Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
PLoS Genet ; 8(11): e1003103, 2012.
Article in English | MEDLINE | ID: mdl-23209447

ABSTRACT

Nasopharyngeal carcinoma (NPC) is an epithelial malignancy facilitated by Epstein-Barr Virus infection. Here we resolve the major genetic influences for NPC incidence using a genome-wide association study (GWAS), independent cohort replication, and high-resolution molecular HLA class I gene typing including 4,055 study participants from the Guangxi Zhuang Autonomous Region and Guangdong province of southern China. We detect and replicate strong association signals involving SNPs, HLA alleles, and amino acid (aa) variants across the major histocompatibility complex-HLA-A, HLA -B, and HLA -C class I genes (P(HLA-A-aa-site-62) = 7.4 × 10(-29); P (HLA-B-aa-site-116) = 6.5 × 10(-19); P (HLA-C-aa-site-156) = 6.8 × 10(-8) respectively). Over 250 NPC-HLA associated variants within HLA were analyzed in concert to resolve separate and largely independent HLA-A, -B, and -C gene influences. Multivariate logistical regression analysis collapsed significant associations in adjacent genes spanning 500 kb (OR2H1, GABBR1, HLA-F, and HCG9) as proxies for peptide binding motifs carried by HLA- A*11:01. A similar analysis resolved an independent association signal driven by HLA-B*13:01, B*38:02, and B*55:02 alleles together. NPC resistance alleles carrying the strongly associated amino acid variants implicate specific class I peptide recognition motifs in HLA-A and -B peptide binding groove as conferring strong genetic influence on the development of NPC in China.


Subject(s)
Genome-Wide Association Study , HLA-A Antigens , HLA-B Antigens , Nasopharyngeal Neoplasms , Adult , Aged , Aged, 80 and over , Alleles , Asian People , Carcinoma , China , Female , Genetic Predisposition to Disease , HLA-A Antigens/genetics , HLA-A Antigens/immunology , HLA-B Antigens/genetics , HLA-B Antigens/immunology , HLA-C Antigens/genetics , HLA-C Antigens/immunology , Haplotypes , Herpesvirus 4, Human , Humans , Male , Middle Aged , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/immunology , Polymorphism, Single Nucleotide
2.
J Infect Dis ; 203(10): 1491-502, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21502085

ABSTRACT

BACKGROUND: Host genetic variation influences human immunodeficiency virus (HIV) infection and progression to AIDS. Here we used clinically well-characterized subjects from 5 pretreatment HIV/AIDS cohorts for a genome-wide association study to identify gene associations with rate of AIDS progression. METHODS: European American HIV seroconverters (n = 755) were interrogated for single-nucleotide polymorphisms (SNPs) (n = 700,022) associated with progression to AIDS 1987 (Cox proportional hazards regression analysis, co-dominant model). RESULTS: Association with slower progression was observed for SNPs in the gene PARD3B. One of these, rs11884476, reached genome-wide significance (relative hazard = 0.3; P =3. 370 × 10(-9)) after statistical correction for 700,022 SNPs and contributes 4.52% of the overall variance in AIDS progression in this study. Nine of the top-ranked SNPs define a PARD3B haplotype that also displays significant association with progression to AIDS (hazard ratio, 0.3; P = 3.220 × 10(-8)). One of these SNPs, rs10185378, is a predicted exonic splicing enhancer; significant alteration in the expression profile of PARD3B splicing transcripts was observed in B cell lines with alternate rs10185378 genotypes. This SNP was typed in European cohorts of rapid progressors and was found to be protective for AIDS 1993 definition (odds ratio, 0.43, P = .025). CONCLUSIONS: These observations suggest a potential unsuspected pathway of host genetic influence on the dynamics of AIDS progression.


Subject(s)
Acquired Immunodeficiency Syndrome/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Gene Expression Regulation/immunology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Polymorphism, Single Nucleotide , Acquired Immunodeficiency Syndrome/pathology , Chromosome Mapping , Disease Progression , Genome, Human , Humans
3.
J Infect Dis ; 202(12): 1836-45, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21083371

ABSTRACT

BACKGROUND: High-throughput genome-wide techniques have facilitated the identification of previously unknown host proteins involved in cellular human immunodeficiency virus (HIV) infection. Recently, 3 independent studies have used small interfering RNA technology to silence each gene in the human genome to determine the importance of each in HIV infection. Genes conferring a significant effect were termed HIV-dependency factors (HDFs). METHODS: We assembled high-density panels of 6380 single-nucleotide polymorphisms (SNPs) in 278 HDF genes and tested for genotype associations with HIV infection and AIDS progression in 1633 individuals from clinical AIDS cohorts. RESULTS: After statistical correction for multiple tests, significant associations with HIV acquisition were found for SNPs in 2 genes, NCOR2 and IDH1. Weaker associations with AIDS progression were revealed for SNPs within the TM9SF2 and EGFR genes. CONCLUSIONS: This study independently verifies the influence of NCOR2 and IDH1 on HIV transmission, and its findings suggest that variation in these genes affects susceptibility to HIV infection in exposed individuals.


Subject(s)
Disease Susceptibility , HIV Infections/genetics , HIV Infections/transmission , HIV-1/pathogenicity , Host-Pathogen Interactions , Isocitrate Dehydrogenase/genetics , Nuclear Receptor Co-Repressor 2/genetics , Disease Progression , ErbB Receptors/genetics , Gene Frequency , Humans , Male , Membrane Proteins/genetics , Polymorphism, Single Nucleotide
4.
BMC Genomics ; 11: 724, 2010 Dec 22.
Article in English | MEDLINE | ID: mdl-21176216

ABSTRACT

BACKGROUND: As we enter an era when testing millions of SNPs in a single gene association study will become the standard, consideration of multiple comparisons is an essential part of determining statistical significance. Bonferroni adjustments can be made but are conservative due to the preponderance of linkage disequilibrium (LD) between genetic markers, and permutation testing is not always a viable option. Three major classes of corrections have been proposed to correct the dependent nature of genetic data in Bonferroni adjustments: permutation testing and related alternatives, principal components analysis (PCA), and analysis of blocks of LD across the genome. We consider seven implementations of these commonly used methods using data from 1514 European American participants genotyped for 700,078 SNPs in a GWAS for AIDS. RESULTS: A Bonferroni correction using the number of LD blocks found by the three algorithms implemented by Haploview resulted in an insufficiently conservative threshold, corresponding to a genome-wide significance level of α = 0.15 - 0.20. We observed a moderate increase in power when using PRESTO, SLIDE, and simpleℳ when compared with traditional Bonferroni methods for population data genotyped on the Affymetrix 6.0 platform in European Americans (α = 0.05 thresholds between 1 × 10(-7) and 7 × 10(-8)). CONCLUSIONS: Correcting for the number of LD blocks resulted in an anti-conservative Bonferroni adjustment. SLIDE and simpleℳ are particularly useful when using a statistical test not handled in optimized permutation testing packages, and genome-wide corrected p-values using SLIDE, are much easier to interpret for consumers of GWAS studies.


Subject(s)
Genome-Wide Association Study/methods , Case-Control Studies , Databases, Genetic , Haplotypes/genetics , Humans , Linkage Disequilibrium/genetics , Principal Component Analysis , Time Factors
5.
J Hum Genet ; 55(9): 613-20, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20574427

ABSTRACT

We attempted to refine the understanding of an association of Y-chromosomal haplogroup I (hg-I) with enhanced AIDS progression that had been previously reported. First, we compared the progression phenotype between hg-I and its phylogenetically closest haplogroup J. Then, we took a candidate gene approach resequencing DDX3Y, a crucial autoimmunity gene, in hg-I and other common European Y-chromosome haplogroups looking for functional variants. We extended the genetic analyses to CD24L4 and compared and contrasted the roles of disease-based selection, demographic history and population structure shaping the contemporary genetic landscape of hg-I chromosomes. Our results confirmed and refined the AIDS progression signal to hg-I, though no gene variant was identified that can explain the disease association. Molecular evolutionary and genetic analyses of the examined loci suggested a unique evolutionary history in hg-I, probably shaped by complex interactions of selection, demographic history and high geographical differentiation leading to the formation of distinct hg-I subhaplogroups that today are associated with HIV/AIDS onset. Clearly, further studies on Y-chromosome candidate loci sequencing to discover functional variants and discern the roles of evolutionary factors are warranted.


Subject(s)
Acquired Immunodeficiency Syndrome/genetics , Chromosomes, Human, Y , DEAD-box RNA Helicases/genetics , Haplotypes , Polymorphism, Single Nucleotide , Alleles , CD24 Antigen/genetics , Disease Progression , Genetic Variation , Genetics, Population , Humans , Male , Minor Histocompatibility Antigens , Phylogeny , White People/genetics
6.
BMC Genet ; 9: 14, 2008 Feb 05.
Article in English | MEDLINE | ID: mdl-18251999

ABSTRACT

BACKGROUND: Genetic isolates such as the Ashkenazi Jews (AJ) potentially offer advantages in mapping novel loci in whole genome disease association studies. To analyze patterns of genetic variation in AJ, genotypes of 101 healthy individuals were determined using the Affymetrix EAv3 500 K SNP array and compared to 60 CEPH-derived HapMap (CEU) individuals. 435,632 SNPs overlapped and met annotation criteria in the two groups. RESULTS: A small but significant global difference in allele frequencies between AJ and CEU was demonstrated by a mean FST of 0.009 (P < 0.001); large regions that differed were found on chromosomes 2 and 6. Haplotype blocks inferred from pairwise linkage disequilibrium (LD) statistics (Haploview) as well as by expectation-maximization haplotype phase inference (HAP) showed a greater number of haplotype blocks in AJ compared to CEU by Haploview (50,397 vs. 44,169) or by HAP (59,269 vs. 54,457). Average haplotype blocks were smaller in AJ compared to CEU (e.g., 36.8 kb vs. 40.5 kb HAP). Analysis of global patterns of local LD decay for closely-spaced SNPs in CEU demonstrated more LD, while for SNPs further apart, LD was slightly greater in the AJ. A likelihood ratio approach showed that runs of homozygous SNPs were approximately 20% longer in AJ. A principal components analysis was sufficient to completely resolve the CEU from the AJ. CONCLUSION: LD in the AJ versus was lower than expected by some measures and higher by others. Any putative advantage in whole genome association mapping using the AJ population will be highly dependent on regional LD structure.


Subject(s)
Genetic Variation , Genotype , Jews/genetics , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Chromosome Mapping , Female , Gene Frequency , Haplotypes , Homozygote , Humans , Principal Component Analysis
7.
PLoS One ; 5(9): e12862, 2010 Sep 21.
Article in English | MEDLINE | ID: mdl-20877624

ABSTRACT

BACKGROUND: The human mitochondrial genome includes only 13 coding genes while nuclear-encoded genes account for 99% of proteins responsible for mitochondrial morphology, redox regulation, and energetics. Mitochondrial pathogenesis occurs in HIV patients and genetically, mitochondrial DNA haplogroups with presumed functional differences have been associated with differential AIDS progression. METHODOLOGY/PRINCIPAL FINDINGS: Here we explore whether single nucleotide polymorphisms (SNPs) within 904 of the estimated 1,500 genes that specify nuclear-encoded mitochondrial proteins (NEMPs) influence AIDS progression among HIV-1 infected patients. We examined NEMPs for association with the rate of AIDS progression using genotypes generated by an Affymetrix 6.0 genotyping array of 1,455 European American patients from five US AIDS cohorts. Successfully genotyped SNPs gave 50% or better haplotype coverage for 679 of known NEMP genes. With a Bonferroni adjustment for the number of genes and tests examined, multiple SNPs within two NEMP genes showed significant association with AIDS progression: acyl-CoA synthetase medium-chain family member 4 (ACSM4) on chromosome 12 and peroxisomal D3,D2-enoyl-CoA isomerase (PECI) on chromosome 6. CONCLUSIONS: Our previous studies on mitochondrial DNA showed that European haplogroups with presumed functional differences were associated with AIDS progression and HAART mediated adverse events. The modest influences of nuclear-encoded mitochondrial genes found in the current study add support to the idea that mitochondrial function plays a role in AIDS pathogenesis.


Subject(s)
Acquired Immunodeficiency Syndrome/genetics , Cell Nucleus/genetics , Disease Progression , Genetic Variation , Mitochondria/metabolism , Acquired Immunodeficiency Syndrome/metabolism , Acquired Immunodeficiency Syndrome/pathology , Cell Nucleus/metabolism , Cohort Studies , Female , Genotype , Humans , Male , Mitochondria/genetics , Polymorphism, Single Nucleotide , Protein Transport , White People/genetics
8.
Am J Hum Genet ; 74(5): 1001-13, 2004 May.
Article in English | MEDLINE | ID: mdl-15088270

ABSTRACT

Admixture mapping (also known as "mapping by admixture linkage disequilibrium," or MALD) provides a way of localizing genes that cause disease, in admixed ethnic groups such as African Americans, with approximately 100 times fewer markers than are required for whole-genome haplotype scans. However, it has not been possible to perform powerful scans with admixture mapping because the method requires a dense map of validated markers known to have large frequency differences between Europeans and Africans. To create such a map, we screened through databases containing approximately 450000 single-nucleotide polymorphisms (SNPs) for which frequencies had been estimated in African and European population samples. We experimentally confirmed the frequencies of the most promising SNPs in a multiethnic panel of unrelated samples and identified 3011 as a MALD map (1.2 cM average spacing). We estimate that this map is approximately 70% informative in differentiating African versus European origins of chromosomal segments. This map provides a practical and powerful tool, which is freely available without restriction, for screening for disease genes in African American patient cohorts. The map is especially appropriate for those diseases that differ in incidence between the parental African and European populations.


Subject(s)
Black or African American/genetics , Chromosome Mapping/methods , Genetic Diseases, Inborn/ethnology , Haplotypes/genetics , Linkage Disequilibrium/genetics , Polymorphism, Single Nucleotide/genetics , Alleles , Ethnicity/genetics , Gene Frequency/genetics , Genetic Diseases, Inborn/genetics , Genetic Markers/genetics , Genetics, Population , Genome, Human , Humans , Microsatellite Repeats , White People/genetics
SELECTION OF CITATIONS
SEARCH DETAIL