cell Differentiation , Endothelial Cells/pathology , Glioblastoma/blood supply , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Transplantation , Transforming Growth Factor beta/metabolism , Transplantation, Heterologous
3.
PLoS Biol ; 21(9): e3002295, 2023 09.
Article in English | MEDLINE | ID: mdl-37713380

ABSTRACT

Cancer stem cells drive tumor growth and survival via self-renewal and therapeutic resistance, but the upstream mechanisms are not well defined. In this issue of PLOS Biology, a study in colon cancer reveals a new signalling network that links epigenetic regulation to these phenotypes.


Subject(s)
Colonic Neoplasms , Drug Resistance, Neoplasm , Humans , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Neoplastic Stem Cells , Phenotype , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Neoplasm Proteins , Intracellular Signaling Peptides and Proteins
4.
Cell ; 146(1): 53-66, 2011 Jul 08.
Article in English | MEDLINE | ID: mdl-21729780

ABSTRACT

Malignant gliomas are aggressive brain tumors with limited therapeutic options, and improvements in treatment require a deeper molecular understanding of this disease. As in other cancers, recent studies have identified highly tumorigenic subpopulations within malignant gliomas, known generally as cancer stem cells. Here, we demonstrate that glioma stem cells (GSCs) produce nitric oxide via elevated nitric oxide synthase-2 (NOS2) expression. GSCs depend on NOS2 activity for growth and tumorigenicity, distinguishing them from non-GSCs and normal neural progenitors. Gene expression profiling identified many NOS2-regulated genes, including the cell-cycle inhibitor cell division autoantigen-1 (CDA1). Further, high NOS2 expression correlates with decreased survival in human glioma patients, and NOS2 inhibition slows glioma growth in a murine intracranial model. These data provide insight into how GSCs are mechanistically distinct from their less tumorigenic counterparts and suggest that NOS2 inhibition may be an efficacious approach to treating this devastating disease.


Subject(s)
Cell Proliferation , Glioma/metabolism , Neoplastic Stem Cells/metabolism , Nitric Oxide Synthase Type II/metabolism , Animals , Autoantigens/metabolism , Cells, Cultured , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Neural Stem Cells/metabolism , Nitric Oxide/metabolism , Tumor Cells, Cultured
6.
J Biol Chem ; 299(11): 105299, 2023 11.
Article in English | MEDLINE | ID: mdl-37777156

ABSTRACT

Microbes living in the intestine can regulate key signaling processes in the central nervous system that directly impact brain health. This gut-brain signaling axis is partially mediated by microbe-host-dependent immune regulation, gut-innervating neuronal communication, and endocrine-like small molecule metabolites that originate from bacteria to ultimately cross the blood-brain barrier. Given the mounting evidence of gut-brain crosstalk, a new therapeutic approach of "psychobiotics" has emerged, whereby strategies designed to primarily modify the gut microbiome have been shown to improve mental health or slow neurodegenerative diseases. Diet is one of the most powerful determinants of gut microbiome community structure, and dietary habits are associated with brain health and disease. Recently, the metaorganismal (i.e., diet-microbe-host) trimethylamine N-oxide (TMAO) pathway has been linked to the development of several brain diseases including Alzheimer's, Parkinson's, and ischemic stroke. However, it is poorly understood how metaorganismal TMAO production influences brain function under normal physiological conditions. To address this, here we have reduced TMAO levels by inhibiting gut microbe-driven choline conversion to trimethylamine (TMA), and then performed comprehensive behavioral phenotyping in mice. Unexpectedly, we find that TMAO is particularly enriched in the murine olfactory bulb, and when TMAO production is blunted at the level of bacterial choline TMA lyase (CutC/D), olfactory perception is altered. Taken together, our studies demonstrate a previously underappreciated role for the TMAO pathway in olfactory-related behaviors.


Subject(s)
Olfactory Perception , Animals , Mice , Bacteria/metabolism , Choline/metabolism , Methylamines/metabolism , Female , Mice, Inbred C57BL
7.
Mol Cancer ; 23(1): 121, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853277

ABSTRACT

BACKGROUND: Platinum resistance is the primary cause of poor survival in ovarian cancer (OC) patients. Targeted therapies and biomarkers of chemoresistance are critical for the treatment of OC patients. Our previous studies identified cell surface CD55, a member of the complement regulatory proteins, drives chemoresistance and maintenance of cancer stem cells (CSCs). CSCs are implicated in tumor recurrence and metastasis in multiple cancers. METHODS: Protein localization assays including immunofluorescence and subcellular fractionation were used to identify CD55 at the cell surface and nucleus of cancer cells. Protein half-life determinations were used to compare cell surface and nuclear CD55 stability. CD55 deletion mutants were generated and introduced into cancer cells to identify the nuclear trafficking code, cisplatin sensitivity, and stem cell frequency that were assayed using in vitro and in vivo models. Detection of CD55 binding proteins was analyzed by immunoprecipitation followed by mass spectrometry. Target pathways activated by CD55 were identified by RNA sequencing. RESULTS: CD55 localizes to the nucleus of a subset of OC specimens, ascites from chemoresistant patients, and enriched in chemoresistant OC cells. We determined that nuclear CD55 is glycosylated and derived from the cell surface pool of CD55. Nuclear localization is driven by a trafficking code containing the serine/threonine (S/T) domain of CD55. Nuclear CD55 is necessary for cisplatin resistance, stemness, and cell proliferation in OC cells. CD55 S/T domain is necessary for nuclear entry and inducing chemoresistance to cisplatin in both in vitro and in vivo models. Deletion of the CD55 S/T domain is sufficient to sensitize chemoresistant OC cells to cisplatin. In the nucleus, CD55 binds and attenuates the epigenetic regulator and tumor suppressor ZMYND8 with a parallel increase in H3K27 trimethylation and members of the Polycomb Repressive Complex 2. CONCLUSIONS: For the first time, we show CD55 localizes to the nucleus in OC and promotes CSC and chemoresistance. Our studies identify a therapeutic mechanism for treating platinum resistant ovarian cancer by blocking CD55 nuclear entry.


Subject(s)
CD55 Antigens , Cell Nucleus , Chromatin , Cisplatin , Drug Resistance, Neoplasm , Histones , Neoplastic Stem Cells , Ovarian Neoplasms , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Female , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/drug effects , Animals , Mice , CD55 Antigens/metabolism , CD55 Antigens/genetics , Cell Line, Tumor , Histones/metabolism , Cell Nucleus/metabolism , Chromatin/metabolism , Methylation , Xenograft Model Antitumor Assays , Antineoplastic Agents/pharmacology , Protein Transport
8.
FASEB J ; 37(12): e23307, 2023 12.
Article in English | MEDLINE | ID: mdl-37983646

ABSTRACT

Glioblastoma is one of the deadliest malignancies facing modern oncology today. The ability of glioblastoma cells to diffusely spread into neighboring healthy brain makes complete surgical resection nearly impossible and contributes to the recurrent disease faced by most patients. Although research into the impact of iron on glioblastoma has addressed proliferation, there has been little investigation into how cellular iron impacts the ability of glioblastoma cells to migrate-a key question, especially in the context of the diffuse spread observed in these tumors. Herein, we show that increasing cellular iron content results in decreased migratory capacity of human glioblastoma cells. The decrease in migratory capacity was accompanied by a decrease in cellular polarization in the direction of movement. Expression of CDC42, a Rho GTPase that is essential for both cellular migration and establishment of polarity in the direction of cell movement, was reduced upon iron treatment. We then analyzed a single-cell RNA-seq dataset of human glioblastoma samples and found that cells at the tumor periphery had a gene signature that is consistent with having lower levels of cellular iron. Altogether, our results suggest that cellular iron content is impacting glioblastoma cell migratory capacity and that cells with higher iron levels exhibit reduced motility.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/metabolism , Cell Movement/genetics , Brain/metabolism , Cell Line, Tumor , Brain Neoplasms/metabolism , Cell Proliferation
9.
Alzheimers Dement ; 20(2): 1334-1349, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37985399

ABSTRACT

INTRODUCTION: The molecular mechanisms that contribute to sex differences, in particular female predominance, in Alzheimer's disease (AD) prevalence, symptomology, and pathology, are incompletely understood. METHODS: To address this problem, we investigated cellular metabolism and immune responses ("immunometabolism endophenotype") across AD individuals as a function of sex with diverse clinical diagnosis of cognitive status at death (cogdx), Braak staging, and Consortium to Establish a Registry for AD (CERAD) scores using human cortex metabolomics and transcriptomics data from the Religious Orders Study / Memory and Aging Project (ROSMAP) cohort. RESULTS: We identified sex-specific metabolites, immune and metabolic genes, and pathways associated with the AD diagnosis and progression. We identified female-specific elevation in glycerophosphorylcholine and N-acetylglutamate, which are AD inflammatory metabolites involved in interleukin (IL)-17 signaling, C-type lectin receptor, interferon signaling, and Toll-like receptor pathways. We pinpointed distinct microglia-specific immunometabolism endophenotypes (i.e., lipid- and amino acid-specific IL-10 and IL-17 signaling pathways) between female and male AD subjects. In addition, female AD subjects showed evidence of diminished excitatory neuron and microglia communications via glutamate-mediated immunometabolism. DISCUSSION: Our results point to new understanding of the molecular basis for female predominance in AD, and warrant future independent validations with ethnically diverse patient cohorts to establish a likely causal relationship of microglial immunometabolism in the sex differences in AD. HIGHLIGHTS: Sex-specific immune metabolites, gene networks and pathways, are associated with Alzheimer's disease pathogenesis and disease progression. Female AD subjects exhibit microglial immunometabolism endophenotypes characterized by decreased glutamate metabolism and elevated interleukin-10 pathway activity. Female AD subjects showed a shift in glutamate-mediated cell-cell communications between excitatory neurons to microglia and astrocyte.


Subject(s)
Alzheimer Disease , Humans , Male , Female , Alzheimer Disease/pathology , Microglia/metabolism , Endophenotypes , Sex Characteristics , Glutamates/genetics , Glutamates/metabolism
10.
Semin Cancer Biol ; 82: 162-175, 2022 07.
Article in English | MEDLINE | ID: mdl-33640445

ABSTRACT

Brain tumors remain one of the most difficult tumors to treat and, depending on the diagnosis, have a poor prognosis. Of brain tumors, glioblastoma (GBM) is the most common malignant glioma and has a dismal prognosis, with only about 5% of patients alive five years after diagnosis. While advances in targeted therapies and immunotherapies are rapidly improving outcomes in a variety of other cancers, the standard of care for GBM has largely remained unaltered since 2005. There are many well-studied challenges that are either unique to brain tumors (i.e., blood-brain barrier and immunosuppressive environment) or amplified within GBM (i.e., tumor heterogeneity at the cellular and molecular levels, plasticity, and cancer stem cells) that make this disease particularly difficult to treat. While we touch on all these concepts, the focus of this review is to discuss the immense inter- and intra-tumoral heterogeneity and advances in our understanding of tumor cell plasticity and epigenetics in GBM. With each improvement in technology, our understanding of the complexity of tumoral heterogeneity and plasticity improves and we gain more clarity on the causes underlying previous therapeutic failures. However, these advances are unlocking new therapeutic opportunities that scientists and physicians are currently exploiting and have the potential for new breakthroughs.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Brain Neoplasms/drug therapy , Brain Neoplasms/therapy , Cell Plasticity , Glioblastoma/drug therapy , Glioblastoma/therapy , Glioma/pathology , Humans , Neoplastic Stem Cells/pathology
11.
Genes Dev ; 29(12): 1203-17, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26109046

ABSTRACT

Tissues with defined cellular hierarchies in development and homeostasis give rise to tumors with cellular hierarchies, suggesting that tumors recapitulate specific tissues and mimic their origins. Glioblastoma (GBM) is the most prevalent and malignant primary brain tumor and contains self-renewing, tumorigenic cancer stem cells (CSCs) that contribute to tumor initiation and therapeutic resistance. As normal stem and progenitor cells participate in tissue development and repair, these developmental programs re-emerge in CSCs to support the development and progressive growth of tumors. Elucidation of the molecular mechanisms that govern CSCs has informed the development of novel targeted therapeutics for GBM and other brain cancers. CSCs are not self-autonomous units; rather, they function within an ecological system, both actively remodeling the microenvironment and receiving critical maintenance cues from their niches. To fulfill the future goal of developing novel therapies to collapse CSC dynamics, drawing parallels to other normal and pathological states that are highly interactive with their microenvironments and that use developmental signaling pathways will be beneficial.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Neoplastic Stem Cells/pathology , Animals , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/immunology , Glioblastoma/therapy , Humans , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/metabolism
12.
Phys Biol ; 19(3)2022 04 18.
Article in English | MEDLINE | ID: mdl-35078159

ABSTRACT

The role of plasticity and epigenetics in shaping cancer evolution and response to therapy has taken center stage with recent technological advances including single cell sequencing. This roadmap article is focused on state-of-the-art mathematical and experimental approaches to interrogate plasticity in cancer, and addresses the following themes and questions: is there a formal overarching framework that encompasses both non-genetic plasticity and mutation-driven somatic evolution? How do we measure and model the role of the microenvironment in influencing/controlling non-genetic plasticity? How can we experimentally study non-genetic plasticity? Which mathematical techniques are required or best suited? What are the clinical and practical applications and implications of these concepts?


Subject(s)
Epigenesis, Genetic , Neoplasms , Epigenomics , Humans , Mutation , Neoplasms/drug therapy , Neoplasms/genetics , Tumor Microenvironment
13.
Biomed Chromatogr ; 36(3): e5310, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34981554

ABSTRACT

Previously compound I showed great anti-glioblastoma activity without toxicity in a mouse xenograft study. In this study, a sensitive and rapid high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed and validated to investigate the pharmacokinetics and brain distribution of compound I in mice. The protein precipitation method was applied to extract the compound from mouse plasma and brain homogenates, and it was then separated using a Kinetex C18 column with a mobile phase consisting of acetonitrile-0.1% formic acid water (50:50, v/v). The analytes were detected with multiple reaction monitoring for the quantitative response of the compounds. The inter- and intra-day precisions were <8.29 and 3.85%, respectively, and the accuracy range was within ±7.33%. The method was successfully applied to evaluate the pharmacokinetics of compound I in mouse plasma and brain tissue. The peak concentration in plasma was achieved within 1 h. The apparent elimination half-life was 4.06 h. The peak concentration of compound I in brain tissue was 0.88 µg/g. The results indicated that compound I was rapidly distributed and could cross the blood-brain barrier. The pharmacokinetic profile summarized provides valuable information for the further investigation of compound I as a potential anti-glioblastoma agent.


Subject(s)
Blood-Brain Barrier , Tandem Mass Spectrometry , Administration, Oral , Animals , Chromatography, High Pressure Liquid/methods , Humans , Mice , Reproducibility of Results , Tandem Mass Spectrometry/methods
14.
J Neurooncol ; 155(3): 363-372, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34761331

ABSTRACT

BACKGROUND/PURPOSE: Glioblastoma (GBM) is the most common primary malignant brain tumor. Sex has been shown to be an important prognostic factor for GBM. The purpose of this study was to develop and independently validate sex-specific nomograms for estimation of individualized GBM survival probabilities using data from 2 independent NRG Oncology clinical trials. METHODS: This analysis included information on 752 (NRG/RTOG 0525) and 599 (NRG/RTOG 0825) patients with newly diagnosed GBM. The Cox proportional hazard models by sex were developed using NRG/RTOG 0525 and significant variables were identified using a backward selection procedure. The final selected models by sex were then independently validated using NRG/RTOG 0825. RESULTS: Final nomograms were built by sex. Age at diagnosis, KPS, MGMT promoter methylation and location of tumor were common significant predictors of survival for both sexes. For both sexes, tumors in the frontal lobes had significantly better survival than tumors of multiple sites. Extent of resection, and use of corticosteroids were significant predictors of survival for males. CONCLUSIONS: A sex specific nomogram that assesses individualized survival probabilities (6-, 12- and 24-months) for patients with GBM could be more useful than estimation of overall survival as there are factors that differ between males and females. A user friendly online application can be found here- https://npatilshinyappcalculator.shinyapps.io/SexDifferencesInGBM/ .


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Female , Glioblastoma/diagnosis , Glioblastoma/genetics , Glioblastoma/therapy , Humans , Male , Nomograms , Prognosis , Promoter Regions, Genetic , Proportional Hazards Models
15.
Genes Dev ; 26(11): 1247-62, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22661233

ABSTRACT

Growth factor-mediated proliferation and self-renewal maintain tissue-specific stem cells and are frequently dysregulated in cancers. Platelet-derived growth factor (PDGF) ligands and receptors (PDGFRs) are commonly overexpressed in gliomas and initiate tumors, as proven in genetically engineered models. While PDGFRα alterations inform intertumoral heterogeneity toward a proneural glioblastoma (GBM) subtype, we interrogated the role of PDGFRs in intratumoral GBM heterogeneity. We found that PDGFRα is expressed only in a subset of GBMs, while PDGFRß is more commonly expressed in tumors but is preferentially expressed by self-renewing tumorigenic GBM stem cells (GSCs). Genetic or pharmacological targeting of PDGFRß (but not PDGFRα) attenuated GSC self-renewal, survival, tumor growth, and invasion. PDGFRß inhibition decreased activation of the cancer stem cell signaling node STAT3, while constitutively active STAT3 rescued the loss of GSC self-renewal caused by PDGFRß targeting. In silico survival analysis demonstrated that PDGFRB informed poor prognosis, while PDGFRA was a positive prognostic factor. Our results may explain mixed clinical responses of anti-PDGFR-based approaches and suggest the need for integration of models of cancer as an organ system into development of cancer therapies.


Subject(s)
Glioblastoma/pathology , Neoplastic Stem Cells/pathology , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism , Animals , Cell Proliferation , Cell Survival , Gene Knockdown Techniques , Glioblastoma/metabolism , Humans , Mice , Neoplasm Transplantation , Neoplastic Stem Cells/metabolism , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor beta/genetics , STAT3 Transcription Factor/metabolism , Transplantation, Heterologous
16.
Cytometry A ; 95(3): 290-301, 2019 03.
Article in English | MEDLINE | ID: mdl-30729665

ABSTRACT

Cancer stem cells (CSCs) are a heterogeneous and dynamic self-renewing population that stands at the top of tumor cellular hierarchy and contribute to tumor recurrence and therapeutic resistance. As methods of CSC isolation and functional interrogation advance, there is a need for a reliable and accessible quantitative approach to assess heterogeneity and state transition dynamics in CSCs. We developed a high-throughput automated single cell imaging analysis (HASCIA) approach for the quantitative assessment of protein expression with single-cell resolution and applied the method to investigate spatiotemporal factors that influence CSC state transition using glioblastoma (GBM) CSCs (GSCs) as a model system. We were able to validate the quantitative nature of this approach through comparison of the protein expression levels determined by HASCIA to those determined by immunoblotting. A virtue of HASCIA was exemplified by detection of a subpopulation of SOX2-low cells, which expanded in fraction size during state transition. HASCIA also revealed that GSCs were committed to loose stem cell state at an earlier time point than the average SOX2 level decreased. Functional assessment of stem cell frequency in combination with the quantification of SOX2 expression by HASCIA defined a stable cutoff of SOX2 expression level for stem cell state. We also developed an approach to assess local cell density and found that denser monolayer areas possess higher average levels of SOX2, higher cell diversity, and a presence of a sub-population of slowly proliferating SOX2-low GSCs. HASCIA is an open source software that facilitates understanding the dynamics of heterogeneous cell population such as that of GSCs and their progeny. It is a powerful and easy-to-use image analysis and statistical analysis tool available at https://hascia.lerner.ccf.org. © 2019 International Society for Advancement of Cytometry.


Subject(s)
Image Processing, Computer-Assisted/methods , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/metabolism , SOXB1 Transcription Factors/metabolism , Single-Cell Analysis/methods , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Count , Cell Line, Tumor , Cell Proliferation/genetics , Cells, Cultured , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Mice , Mice, Inbred NOD , Neoplastic Stem Cells/ultrastructure , SOXB1 Transcription Factors/analysis , SOXB1 Transcription Factors/genetics , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Software
17.
Acta Neuropathol ; 138(6): 1033-1052, 2019 12.
Article in English | MEDLINE | ID: mdl-31463571

ABSTRACT

Glioblastomas (GBMs) are malignant central nervous system (CNS) neoplasms with a very poor prognosis. They display cellular hierarchies containing self-renewing tumourigenic glioma stem cells (GSCs) in a complex heterogeneous microenvironment. One proposed GSC niche is the extracellular matrix (ECM)-rich perivascular bed of the tumour. Here, we report that the ECM binding dystroglycan (DG) receptor is expressed and functionally glycosylated on GSCs residing in the perivascular niche. Glycosylated αDG is highly expressed and functional on the most aggressive mesenchymal-like (MES-like) GBM tumour compartment. Furthermore, we found that DG acts to maintain an MES-like state via tight control of MAPK activation. Antibody-based blockade of αDG induces robust ERK-mediated differentiation leading to reduced GSC potential. DG was shown to be required for tumour initiation in MES-like GBM, with constitutive loss significantly delaying or preventing tumourigenic potential in-vivo. These findings reveal a central role of the DG receptor, not only as a structural element, but also as a critical factor promoting MES-like GBM and the maintenance of GSCs residing in the perivascular niche.


Subject(s)
Brain Neoplasms/metabolism , Dystroglycans/metabolism , Glioma/metabolism , Neoplastic Stem Cells/metabolism , Tumor Microenvironment/physiology , Animals , Brain Neoplasms/blood supply , Brain Neoplasms/surgery , Cell Transformation, Neoplastic , Cells, Cultured , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Glioma/blood supply , Glioma/surgery , Humans , Mice, Inbred NOD , Mice, SCID , Neoplasm Transplantation
18.
J Pathol ; 244(3): 260-264, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29282720

ABSTRACT

Glioblastoma (GBM) cancer stem cells (CSCs) are insidious. They extensively infiltrate brain tissue, resist radiotherapy and chemotherapy, and are thought to represent the ultimate drivers of disease progression. New research has identified CD109, a GPI-anchored protein, on a population of perivascular CSCs. Investigation of primary human tumour tissue suggests a role for CD109-expressing CSCs in the progression from low-grade to high-grade glioma, and animal modelling reveals a critical role for CD109 in the maintenance of the GBM CSC phenotype. Furthermore, CD109-expressing CSCs appear to drive the proliferation of adjacent non-stem tumour cells (NSTCs) in a rare example of CSC-NSTC cooperative interaction. With this Commentary, we highlight the newly revealed biology of CD109, and offer a synthesis of the published information on glioma CSCs in a variety of anatomical growth zones. We also discuss the landscape of interacting cells within GBM tumours, emphasizing the few reported examples of pro-tumourigenic, interactive tumour cell partnerships, as well as a variety of tumour cell-non-transformed neural cell interactions. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Colorectal Neoplasms , Glioblastoma , Glioma , Adult , Animals , Antigens, CD/genetics , Bone Morphogenetic Proteins , GPI-Linked Proteins , Humans , Neoplasm Proteins , Neoplastic Stem Cells , Prognosis , United Kingdom
19.
J Neurochem ; 144(6): 688-690, 2018 03.
Article in English | MEDLINE | ID: mdl-29644711

ABSTRACT

Glioblastoma is a malignant brain tumor that inevitably develops resistance to standard of care drug temozolomide (TMZ) due to a population of cells called cancer stem cells (CSCs). These cells utilize progenitor cell signaling programs and develop robust DNA repair machinery. In this editorial highlight we focus on stem cell regulation of TMZ resistance and discuss findings of Happold et al. () that outline direct transcriptional regulation of DNA repair enzyme O6-methylguanine DNA methyltransferase (MGMT) in glioblastoma CSCs through NFkB activation. The authors found that cells cultured in CSC propagating conditions exhibit increase in MGMT expression when compared to adherent differentiated monolayer cells. This in turn increases resistance to standard of care drug temozolomide (TMZ) in these cells. NFkB activation was found to directly activate expression of MGMT in sphere cultured GBM CSC.


Subject(s)
Glioblastoma , Antineoplastic Agents, Alkylating , DNA , Dacarbazine , Drug Resistance, Neoplasm/drug effects , Guanine/analogs & derivatives , Humans , Temozolomide
20.
Biochim Biophys Acta Biomembr ; 1860(1): 237-243, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28655619

ABSTRACT

This article is a report of the "International Colloquium on Gap junctions: 50Years of Impact on Cancer" that was held 8-9 September 2016, at the Amphitheater "Pôle Biologie Santé" of the University of Poitiers (Poitiers, France). The colloquium was organized by M Mesnil (Université de Poitiers, Poitiers, France) and C Naus (University of British Columbia, Vancouver, Canada) to celebrate the 50th anniversary of the seminal work published in 1966 by Loewenstein and Kanno [Intercellular communication and the control of tissue growth: lack of communication between cancer cells, Nature, 116 (1966) 1248-1249] which initiated studies on the involvement of gap junctions in carcinogenesis. During the colloquium, 15 participants presented reviews or research updates in the field which are summarized below.


Subject(s)
Gap Junctions/metabolism , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Animals , Gap Junctions/genetics , Gap Junctions/pathology , Humans , Neoplasm Proteins/genetics , Neoplasms/genetics , Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL