ABSTRACT
There has been considerable interest in empirical research on epistemic emotions, i.e., emotions related to knowledge-generating qualities of cognitive tasks and activities such as curiosity, interest, and surprise. One big challenge when studying epistemic emotions is systematically inducting these emotions in restricted experimental settings. The current study created a novel stimulus set called Magic Curiosity Arousing Tricks (MagicCATs): a collection of 166 short magic trick video clips that aim to induce a variety of epistemic emotions. MagicCATs are freely available for research and can be used in a variety of ways to examine epistemic emotions. Rating data also support that the magic tricks elicit a variety of epistemic emotions with sufficient inter-stimulus variability, demonstrating good psychometric properties for their use in psychological experiments.
Subject(s)
Emotions , Exploratory Behavior , Humans , Knowledge , Psychometrics , WakefulnessABSTRACT
Research has shown that focused attention meditation not only improves our cognitive and motivational functioning (e.g., attention, mental health), it influences the way our brain networks [e.g., default mode network (DMN), fronto-parietal network (FPN), and sensory-motor network (SMN)] function and operate. However, surprisingly little attention has been paid to the possibility that meditation alters the architecture (composition) of these functional brain networks. Here, using a single-case experimental design with intensive longitudinal data, we examined the effect of mediation practice on intra-individual changes in the composition of whole-brain networks. The results showed that meditation (1) changed the community size (with a number of regions in the FPN being merged into the DMN after meditation) and (2) led to instability in the community allegiance of the regions in the FPN. These results suggest that, in addition to altering specific functional connectivity, meditation leads to reconfiguration of whole-brain network architecture. The reconfiguration of community architecture in the brain provides fruitful information about the neural mechanisms of meditation.
Subject(s)
Attention/physiology , Brain/physiology , Meditation , Adult , Brain/diagnostic imaging , Humans , MaleABSTRACT
Curiosity is often portrayed as a desirable feature of human faculty. However, curiosity may come at a cost that sometimes puts people in harmful situations. Here, using a set of behavioural and neuroimaging experiments with stimuli that strongly trigger curiosity (for example, magic tricks), we examine the psychological and neural mechanisms underlying the motivational effect of curiosity. We consistently demonstrate that across different samples, people are indeed willing to gamble, subjecting themselves to electric shocks to satisfy their curiosity for trivial knowledge that carries no apparent instrumental value. Also, this influence of curiosity shares common neural mechanisms with that of hunger for food. In particular, we show that acceptance (compared to rejection) of curiosity-driven or incentive-driven gambles is accompanied by enhanced activity in the ventral striatum when curiosity or hunger was elicited, which extends into the dorsal striatum when participants made a decision.
Subject(s)
Corpus Striatum/physiology , Decision Making/physiology , Exploratory Behavior , Hunger/physiology , Ventral Striatum/diagnostic imaging , Ventral Striatum/physiology , Corpus Striatum/diagnostic imaging , Electroshock/psychology , Exploratory Behavior/physiology , Female , Gambling/diagnostic imaging , Gambling/physiopathology , Humans , Magic/psychology , Magnetic Resonance Imaging , Male , Motivation/physiology , Nerve Net/diagnostic imaging , Nerve Net/physiology , Neuroimaging , Nucleus Accumbens/diagnostic imaging , Nucleus Accumbens/physiology , Young AdultABSTRACT
We report a lesion-symptom mapping analysis of visual speech production deficits in a large group (280) of stroke patients at the sub-acute stage (<120 days post-stroke). Performance on object naming was evaluated alongside three other tests of visual speech production, namely sentence production to a picture, sentence reading and nonword reading. A principal component analysis was performed on all these tests' scores and revealed a 'shared' component that loaded across all the visual speech production tasks and a 'unique' component that isolated object naming from the other three tasks. Regions for the shared component were observed in the left fronto-temporal cortices, fusiform gyrus and bilateral visual cortices. Lesions in these regions linked to both poor object naming and impairment in general visual-speech production. On the other hand, the unique naming component was potentially associated with the bilateral anterior temporal poles, hippocampus and cerebellar areas. This is in line with the models proposing that object naming relies on a left-lateralised language dominant system that interacts with a bilateral anterior temporal network. Neuropsychological deficits in object naming can reflect both the increased demands specific to the task and the more general difficulties in language processing.