Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 21(10): 1194-1204, 2020 10.
Article in English | MEDLINE | ID: mdl-32895539

ABSTRACT

Early atherosclerosis depends upon responses by immune cells resident in the intimal aortic wall. Specifically, the healthy intima is thought to be populated by vascular dendritic cells (DCs) that, during hypercholesterolemia, initiate atherosclerosis by being the first to accumulate cholesterol. Whether these cells remain key players in later stages of disease is unknown. Using murine lineage-tracing models and gene expression profiling, we reveal that myeloid cells present in the intima of the aortic arch are not DCs but instead specialized aortic intima resident macrophages (MacAIR) that depend upon colony-stimulating factor 1 and are sustained by local proliferation. Although MacAIR comprise the earliest foam cells in plaques, their proliferation during plaque progression is limited. After months of hypercholesterolemia, their presence in plaques is overtaken by recruited monocytes, which induce MacAIR-defining genes. These data redefine the lineage of intimal phagocytes and suggest that proliferation is insufficient to sustain generations of macrophages during plaque progression.


Subject(s)
Aorta/immunology , Macrophages/immunology , Monocytes/immunology , Plaque, Atherosclerotic/immunology , Tunica Intima/immunology , Animals , Cell Differentiation , Cell Lineage , Cell Movement , Cell Proliferation , Cells, Cultured , Cholesterol/metabolism , Disease Progression , Humans , Macrophage Colony-Stimulating Factor/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Parabiosis , Phagocytosis
2.
Cell ; 169(3): 510-522.e20, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28431249

ABSTRACT

Organ-specific functions of tissue-resident macrophages in the steady-state heart are unknown. Here, we show that cardiac macrophages facilitate electrical conduction through the distal atrioventricular node, where conducting cells densely intersperse with elongated macrophages expressing connexin 43. When coupled to spontaneously beating cardiomyocytes via connexin-43-containing gap junctions, cardiac macrophages have a negative resting membrane potential and depolarize in synchrony with cardiomyocytes. Conversely, macrophages render the resting membrane potential of cardiomyocytes more positive and, according to computational modeling, accelerate their repolarization. Photostimulation of channelrhodopsin-2-expressing macrophages improves atrioventricular conduction, whereas conditional deletion of connexin 43 in macrophages and congenital lack of macrophages delay atrioventricular conduction. In the Cd11bDTR mouse, macrophage ablation induces progressive atrioventricular block. These observations implicate macrophages in normal and aberrant cardiac conduction.


Subject(s)
Heart Conduction System , Macrophages/physiology , Animals , Connexin 43/metabolism , Female , Heart Atria/cytology , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Myocytes, Cardiac/physiology
3.
Nat Immunol ; 20(1): 29-39, 2019 01.
Article in English | MEDLINE | ID: mdl-30538339

ABSTRACT

Macrophages promote both injury and repair after myocardial infarction, but discriminating functions within mixed populations remains challenging. Here we used fate mapping, parabiosis and single-cell transcriptomics to demonstrate that at steady state, TIMD4+LYVE1+MHC-IIloCCR2- resident cardiac macrophages self-renew with negligible blood monocyte input. Monocytes partially replaced resident TIMD4-LYVE1-MHC-IIhiCCR2- macrophages and fully replaced TIMD4-LYVE1-MHC-IIhiCCR2+ macrophages, revealing a hierarchy of monocyte contribution to functionally distinct macrophage subsets. Ischemic injury reduced TIMD4+ and TIMD4- resident macrophage abundance, whereas CCR2+ monocyte-derived macrophages adopted multiple cell fates within infarcted tissue, including those nearly indistinguishable from resident macrophages. Recruited macrophages did not express TIMD4, highlighting the ability of TIMD4 to track a subset of resident macrophages in the absence of fate mapping. Despite this similarity, inducible depletion of resident macrophages using a Cx3cr1-based system led to impaired cardiac function and promoted adverse remodeling primarily within the peri-infarct zone, revealing a nonredundant, cardioprotective role of resident cardiac macrophages.


Subject(s)
Macrophages/physiology , Myocardial Infarction/immunology , Myocardium/pathology , Animals , CX3C Chemokine Receptor 1/metabolism , Cell Differentiation , Cell Lineage , Cell Self Renewal , Gene Expression Profiling , Histocompatibility Antigens Class II/metabolism , Membrane Proteins/metabolism , Mice , Mice, Transgenic , Parabiosis , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Single-Cell Analysis , Ventricular Remodeling , Vesicular Transport Proteins/metabolism
4.
Nat Immunol ; 20(5): 664, 2019 May.
Article in English | MEDLINE | ID: mdl-30862954

ABSTRACT

In the version of this article initially published, the equal contribution of the third author was omitted. The footnote links for that author should be "Sara Nejat1,11" and the correct statement is as follows: "11These authors contributed equally: Sarah A. Dick, Jillian A. Macklin, Sara Nejat." The error has been corrected in the HTML and PDF versions of the article.

5.
Immunity ; 54(9): 2057-2071.e6, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34363749

ABSTRACT

Hypertension affects one-third of the world's population, leading to cardiac dysfunction that is modulated by resident and recruited immune cells. Cardiomyocyte growth and increased cardiac mass are essential to withstand hypertensive stress; however, whether immune cells are involved in this compensatory cardioprotective process is unclear. In normotensive animals, single-cell transcriptomics of fate-mapped self-renewing cardiac resident macrophages (RMs) revealed transcriptionally diverse cell states with a core repertoire of reparative gene programs, including high expression of insulin-like growth factor-1 (Igf1). Hypertension drove selective in situ proliferation and transcriptional activation of some cardiac RM states, directly correlating with increased cardiomyocyte growth. During hypertension, inducible ablation of RMs or selective deletion of RM-derived Igf1 prevented adaptive cardiomyocyte growth, and cardiac mass failed to increase, which led to cardiac dysfunction. Single-cell transcriptomics identified a conserved IGF1-expressing macrophage subpopulation in human cardiomyopathy. Here we defined the absolute requirement of RM-produced IGF-1 in cardiac adaptation to hypertension.


Subject(s)
Adaptation, Physiological/physiology , Hypertension/metabolism , Insulin-Like Growth Factor I/metabolism , Macrophages/metabolism , Ventricular Remodeling/physiology , Animals , Heart Failure/etiology , Heart Failure/metabolism , Heart Failure/pathology , Humans , Hypertension/complications , Hypertension/immunology , Infant , Male , Mice , Middle Aged , Myocardium/immunology , Myocardium/metabolism , Myocardium/pathology
6.
Immunity ; 54(9): 2072-2088.e7, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34320366

ABSTRACT

Cardiac macrophages represent a heterogeneous cell population with distinct origins, dynamics, and functions. Recent studies have revealed that C-C Chemokine Receptor 2 positive (CCR2+) macrophages derived from infiltrating monocytes regulate myocardial inflammation and heart failure pathogenesis. Comparatively little is known about the functions of tissue resident (CCR2-) macrophages. Herein, we identified an essential role for CCR2- macrophages in the chronically failing heart. Depletion of CCR2- macrophages in mice with dilated cardiomyopathy accelerated mortality and impaired ventricular remodeling and coronary angiogenesis, adaptive changes necessary to maintain cardiac output in the setting of reduced cardiac contractility. Mechanistically, CCR2- macrophages interacted with neighboring cardiomyocytes via focal adhesion complexes and were activated in response to mechanical stretch through a transient receptor potential vanilloid 4 (TRPV4)-dependent pathway that controlled growth factor expression. These findings establish a role for tissue-resident macrophages in adaptive cardiac remodeling and implicate mechanical sensing in cardiac macrophage activation.


Subject(s)
Cardiomyopathy, Dilated/metabolism , Macrophage Activation/physiology , Macrophages/metabolism , Ventricular Remodeling/physiology , Animals , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , Humans , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mutation , Myocardium/metabolism , Troponin T/genetics
7.
Nature ; 608(7921): 181-191, 2022 08.
Article in English | MEDLINE | ID: mdl-35732239

ABSTRACT

The heart, the first organ to develop in the embryo, undergoes complex morphogenesis that when defective results in congenital heart disease (CHD). With current therapies, more than 90% of patients with CHD survive into adulthood, but many suffer premature death from heart failure and non-cardiac causes1. Here, to gain insight into this disease progression, we performed single-nucleus RNA sequencing on 157,273 nuclei from control hearts and hearts from patients with CHD, including those with hypoplastic left heart syndrome (HLHS) and tetralogy of Fallot, two common forms of cyanotic CHD lesions, as well as dilated and hypertrophic cardiomyopathies. We observed CHD-specific cell states in cardiomyocytes, which showed evidence of insulin resistance and increased expression of genes associated with FOXO signalling and CRIM1. Cardiac fibroblasts in HLHS were enriched in a low-Hippo and high-YAP cell state characteristic of activated cardiac fibroblasts. Imaging mass cytometry uncovered a spatially resolved perivascular microenvironment consistent with an immunodeficient state in CHD. Peripheral immune cell profiling suggested deficient monocytic immunity in CHD, in agreement with the predilection in CHD to infection and cancer2. Our comprehensive phenotyping of CHD provides a roadmap towards future personalized treatments for CHD.


Subject(s)
Heart Defects, Congenital , Phenotype , Bone Morphogenetic Protein Receptors/metabolism , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/immunology , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/immunology , Cardiomyopathy, Hypertrophic/metabolism , Cardiomyopathy, Hypertrophic/pathology , Disease Progression , Fibroblasts/metabolism , Fibroblasts/pathology , Forkhead Transcription Factors/metabolism , Heart Defects, Congenital/genetics , Heart Defects, Congenital/immunology , Heart Defects, Congenital/metabolism , Heart Defects, Congenital/pathology , Humans , Hypoplastic Left Heart Syndrome/genetics , Hypoplastic Left Heart Syndrome/immunology , Hypoplastic Left Heart Syndrome/metabolism , Hypoplastic Left Heart Syndrome/pathology , Image Cytometry , Insulin Resistance , Monocytes/immunology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , RNA-Seq , Signal Transduction/genetics , Single-Cell Analysis , Tetralogy of Fallot/genetics , Tetralogy of Fallot/immunology , Tetralogy of Fallot/metabolism , Tetralogy of Fallot/pathology , YAP-Signaling Proteins/metabolism
8.
Nature ; 608(7924): 766-777, 2022 08.
Article in English | MEDLINE | ID: mdl-35948637

ABSTRACT

Myocardial infarction is a leading cause of death worldwide1. Although advances have been made in acute treatment, an incomplete understanding of remodelling processes has limited the effectiveness of therapies to reduce late-stage mortality2. Here we generate an integrative high-resolution map of human cardiac remodelling after myocardial infarction using single-cell gene expression, chromatin accessibility and spatial transcriptomic profiling of multiple physiological zones at distinct time points in myocardium from patients with myocardial infarction and controls. Multi-modal data integration enabled us to evaluate cardiac cell-type compositions at increased resolution, yielding insights into changes of the cardiac transcriptome and epigenome through the identification of distinct tissue structures of injury, repair and remodelling. We identified and validated disease-specific cardiac cell states of major cell types and analysed them in their spatial context, evaluating their dependency on other cell types. Our data elucidate the molecular principles of human myocardial tissue organization, recapitulating a gradual cardiomyocyte and myeloid continuum following ischaemic injury. In sum, our study provides an integrative molecular map of human myocardial infarction, represents an essential reference for the field and paves the way for advanced mechanistic and therapeutic studies of cardiac disease.


Subject(s)
Atrial Remodeling , Chromatin Assembly and Disassembly , Gene Expression Profiling , Myocardial Infarction , Single-Cell Analysis , Ventricular Remodeling , Atrial Remodeling/genetics , Case-Control Studies , Chromatin/genetics , Epigenome , Humans , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Time Factors , Ventricular Remodeling/genetics
9.
Immunity ; 47(2): 323-338.e6, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28813661

ABSTRACT

Tumor-associated macrophages (TAMs) are essential components of the cancer microenvironment and play critical roles in the regulation of tumor progression. Optimal therapeutic intervention requires in-depth understanding of the sources that sustain macrophages in malignant tissues. In this study, we investigated the ontogeny of TAMs in murine pancreatic ductal adenocarcinoma (PDAC) models. We identified both inflammatory monocytes and tissue-resident macrophages as sources of TAMs. Unexpectedly, significant portions of pancreas-resident macrophages originated from embryonic development and expanded through in situ proliferation during tumor progression. Whereas monocyte-derived TAMs played more potent roles in antigen presentation, embryonically derived TAMs exhibited a pro-fibrotic transcriptional profile, indicative of their role in producing and remodeling molecules in the extracellular matrix. Collectively, these findings uncover the heterogeneity of TAM origin and functions and could provide therapeutic insight for PDAC treatment.


Subject(s)
Carcinogenesis , Carcinoma, Ductal/immunology , Macrophages/immunology , Pancreas/pathology , Pancreatic Neoplasms/immunology , Animals , Carcinoma, Ductal/pathology , Cell Differentiation , Cell Line, Tumor , Cell Movement , Extracellular Matrix/metabolism , Fetal Development , Fibrosis , Hematopoiesis , Macrophages/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/immunology , Pancreatic Neoplasms/pathology , Tumor Microenvironment
10.
Immunity ; 47(5): 974-989.e8, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29166591

ABSTRACT

Innate and adaptive immune cells modulate heart failure pathogenesis during viral myocarditis, yet their identities and functions remain poorly defined. We utilized a combination of genetic fate mapping, parabiotic, transcriptional, and functional analyses and demonstrated that the heart contained two major conventional dendritic cell (cDC) subsets, CD103+ and CD11b+, which differentially relied on local proliferation and precursor recruitment to maintain their tissue residency. Following viral infection of the myocardium, cDCs accumulated in the heart coincident with monocyte infiltration and loss of resident reparative embryonic-derived cardiac macrophages. cDC depletion abrogated antigen-specific CD8+ T cell proliferative expansion, transforming subclinical cardiac injury to overt heart failure. These effects were mediated by CD103+ cDCs, which are dependent on the transcription factor BATF3 for their development. Collectively, our findings identified resident cardiac cDC subsets, defined their origins, and revealed an essential role for CD103+ cDCs in antigen-specific T cell responses during subclinical viral myocarditis.


Subject(s)
Antigens, CD/analysis , Cardiovirus Infections/complications , Dendritic Cells/immunology , Encephalomyocarditis virus , Heart Failure/prevention & control , Integrin alpha Chains/analysis , Myocarditis/complications , Animals , CD11b Antigen/analysis , CD8-Positive T-Lymphocytes/immunology , Cardiovirus Infections/immunology , Cell Movement , Female , Hematopoiesis , Immunologic Memory , Male , Mice , Mice, Inbred C57BL , Myocarditis/immunology , Receptors, CCR2/physiology
11.
Circ Res ; 134(12): 1791-1807, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843293

ABSTRACT

Cardiac macrophages represent a functionally diverse population of cells involved in cardiac homeostasis, repair, and remodeling. With recent advancements in single-cell technologies, it is possible to elucidate specific macrophage subsets based on transcriptional signatures and cell surface protein expression to gain a deep understanding of macrophage diversity in the heart. The use of fate-mapping technologies and parabiosis studies have provided insight into the ontogeny and dynamics of macrophages identifying subsets derived from embryonic and adult definitive hematopoietic progenitors that include tissue-resident and bone marrow monocyte-derived macrophages, respectively. Within the heart, these subsets have distinct tissue niches and functional roles in the setting of homeostasis and disease, with cardiac resident macrophages representing a protective cell population while bone marrow monocyte-derived cardiac macrophages have a context-dependent effect, triggering both proinflammatory tissue injury, but also promoting reparative functions. With the increased understanding of the clinical relevance of cardiac macrophage subsets, there has been an increasing need to detect and measure cardiac macrophage compositions in living animals and patients. New molecular tracers compatible with positron emission tomography/computerized tomography and positron emission tomography/ magnetic resonance imaging have enabled investigators to noninvasively and serially visualize cardiac macrophage subsets within the heart to define associations with disease and measure treatment responses. Today, advancements within this thriving field are poised to fuel an era of clinical translation.


Subject(s)
Macrophages , Myocardium , Animals , Macrophages/metabolism , Humans , Myocardium/metabolism , Myocardium/cytology
12.
Proc Natl Acad Sci U S A ; 120(31): e2302938120, 2023 08.
Article in English | MEDLINE | ID: mdl-37487095

ABSTRACT

Neutrophils are the primary cell type involved in lung ischemia-reperfusion injury (IRI), which remains a frequent and morbid complication after organ transplantation. Endogenous lipid mediators that become activated during acute inflammation-resolution have gained increasing recognition for their protective role(s) in promoting the restoration of homeostasis, but their influence on early immune responses following transplantation remains to be uncovered. Resolvin D1, 7S,8R,17S-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid (RvD1), is a potent stereoselective mediator that exhibits proresolving and anti-inflammatory actions in the setting of tissue injury. Here, using metabololipidomics, we demonstrate that endogenous proresolving mediators including RvD1 are increased in human and murine lung grafts immediately following transplantation. In mouse grafts, we observe lipid mediator class switching early after reperfusion. We use intravital two-photon microscopy to reveal that RvD1 treatment significantly limits early neutrophil infiltration and swarming, thereby ameliorating early graft dysfunction in transplanted syngeneic lungs subjected to severe IRI. Through integrated analysis of single-cell RNA sequencing data of donor and recipient immune cells from lung grafts, we identify transcriptomic changes induced by RvD1. These results support a role for RvD1 as a potent modality for preventing early neutrophil-mediated tissue damage after lung IRI that may be therapeutic in the clinics.


Subject(s)
Docosahexaenoic Acids , Organ Transplantation , Humans , Animals , Mice , Neutrophils , Lung
13.
Circulation ; 149(1): 48-66, 2024 01 02.
Article in English | MEDLINE | ID: mdl-37746718

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (ICIs), antibodies targeting PD-1 (programmed cell death protein 1)/PD-L1 (programmed death-ligand 1) or CTLA4 (cytotoxic T-lymphocyte-associated protein 4), have revolutionized cancer management but are associated with devastating immune-related adverse events including myocarditis. The main risk factor for ICI myocarditis is the use of combination PD-1 and CTLA4 inhibition. ICI myocarditis is often fulminant and is pathologically characterized by myocardial infiltration of T lymphocytes and macrophages. Although much has been learned about the role of T-cells in ICI myocarditis, little is understood about the identity, transcriptional diversity, and functions of infiltrating macrophages. METHODS: We used an established murine ICI myocarditis model (Ctla4+/-Pdcd1-/- mice) to explore the cardiac immune landscape using single-cell RNA-sequencing, immunostaining, flow cytometry, in situ RNA hybridization, molecular imaging, and antibody neutralization studies. RESULTS: We observed marked increases in CCR2 (C-C chemokine receptor type 2)+ monocyte-derived macrophages and CD8+ T-cells in this model. The macrophage compartment was heterogeneous and displayed marked enrichment in an inflammatory CCR2+ subpopulation highly expressing Cxcl9 (chemokine [C-X-C motif] ligand 9), Cxcl10 (chemokine [C-X-C motif] ligand 10), Gbp2b (interferon-induced guanylate-binding protein 2b), and Fcgr4 (Fc receptor, IgG, low affinity IV) that originated from CCR2+ monocytes. It is important that a similar macrophage population expressing CXCL9, CXCL10, and CD16α (human homologue of mouse FcgR4) was expanded in patients with ICI myocarditis. In silico prediction of cell-cell communication suggested interactions between T-cells and Cxcl9+Cxcl10+ macrophages via IFN-γ (interferon gamma) and CXCR3 (CXC chemokine receptor 3) signaling pathways. Depleting CD8+ T-cells or macrophages and blockade of IFN-γ signaling blunted the expansion of Cxcl9+Cxcl10+ macrophages in the heart and attenuated myocarditis, suggesting that this interaction was necessary for disease pathogenesis. CONCLUSIONS: These data demonstrate that ICI myocarditis is associated with the expansion of a specific population of IFN-γ-induced inflammatory macrophages and suggest the possibility that IFN-γ blockade may be considered as a treatment option for this devastating condition.


Subject(s)
Immune Checkpoint Inhibitors , Myocarditis , Humans , Mice , Animals , Immune Checkpoint Inhibitors/adverse effects , CD8-Positive T-Lymphocytes , Myocarditis/chemically induced , Myocarditis/metabolism , Programmed Cell Death 1 Receptor , CTLA-4 Antigen , Ligands , Chemokines/metabolism , Macrophages/metabolism , RNA/metabolism
14.
Development ; 149(8)2022 04 15.
Article in English | MEDLINE | ID: mdl-35178561

ABSTRACT

Tissue-resident macrophages are increasingly recognized as important determinants of organ homeostasis, tissue repair, remodeling and regeneration. Although the ontogeny and function of tissue-resident macrophages has been identified as distinct from postnatal hematopoiesis, the inability to specify, in vitro, similar populations that recapitulate these developmental waves has limited our ability to study their function and potential for regenerative applications. We took advantage of the concept that tissue-resident macrophages and monocyte-derived macrophages originate from distinct extra-embryonic and definitive hematopoietic lineages to devise a system to generate pure cultures of macrophages that resemble tissue-resident or monocyte-derived subsets. We demonstrate that human pluripotent stem cell-derived extra-embryonic-like and intra-embryonic-like hematopoietic progenitors differentiate into morphologically, transcriptionally and functionally distinct macrophage populations. Single-cell RNA sequencing of developing and mature cultures uncovered distinct developmental trajectories and gene expression programs of macrophages derived from extra-embryonic-like and intra-embryonic-like hematopoietic progenitors. These findings establish a resource for the generation of human tissue resident-like macrophages to study their specification and function under defined conditions and to explore their potential use in tissue engineering and regenerative medicine applications.


Subject(s)
Macrophages , Pluripotent Stem Cells , Cell Differentiation/genetics , Hematopoiesis , Homeostasis , Humans , Macrophages/metabolism
15.
Circ Res ; 133(5): 412-429, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37492941

ABSTRACT

BACKGROUND: Cardiac inflammation in heart failure is characterized by the presence of damage-associated molecular patterns, myeloid cells, and T cells. Cardiac damage-associated molecular patterns provide continuous proinflammatory signals to myeloid cells through TLRs (toll-like receptors) that converge onto the adaptor protein MyD88 (myeloid differentiation response 88). These induce activation into efficient antigen-presenting cells that activate T cells through their TCR (T-cell receptor). T-cell activation results in cardiotropism, cardiac fibroblast transformation, and maladaptive cardiac remodeling. T cells rely on TCR signaling for effector function and survival, and while they express MyD88 and damage-associated molecular pattern receptors, their role in T-cell activation and cardiac inflammation is unknown. METHODS: We performed transverse aortic constriction in mice lacking MyD88 in T cells and analyzed remodeling, systolic function, survival, and T-cell activation. We profiled wild type versus Myd88-/- mouse T cells at the transcript and protein level and performed several functional assays. RESULTS: Analysis of single-cell RNA-sequencing data sets revealed that MyD88 is expressed in mouse and human cardiac T cells. MyD88 deletion in T cells resulted in increased levels of cardiac T-cell infiltration and fibrosis in response to transverse aortic constriction. We discovered that TCR-activated Myd88-/- T cells had increased proinflammatory signaling at the transcript and protein level compared with wild type, resulting in increased T-cell effector functions such as adhesion, migration across endothelial cells, and activation of cardiac fibroblast. Mechanistically, we found that MyD88 modulates T-cell activation and survival through TCR-dependent rather than TLR-dependent signaling. CONCLUSIONS: Our results outline a novel intrinsic role for MyD88 in limiting T-cell activation that is central to tune down cardiac inflammation during cardiac adaptation to stress.


Subject(s)
Myeloid Differentiation Factor 88 , T-Lymphocytes , Animals , Humans , Mice , Endothelial Cells/metabolism , Fibrosis , Inflammation , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/metabolism
16.
Proc Natl Acad Sci U S A ; 119(10): e2111537119, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35238643

ABSTRACT

Ischemia reperfusion injury represents a common pathological condition that is triggered by the release of endogenous ligands. While neutrophils are known to play a critical role in its pathogenesis, the tissue-specific spatiotemporal regulation of ischemia-reperfusion injury is not understood. Here, using oxidative lipidomics and intravital imaging of transplanted mouse lungs that are subjected to severe ischemia reperfusion injury, we discovered that necroptosis, a nonapoptotic form of cell death, triggers the recruitment of neutrophils. During the initial stages of inflammation, neutrophils traffic predominantly to subpleural vessels, where their aggregation is directed by chemoattractants produced by nonclassical monocytes that are spatially restricted in this vascular compartment. Subsequent neutrophilic disruption of capillaries resulting in vascular leakage is associated with impaired graft function. We found that TLR4 signaling in vascular endothelial cells and downstream NADPH oxidase 4 expression mediate the arrest of neutrophils, a step upstream of their extravasation. Neutrophil extracellular traps formed in injured lungs and their disruption with DNase prevented vascular leakage and ameliorated primary graft dysfunction. Thus, we have uncovered mechanisms that regulate the initial recruitment of neutrophils to injured lungs, which result in selective damage to subpleural pulmonary vessels and primary graft dysfunction. Our findings could lead to the development of new therapeutics that protect lungs from ischemia reperfusion injury.


Subject(s)
Endothelium, Vascular/metabolism , Lung/metabolism , Necroptosis , Neutrophil Infiltration , Neutrophils/metabolism , Reperfusion Injury/metabolism , Animals , Endothelium, Vascular/injuries , Humans , Lung/blood supply , Mice , Mice, Knockout , Reperfusion Injury/genetics , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
17.
J Mol Cell Cardiol ; 192: 48-64, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734060

ABSTRACT

INTRODUCTION: Chronic immunopathology contributes to the development of heart failure after a myocardial infarction. Both T and B cells of the adaptive immune system are present in the myocardium and have been suggested to be involved in post-MI immunopathology. METHODS: We analyzed the B and T cell populations isolated from previously published single cell RNA-sequencing data sets (PMID: 32130914, PMID: 35948637, PMID: 32971526 and PMID: 35926050), of the mouse and human heart, using differential expression analysis, functional enrichment analysis, gene regulatory inferences, and integration with autoimmune and cardiovascular GWAS. RESULTS: Already at baseline, mature effector B and T cells are present in the human and mouse heart, having increased activity in transcription factors maintaining tolerance (e.g. DEAF1, JDP2, SPI-B). Following MI, T cells upregulate pro-inflammatory transcript levels (e.g. Cd11, Gzmk, Prf1), while B cells upregulate activation markers (e.g. Il6, Il1rn, Ccl6) and collagen (e.g. Col5a2, Col4a1, Col1a2). Importantly, pro-inflammatory and fibrotic transcription factors (e.g. NFKB1, CREM, REL) remain active in T cells, while B cells maintain elevated activity in transcription factors related to immunoglobulin production (e.g. ERG, REL) in both mouse and human post-MI hearts. Notably, genes differentially expressed in post-MI T and B cells are associated with cardiovascular and autoimmune disease. CONCLUSION: These findings highlight the varied and time-dependent dynamic roles of post-MI T and B cells. They appear ready-to-go and are activated immediately after MI, thus participate in the acute wound healing response. However, they subsequently remain in a state of pro-inflammatory activation contributing to persistent immunopathology.


Subject(s)
B-Lymphocytes , Myocardial Infarction , Myocardium , Sequence Analysis, RNA , Single-Cell Analysis , Myocardial Infarction/genetics , Myocardial Infarction/immunology , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Humans , Animals , Mice , Myocardium/metabolism , Myocardium/pathology , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Adaptive Immunity/genetics , Gene Expression Regulation , Gene Expression Profiling , Transcriptome/genetics , Transcription, Genetic , Genome-Wide Association Study
18.
Am J Transplant ; 24(2): 280-292, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37619922

ABSTRACT

The presence of bronchus-associated lymphoid tissue (BALT) in donor lungs has been suggested to accelerate graft rejection after lung transplantation. Although chronic smoke exposure can induce BALT formation, the impact of donor cigarette use on alloimmune responses after lung transplantation is not well understood. Here, we show that smoking-induced BALT in mouse donor lungs contains Foxp3+ T cells and undergoes dynamic restructuring after transplantation, including recruitment of recipient-derived leukocytes to areas of pre-existing lymphoid follicles and replacement of graft-resident donor cells. Our findings from mouse and human lung transplant data support the notion that a donor's smoking history does not predispose to acute cellular rejection or prevent the establishment of allograft acceptance with comparable outcomes to nonsmoking donors. Thus, our work indicates that BALT in donor lungs is plastic in nature and may have important implications for modulating proinflammatory or tolerogenic immune responses following transplantation.


Subject(s)
Lung Transplantation , Lymphoid Tissue , Mice , Humans , Animals , Lung Transplantation/adverse effects , Immune Tolerance , Graft Rejection/etiology , Graft Rejection/prevention & control , Lung , Bronchi , Smoking
19.
Circ Res ; 131(8): 654-669, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36111531

ABSTRACT

BACKGROUND: Cardiac involvement is an important determinant of mortality among sarcoidosis patients. Although granulomatous inflammation is a hallmark finding in cardiac sarcoidosis, the precise immune cell populations that comprise the granuloma remain unresolved. Furthermore, it is unclear how the cellular and transcriptomic landscape of cardiac sarcoidosis differs from other inflammatory heart diseases. METHODS: We leveraged spatial transcriptomics (GeoMx digital spatial profiler) and single-nucleus RNA sequencing to elucidate the cellular and transcriptional landscape of cardiac sarcoidosis. Using GeoMX digital spatial profiler technology, we compared the transcriptomal profile of CD68+ rich immune cell infiltrates in human cardiac sarcoidosis, giant cell myocarditis, and lymphocytic myocarditis. We performed single-nucleus RNA sequencing of human cardiac sarcoidosis to identify immune cell types and examined their transcriptomic landscape and regulation. Using multichannel immunofluorescence staining, we validated immune cell populations identified by single-nucleus RNA sequencing, determined their spatial relationship, and devised an immunostaining approach to distinguish cardiac sarcoidosis from other inflammatory heart diseases. RESULTS: Despite overlapping histological features, spatial transcriptomics identified transcriptional signatures and associated pathways that robustly differentiated cardiac sarcoidosis from giant cell myocarditis and lymphocytic myocarditis. Single-nucleus RNA sequencing revealed the presence of diverse populations of myeloid cells in cardiac sarcoidosis with distinct molecular features. We identified GPNMB (transmembrane glycoprotein NMB) as a novel marker of multinucleated giant cells and predicted that the MITF (microphthalmia-associated transcription factor) family of transcription factors regulated this cell type. We also detected additional macrophage populations in cardiac sarcoidosis including HLA-DR (human leukocyte antigen-DR)+ macrophages, SYTL3 (synaptotagmin-like protein 3)+ macrophages and CD163+ resident macrophages. HLA-DR+ macrophages were found immediately adjacent to GPMMB+ giant cells, a distinct feature compared with other inflammatory cardiac diseases. SYTL3+ macrophages were located scattered throughout the granuloma and CD163+ macrophages, CD1c+ dendritic cells, nonclassical monocytes, and T cells were located at the periphery and outside of the granuloma. Finally, we demonstrate mTOR (mammalian target of rapamycin) pathway activation is associated with proliferation and is selectively found in HLA-DR+ and SYLT3+ macrophages. CONCLUSIONS: In this study, we identified diverse populations of immune cells with distinct molecular signatures that comprise the sarcoid granuloma. These findings provide new insights into the pathology of cardiac sarcoidosis and highlight opportunities to improve diagnostic testing.


Subject(s)
Myocarditis , Sarcoidosis , Granuloma/metabolism , Granuloma/pathology , HLA Antigens , Humans , Membrane Glycoproteins/metabolism , Microphthalmia-Associated Transcription Factor/metabolism , Myocarditis/genetics , Sarcoidosis/diagnosis , Sarcoidosis/genetics , Synaptotagmins , TOR Serine-Threonine Kinases/metabolism
20.
Annu Rev Physiol ; 82: 1-20, 2020 02 10.
Article in English | MEDLINE | ID: mdl-31658002

ABSTRACT

Despite mounting evidence implicating inflammation in cardiovascular diseases, attempts at clinical translation have shown mixed results. Recent preclinical studies have reenergized this field and provided new insights into how to favorably modulate cardiac macrophage function in the context of acute myocardial injury and chronic disease. In this review, we discuss the origins and roles of cardiac macrophage populations in the steady-state and diseased heart, focusing on the human heart and mouse models of ischemia, hypertensive heart disease, and aortic stenosis. Specific attention is given to delineating the roles of tissue-resident and recruited monocyte-derived macrophage subsets. We also highlight emerging concepts of monocyte plasticity and heterogeneity among monocyte-derived macrophages, describe possible mechanisms by which infiltrating monocytes acquire unique macrophage fates, and discuss the putative impact of these populations on cardiac remodeling. Finally, we discuss strategies to target inflammatory macrophage populations.


Subject(s)
Heart Failure/immunology , Heart Failure/therapy , Immunity, Cellular/immunology , Inflammation/immunology , Inflammation/therapy , Animals , Humans , Macrophages/immunology , Monocytes/immunology , Myocardium/immunology , Myocardium/pathology
SELECTION OF CITATIONS
SEARCH DETAIL