Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 380
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 569(7755): 270-274, 2019 05.
Article in English | MEDLINE | ID: mdl-31043744

ABSTRACT

Cancer immunotherapy restores or enhances the effector function of CD8+ T cells in the tumour microenvironment1,2. CD8+ T cells activated by cancer immunotherapy clear tumours mainly by inducing cell death through perforin-granzyme and Fas-Fas ligand pathways3,4. Ferroptosis is a form of cell death that differs from apoptosis and results from iron-dependent accumulation of lipid peroxide5,6. Although it has been investigated in vitro7,8, there is emerging evidence that ferroptosis might be implicated in a variety of pathological scenarios9,10. It is unclear whether, and how, ferroptosis is involved in T cell immunity and cancer immunotherapy. Here we show that immunotherapy-activated CD8+ T cells enhance ferroptosis-specific lipid peroxidation in tumour cells, and that increased ferroptosis contributes to the anti-tumour efficacy of immunotherapy. Mechanistically, interferon gamma (IFNγ) released from CD8+ T cells downregulates the expression of SLC3A2 and SLC7A11, two subunits of the glutamate-cystine antiporter system xc-, impairs the uptake of cystine by tumour cells, and as a consequence, promotes tumour cell lipid peroxidation and ferroptosis. In mouse models, depletion of cystine or cysteine by cyst(e)inase (an engineered enzyme that degrades both cystine and cysteine) in combination with checkpoint blockade synergistically enhanced T cell-mediated anti-tumour immunity and induced ferroptosis in tumour cells. Expression of system xc- was negatively associated, in cancer patients, with CD8+ T cell signature, IFNγ expression, and patient outcome. Analyses of human transcriptomes before and during nivolumab therapy revealed that clinical benefits correlate with reduced expression of SLC3A2 and increased IFNγ and CD8. Thus, T cell-promoted tumour ferroptosis is an anti-tumour mechanism, and targeting this pathway in combination with checkpoint blockade is a potential therapeutic approach.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Ferroptosis , Immunotherapy , Neoplasms/immunology , Neoplasms/therapy , Amino Acid Transport System y+/metabolism , Animals , B7-H1 Antigen/antagonists & inhibitors , Cell Line, Tumor , Cysteine/metabolism , Female , Ferroptosis/drug effects , Fusion Regulatory Protein 1, Heavy Chain/metabolism , Humans , Interferon-gamma/immunology , Lipid Peroxidation , Melanoma/genetics , Melanoma/immunology , Melanoma/metabolism , Melanoma/therapy , Mice , Neoplasms/metabolism , Nivolumab/therapeutic use , Reactive Oxygen Species/metabolism , Treatment Outcome
2.
J Biol Chem ; 299(6): 104786, 2023 06.
Article in English | MEDLINE | ID: mdl-37146968

ABSTRACT

The E3 ubiquitin ligase APC/C-Cdh1 maintains the G0/G1 state, and its inactivation is required for cell cycle entry. We reveal a novel role for Fas-associated protein with death domain (FADD) in the cell cycle through its function as an inhibitor of APC/C-Cdh1. Using real-time, single-cell imaging of live cells combined with biochemical analysis, we demonstrate that APC/C-Cdh1 hyperactivity in FADD-deficient cells leads to a G1 arrest despite persistent mitogenic signaling through oncogenic EGFR/KRAS. We further show that FADDWT interacts with Cdh1, while a mutant lacking a consensus KEN-box motif (FADDKEN) fails to interact with Cdh1 and results in a G1 arrest due to its inability to inhibit APC/C-Cdh1. Additionally, enhanced expression of FADDWT but not FADDKEN, in cells arrested in G1 upon CDK4/6 inhibition, leads to APC/C-Cdh1 inactivation and entry into the cell cycle in the absence of retinoblastoma protein phosphorylation. FADD's function in the cell cycle requires its phosphorylation by CK1α at Ser-194 which promotes its nuclear translocation. Overall, FADD provides a CDK4/6-Rb-E2F-independent "bypass" mechanism for cell cycle entry and thus a therapeutic opportunity for CDK4/6 inhibitor resistance.


Subject(s)
Cell Cycle Proteins , Ubiquitin-Protein Ligases , Humans , Adaptor Proteins, Signal Transducing/metabolism , Anaphase-Promoting Complex-Cyclosome/metabolism , Cell Cycle/genetics , Cell Cycle Proteins/metabolism , Cell Division , Gene Expression , HEK293 Cells , Mutation , Protein Domains , Protein Transport/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
3.
Mol Cell ; 61(3): 419-433, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26774286

ABSTRACT

FBXW7 is a haploinsufficient tumor suppressor with loss-of-function mutations occurring in human cancers. FBXW7 inactivation causes genomic instability, but the mechanism remains elusive. Here we show that FBXW7 facilitates nonhomologous end-joining (NHEJ) repair and that FBXW7 depletion causes radiosensitization. In response to ionizing radiation, ATM phosphorylates FBXW7 at serine 26 to recruit it to DNA double-strand break (DSB) sites, whereas activated DNA-PKcs phosphorylates XRCC4 at serines 325/326, which promotes binding of XRCC4 to FBXW7. SCF(FBXW7) E3 ligase then promotes polyubiquitylation of XRCC4 at lysine 296 via lysine 63 linkage for enhanced association with the Ku70/80 complex to facilitate NHEJ repair. Consistent with these findings, a small-molecule inhibitor that abrogates XRCC4 polyubiquitylation reduces NHEJ repair. Our study demonstrates one mechanism by which FBXW7 contributes to genome integrity and implies that inactivated FBXW7 in human cancers could be a strategy for increasing the efficacy of radiotherapy.


Subject(s)
Cell Cycle Proteins/metabolism , DNA End-Joining Repair , DNA-Binding Proteins/metabolism , F-Box Proteins/metabolism , Pancreatic Neoplasms/enzymology , Polyubiquitin/metabolism , Protein Processing, Post-Translational , Ubiquitin-Protein Ligases/metabolism , Amino Acid Sequence , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Proteins/genetics , Cyclopentanes/pharmacology , DNA Breaks, Double-Stranded , DNA End-Joining Repair/radiation effects , DNA-Activated Protein Kinase/genetics , DNA-Activated Protein Kinase/metabolism , DNA-Binding Proteins/genetics , Enzyme Inhibitors/pharmacology , F-Box Proteins/genetics , F-Box-WD Repeat-Containing Protein 7 , HCT116 Cells , Humans , Lysine , Mice, Knockout , Molecular Sequence Data , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/radiotherapy , Phosphorylation , Protein Processing, Post-Translational/radiation effects , Pyrimidines/pharmacology , RNA Interference , Radiation Tolerance , Radiation-Sensitizing Agents/pharmacology , Time Factors , Transfection , Ubiquitin-Activating Enzymes/antagonists & inhibitors , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Ubiquitins/antagonists & inhibitors , Ubiquitins/metabolism
4.
Lancet Oncol ; 24(9): 1042-1052, 2023 09.
Article in English | MEDLINE | ID: mdl-37657463

ABSTRACT

BACKGROUND: High-grade gliomas have a poor prognosis and do not respond well to treatment. Effective cancer immune responses depend on functional immune cells, which are typically absent from the brain. This study aimed to evaluate the safety and activity of two adenoviral vectors expressing HSV1-TK (Ad-hCMV-TK) and Flt3L (Ad-hCMV-Flt3L) in patients with high-grade glioma. METHODS: In this dose-finding, first-in-human trial, treatment-naive adults aged 18-75 years with newly identified high-grade glioma that was evaluated per immunotherapy response assessment in neuro-oncology criteria, and a Karnofsky Performance Status score of 70 or more, underwent maximal safe resection followed by injections of adenoviral vectors expressing HSV1-TK and Flt3L into the tumour bed. The study was conducted at the University of Michigan Medical School, Michigan Medicine (Ann Arbor, MI, USA). The study included six escalating doses of viral particles with starting doses of 1×1010 Ad-hCMV-TK viral particles and 1×109 Ad-hCMV-Flt3L viral particles (cohort A), and then 1×1011 Ad-hCMV-TK viral particles and 1×109 Ad-hCMV-Flt3L viral particles (cohort B), 1×1010 Ad-hCMV-TK viral particles and 1×1010 Ad-hCMV-Flt3L viral particles (cohort C), 1×1011 Ad-hCMV-TK viral particles and 1×1010 Ad-hCMV-Flt3L viral particles (cohort D), 1×1010 Ad-hCMV-TK viral particles and 1×1011 Ad-hCMV-Flt3L viral particles (cohort E), and 1×1011 Ad-hCMV-TK viral particles and 1×1011 Ad-hCMV-Flt3L viral particles (cohort F) following a 3+3 design. Two 1 mL tuberculin syringes were used to deliver freehand a mix of Ad-hCMV-TK and Ad-hCMV-Flt3L vectors into the walls of the resection cavity with a total injection of 2 mL distributed as 0·1 mL per site across 20 locations. Subsequently, patients received two 14-day courses of valacyclovir (2 g orally, three times per day) at 1-3 days and 10-12 weeks after vector administration and standad upfront chemoradiotherapy. The primary endpoint was the maximum tolerated dose of Ad-hCMV-Flt3L and Ad-hCMV-TK. Overall survival was a secondary endpoint. Recruitment is complete and the trial is finished. The trial is registered with ClinicalTrials.gov, NCT01811992. FINDINGS: Between April 8, 2014, and March 13, 2019, 21 patients were assessed for eligibility and 18 patients with high-grade glioma were enrolled and included in the analysis (three patients in each of the six dose cohorts); eight patients were female and ten were male. Neuropathological examination identified 14 (78%) patients with glioblastoma, three (17%) with gliosarcoma, and one (6%) with anaplastic ependymoma. The treatment was well-tolerated, and no dose-limiting toxicity was observed. The maximum tolerated dose was not reached. The most common serious grade 3-4 adverse events across all treatment groups were wound infection (four events in two patients) and thromboembolic events (five events in four patients). One death due to an adverse event (respiratory failure) occurred but was not related to study treatment. No treatment-related deaths occurred during the study. Median overall survival was 21·3 months (95% CI 11·1-26·1). INTERPRETATION: The combination of two adenoviral vectors demonstrated safety and feasibility in patients with high-grade glioma and warrants further investigation in a phase 1b/2 clinical trial. FUNDING: Funded in part by Phase One Foundation, Los Angeles, CA, The Board of Governors at Cedars-Sinai Medical Center, Los Angeles, CA, and The Rogel Cancer Center at The University of Michigan.


Subject(s)
Antineoplastic Agents , Glioblastoma , Glioma , Adult , Female , Humans , Male , Chemoradiotherapy , Genetic Therapy , Glioblastoma/genetics , Glioblastoma/therapy , Glioma/genetics , Glioma/therapy , Adolescent , Middle Aged , Aged
5.
Stat Med ; 41(16): 2957-2977, 2022 07 20.
Article in English | MEDLINE | ID: mdl-35343595

ABSTRACT

The goal in personalized medicine is to individualize treatment using patient characteristics and improve health outcomes. Selection of optimal dose must balance the effect of dose on both treatment efficacy and toxicity outcomes. We consider a setting with one binary efficacy and one binary toxicity outcome. The goal is to find the optimal dose for each patient using clinical features and biomarkers from available dataset. We propose to use flexible machine learning methods such as random forest and Gaussian process models to build models for efficacy and toxicity depending on dose and biomarkers. A copula is used to model the joint distribution of the two outcomes and the estimates are constrained to have non-decreasing dose-efficacy and dose-toxicity relationships. Numerical utilities are elicited from clinicians for each potential bivariate outcome. For each patient, the optimal dose is chosen to maximize the posterior mean of the utility function. We also propose alternative approaches to optimal dose selection by adding additional toxicity based constraints and an approach taking into account the uncertainty in the estimation of the utility function. The proposed methods are evaluated in a simulation study to compare expected utility outcomes under various estimated optimal dose rules. Gaussian process models tended to have better performance than random forest. Enforcing monotonicity during modeling provided small benefits. Whether and how, correlation between efficacy and toxicity, was modeled, had little effect on performance. The proposed methods are illustrated with a study of patients with liver cancer treated with stereotactic body radiation therapy.


Subject(s)
Machine Learning , Biomarkers , Computer Simulation , Humans , Normal Distribution , Treatment Outcome
6.
J Appl Clin Med Phys ; 23 Suppl 1: e13743, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36705246

ABSTRACT

In recent decades, the principal goals of participants in the field of radiation biologists have included defining dose thresholds for cancer and non-cancer endpoints to be used by regulators, clinicians and industry, as well as informing on best practice radiation utilization and protection applications. Importantly, much of this work has required an intimate relationship between "bench" radiation biology scientists and their target audiences (such as physicists, medical practitioners and epidemiologists) in order to ensure that the requisite gaps in knowledge are adequately addressed. However, despite the growing risk for public exposure to higher-than-background levels of radiation, e.g. from long-distance travel, the increasing use of ionizing radiation during medical procedures, the threat from geopolitical instability, and so forth, there has been a dramatic decline in the number of qualified radiation biologists in the U.S. Contributing factors are thought to include the loss of applicable training programs, loss of jobs, and declining opportunities for advancement. This report was undertaken in order to begin addressing this situation since inaction may threaten the viability of radiation biology as a scientific discipline.


Subject(s)
Physicians , Radiobiology , Humans , United States , Workforce
7.
J Biol Chem ; 295(36): 12661-12673, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32669362

ABSTRACT

The discovery of activating epidermal growth factor receptor (EGFR) mutations spurred the use of EGFR tyrosine kinase inhibitors (TKIs), such as erlotinib, as the first-line treatment of lung cancers. We previously reported that differential degradation of TKI-sensitive (e.g. L858R) and resistant (T790M) EGFR mutants upon erlotinib treatment correlates with drug sensitivity. We also reported that SMAD ubiquitination regulatory factor 2 (SMURF2) ligase activity is important in stabilizing EGFR. However, the molecular mechanisms involved remain unclear. Here, using in vitro and in vivo ubiquitination assays, MS, and superresolution microscopy, we show SMURF2-EGFR functional interaction is important for EGFR stability and response to TKI. We demonstrate that L858R/T790M EGFR is preferentially stabilized by SMURF2-UBCH5 (an E3-E2)-mediated polyubiquitination. We identified four lysine residues as the sites of ubiquitination and showed that replacement of one of them with acetylation-mimicking glutamine increases the sensitivity of mutant EGFR to erlotinib-induced degradation. We show that SMURF2 extends membrane retention of EGF-bound EGFR, whereas SMURF2 knockdown increases receptor sorting to lysosomes. In lung cancer cell lines, SMURF2 overexpression increased EGFR levels, improving TKI tolerance, whereas SMURF2 knockdown decreased EGFR steady-state levels and sensitized lung cancer cells. Overall, we propose that SMURF2-mediated polyubiquitination of L858R/T790M EGFR competes with acetylation-mediated receptor internalization that correlates with enhanced receptor stability; therefore, disruption of the E3-E2 complex may be an attractive target to overcome TKI resistance.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Erlotinib Hydrochloride/pharmacology , Lung Neoplasms/enzymology , Mutation, Missense , Protein Kinase Inhibitors/pharmacology , Ubiquitin-Protein Ligases/metabolism , Amino Acid Substitution , Animals , CHO Cells , Cricetulus , Drug Resistance, Neoplasm/genetics , Enzyme Stability/drug effects , Enzyme Stability/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , HEK293 Cells , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MCF-7 Cells , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/genetics
8.
J Biol Chem ; 295(18): 5906-5917, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32165494

ABSTRACT

We previously reported that overexpression of cytochrome P450 family 24 subfamily A member 1 (CYP24A1) increases lung cancer cell proliferation by activating RAS signaling and that CYP24A1 knockdown inhibits tumor growth. However, the mechanism of CYP24A1-mediated cancer cell proliferation remains unclear. Here, we conducted cell synchronization and biochemical experiments in lung adenocarcinoma cells, revealing a link between CYP24A1 and anaphase-promoting complex (APC), a key cell cycle regulator. We demonstrate that CYP24A1 expression is cell cycle-dependent; it was higher in the G2-M phase and diminished upon G1 entry. CYP24A1 has a functional destruction box (D-box) motif that allows binding with two APC adaptors, CDC20-homologue 1 (CDH1) and cell division cycle 20 (CDC20). Unlike other APC substrates, however, CYP24A1 acted as a pseudo-substrate, inhibiting CDH1 activity and promoting mitotic progression. Conversely, overexpression of a CYP24A1 D-box mutant compromised CDH1 binding, allowing CDH1 hyperactivation, thereby hastening degradation of its substrates cyclin B1 and CDC20, and accumulation of the CDC20 substrate p21, prolonging mitotic exit. These activities also occurred with a CYP24A1 isoform 2 lacking the catalytic cysteine (Cys-462), suggesting that CYP24A1's oncogenic potential is independent of its catalytic activity. CYP24A1 degradation reduced clonogenic survival of mutant KRAS-driven lung cancer cells, and calcitriol treatment increased CYP24A1 levels and tumor burden in Lsl-KRASG12D mice. These results disclose a catalytic activity-independent growth-promoting role of CYP24A1 in mutant KRAS-driven lung cancer. This suggests that CYP24A1 could be therapeutically targeted in lung cancers in which its expression is high.


Subject(s)
Adenocarcinoma of Lung/pathology , Biocatalysis , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Vitamin D3 24-Hydroxylase/metabolism , Adenocarcinoma of Lung/genetics , Cell Cycle , Cell Line, Tumor , Cell Proliferation/genetics , Cell Survival , Gene Expression Regulation, Neoplastic , Humans , Up-Regulation , Vitamin D3 24-Hydroxylase/genetics
9.
Ann Surg ; 273(3): 587-594, 2021 03 01.
Article in English | MEDLINE | ID: mdl-30817352

ABSTRACT

INTRODUCTION: There is conflicting evidence for the benefit of adjuvant radiotherapy (RT) after resection of pancreatic ductal adenocarcinoma (PDAC), especially for margin-negative (R0) resections. We aimed to evaluate the association of adjuvant RT with survival after R0 resection of PDAC. METHODS: Using National Cancer Database (NCDB) data from 2004 to 2013, we identified patients with R0 resection of nonmetastatic PDAC. Patients with neoadjuvant radiotherapy and chemotherapy and survival <6 months were excluded. Propensity score matching was used to account for treatment selection bias. A multivariable Cox proportional hazards model was then used to analyze the association of RT with survival. RESULTS: Of 4547 (36%) RT and 7925 (64%) non-RT patients, 3860 RT and 3860 non-RT patients remained in the cohort after matching. Clinicopathologic and demographic variables were well balanced after matching. Lymph node metastases were present in 68% (44% N1, 24% N2). After matching, RT was associated with higher survival (median 25.8 vs 23.9 mo, 5-yr 27% vs 24%, P < 0.001). After multivariable adjustment, RT remained associated with a survival benefit (HR 0.89, 95% CI 0.84-0.94, P < 0.001). Stratified and multivariable interaction analyses showed that this benefit was restricted to patients with node-positive disease: N1 (HR: 0.68, CI95%: 0.62-0.76, P = 0.007) and N2 (HR: 0.59, CI95%: 0.54-0.64, P = 0.04). CONCLUSIONS: In this large retrospective cohort study, adjuvant RT after R0 PDAC resection was associated with a survival benefit in patients with node-positive disease. Adjuvant RT should be considered after R0 resection of PDAC with node-positive disease.


Subject(s)
Adenocarcinoma/surgery , Carcinoma, Pancreatic Ductal/surgery , Pancreatic Neoplasms/surgery , Radiotherapy, Adjuvant , Adenocarcinoma/mortality , Adenocarcinoma/radiotherapy , Adult , Aged , Aged, 80 and over , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/radiotherapy , Female , Humans , Male , Margins of Excision , Middle Aged , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/radiotherapy , Propensity Score , Retrospective Studies , Survival Rate , United States
10.
Gastroenterology ; 158(3): 583-597.e1, 2020 02.
Article in English | MEDLINE | ID: mdl-31715145

ABSTRACT

BACKGROUND & AIMS: Barrett's esophagus (BE) can progress to dysplasia and esophageal adenocarcinoma (EAC), accompanied by mutations in TP53 that increase the stability of its product, p53. We analyzed BE tissues for messenger RNAs (mRNAs) that associate with BE progression and identified one that affects the stabilization of p53. METHODS: We obtained 54 BE samples collected from patients with high-grade dysplasia (HGD) or esophageal adenocarcinoma (EAC), from 1992 through 2015, and performed RNA sequence analyses, including isoform-specific analyses. We performed reverse-transcription polymerase chain reaction analyses of 166 samples and immunohistochemical analyses of tissue microarrays that contained BE tissues from 100 patients with HGD or EAC and normal esophageal squamous mucosa (controls). Proteins were expressed from transfected plasmids or knocked down with small interfering RNAs in BE cells and analyzed by immunoblots and in immunoprecipitation and ubiquitin ligase assays. Athymic nude mice bearing EAC xenograft tumors (grown from OE-33 cells) were given intraperitoneal injections of simvastatin; tumor growth was monitored and tumors were collected and analyzed by immunoblotting for levels of RNF128, p53, and acetylated p53. RESULTS: Progression of BE to HGD or EAC associated with changes in expression of mRNAs that encoded mucins and promoted inflammation and activation of ATM and the DNA damage response. As tissues progressed from BE to HGD to EAC, they increased expression of mRNAs encoding isoform 1 of RNF128 (Iso1) and decreased expression of Iso2 of RNF128. RNF128 is an E3 ubiquitin ligase that targets p53 for degradation. Incubation of BE cells with interferon gamma caused them to increase expression of Iso1 and reduce expression of Iso2. Iso1 was heavily glycosylated with limited ubiquitin ligase activity for p53, resulting in p53 stabilization. Knockdown of Iso1 in BE and EAC cells led to degradation of the mutant form of p53 and reduced clonogenic survival. In contrast, Iso2 was a potent ligase that reduced levels of the mutant form of p53 in BE cells. In BE cells, Iso2 was hypoglycosylated and degraded, via ATM and GSK3ß-mediated phosphorylation and activation of the beta-TrCP1-containing SCF ubiquitin ligase complex. Simvastatin, which degrades the mutant form of p53, also degraded RNF128 Iso1 protein in BE cells and slowed growth of EAC xenograft tumors in mice. CONCLUSIONS: We found that isoform 2 of RNF128 is decreased in BE cells, resulting in increased levels of mutant p53, whereas isoform 1 of RNF128 is increased in BE cells, further promoting the stabilization of mutant p53.


Subject(s)
Adenocarcinoma/genetics , Barrett Esophagus/genetics , Esophageal Neoplasms/genetics , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Barrett Esophagus/metabolism , Barrett Esophagus/pathology , Cells, Cultured , Down-Regulation/drug effects , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Esophagus/metabolism , Female , Gene Expression/drug effects , Gene Silencing , Glycosylation , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Interferon-gamma/pharmacology , Isoenzymes/genetics , Isoenzymes/metabolism , Mice , Mice, Nude , Neoplasm Transplantation , RNA, Messenger/metabolism , Signal Transduction , Simvastatin/pharmacology , Tumor Suppressor Protein p53/genetics , Ubiquitin-Protein Ligases/metabolism
11.
Clin Trials ; 18(3): 279-285, 2021 06.
Article in English | MEDLINE | ID: mdl-33884907

ABSTRACT

INTRODUCTION: In some phase I trial settings, there is uncertainty in assessing whether a given patient meets the criteria for dose-limiting toxicity. METHODS: We present a design which accommodates dose-limiting toxicity outcomes that are assessed with uncertainty for some patients. Our approach could be utilized in many available phase I trial designs, but we focus on the continual reassessment method due to its popularity. We assume that for some patients, instead of the usual binary dose-limiting toxicity outcome, we observe a physician-assessed probability of dose-limiting toxicity specific to a given patient. Data augmentation is used to estimate the posterior probabilities of dose-limiting toxicity at each dose level based on both the fully observed and partially observed patient outcomes. A simulation study is used to assess the performance of the design relative to using the continual reassessment method on the true dose-limiting toxicity outcomes (available in simulation setting only) and relative to simple thresholding approaches. RESULTS: Among the designs utilizing the partially observed outcomes, our proposed design has the best overall performance in terms of probability of selecting correct maximum tolerated dose and number of patients treated at the maximum tolerated dose. CONCLUSION: Incorporating uncertainty in dose-limiting toxicity assessment can improve the performance of the continual reassessment method design.


Subject(s)
Bayes Theorem , Dose-Response Relationship, Drug , Drug-Related Side Effects and Adverse Reactions , Research Design , Clinical Trials, Phase I as Topic , Computer Simulation , Humans , Maximum Tolerated Dose , Uncertainty
12.
Nucleic Acids Res ; 47(8): 4039-4053, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30722038

ABSTRACT

FBXW7, a classic tumor suppressor, is a substrate recognition subunit of the Skp1-cullin-F-box (SCF) ubiquitin ligase that targets oncoproteins for ubiquitination and degradation. We recently found that FBXW7 is recruited to DNA damage sites to facilitate nonhomologous end-joining (NHEJ). The detailed underlying molecular mechanism, however, remains elusive. Here we report that the WD40 domain of FBXW7, which is responsible for substrate binding and frequently mutated in human cancers, binds to poly(ADP-ribose) (PAR) immediately following DNA damage and mediates rapid recruitment of FBXW7 to DNA damage sites, whereas ATM-mediated FBXW7 phosphorylation promotes its retention at DNA damage sites. Cancer-associated arginine mutations in the WD40 domain (R465H, R479Q and R505C) abolish both FBXW7 interaction with PAR and recruitment to DNA damage sites, causing inhibition of XRCC4 polyubiquitination and NHEJ. Furthermore, inhibition or silencing of poly(ADP-ribose) polymerase 1 (PARP1) inhibits PAR-mediated recruitment of FBXW7 to the DNA damage sites. Taken together, our study demonstrates that the WD40 domain of FBXW7 is a novel PAR-binding motif that facilitates early recruitment of FBXW7 to DNA damage sites for subsequent NHEJ repair. Abrogation of this ability seen in cancer-derived FBXW7 mutations provides a molecular mechanism for defective DNA repair, eventually leading to genome instability.


Subject(s)
DNA End-Joining Repair , F-Box-WD Repeat-Containing Protein 7/genetics , Poly (ADP-Ribose) Polymerase-1/genetics , Poly Adenosine Diphosphate Ribose/metabolism , Stem Cell Factor/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Binding Sites , Cell Line , Cell Line, Tumor , Cell Survival/radiation effects , DNA Damage , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , F-Box-WD Repeat-Containing Protein 7/chemistry , F-Box-WD Repeat-Containing Protein 7/metabolism , Fibroblasts/metabolism , Fibroblasts/radiation effects , Fibroblasts/ultrastructure , Gamma Rays , HCT116 Cells , Humans , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/radiation effects , Insulin-Secreting Cells/ultrastructure , Models, Molecular , Mutation , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly Adenosine Diphosphate Ribose/chemistry , Protein Binding , Protein Domains , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Stem Cell Factor/metabolism , Ubiquitination/radiation effects
13.
J Neurooncol ; 143(2): 313-319, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30977058

ABSTRACT

BACKGROUND AND PURPOSE: We evaluated whether dose-intensified chemoradiation alters patterns of failure and is associated with favorable survival in the temozolomide era. MATERIALS AND METHODS: Between 2003 and 2015, 82 patients with newly diagnosed glioblastoma were treated with 66-81 Gy in 30 fractions using conventional magnetic resonance imaging. Progression-free (PFS) and overall survival (OS) were calculated using Kaplan-Meier methods. Factors associated with improved PFS, OS, and time to progression were assessed using multivariate Cox model and linear regression. RESULTS: Median follow-up was 23 months (95% CI 4-124 months). Sixty-one percent of patients underwent subtotal resection or biopsy, and 38% (10/26) of patients with available data had MGMT promoter methylation. Median PFS was 8.4 months (95% CI 7.3-11.0) and OS was 18.7 months (95% CI 13.1-25.3). Only 30 patients (44%) experienced central recurrence, 6 (9%) in-field, 16 (23.5%) marginal and 16 (23.5%) distant. On multivariate analysis, younger age (HR 0.95, 95% CI 0.93-0.97, p = 0.0001), higher performance status (HR 0.39, 95% CI 0.16-0.95, p = 0.04), gross total resection (GTR) versus biopsy (HR 0.37, 95% CI 0.16-0.85, p = 0.02) and MGMT methylation (HR 0.25, 95% CI 0.09-0.71, p = 0.009) were associated with improved OS. Only distant versus central recurrence (p = 0.03) and GTR (p = 0.02) were associated with longer time to progression. Late grade 3 neurologic toxicity was rare (6%) in patients experiencing long-term survival. CONCLUSION: Dose-escalated chemoRT resulted in lower rates of central recurrence and prolonged time to progression compared to historical controls, although a significant number of central recurrences were still observed. Advanced imaging and correlative molecular studies may enable targeted treatment advances that reduce rates of in- and out-of-field progression.


Subject(s)
Brain Neoplasms/mortality , Chemoradiotherapy/mortality , Glioblastoma/mortality , Salvage Therapy , Temozolomide/therapeutic use , Adult , Aged , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/diagnosis , Brain Neoplasms/therapy , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Female , Follow-Up Studies , Glioblastoma/diagnosis , Glioblastoma/therapy , Humans , Male , Middle Aged , Prognosis , Retrospective Studies , Survival Rate , Young Adult
14.
Mol Pharmacol ; 94(3): 984-991, 2018 09.
Article in English | MEDLINE | ID: mdl-29941666

ABSTRACT

Several hundred proteins cycle into heterocomplexes with a dimer of the chaperone heat shock protein 90 (Hsp90), regulating their activity and turnover. There are two isoforms of Hsp90, Hsp90α and Hsp90ß, and their relative chaperone activities and composition in these client protein•Hsp90 heterocomplexes has not been determined. Here, we examined the activity of human Hsp90α and Hsp90ß in a purified five-protein chaperone machinery that assembles glucocorticoid receptor (GR)•Hsp90 heterocomplexes to generate high-affinity steroid-binding activity. We found that human Hsp90α and Hsp90ß have equivalent chaperone activities, and when mixed together in this assay, they formed only GR•Hsp90αα and GR•Hsp90ßß homodimers and no GR•Hsp90αß heterodimers. In contrast, GR•Hsp90 heterocomplexes formed in human embryonic kidney (HEK) cells also contain GR•Hsp90αß heterodimers. The formation of GR•Hsp90αß heterodimers in HEK cells probably reflects the longer time permitted for exchange to form Hsp90αß heterodimers in the cell versus in the cell-free assembly conditions. This purified GR-activating chaperone machinery can be used to determine how modifications of Hsp90 affect its chaperone activity. To that effect, we have tested whether the unique phosphorylation of Hsp90α at threonines 5 and 7 that occurs during DNA damage repair affects its chaperone activity. We showed that the phosphomimetic mutant Hsp90α T5/7D has the same intrinsic chaperone activity as wild-type human Hsp90α in activation of GR steroid-binding activity by the five-protein machinery, supporting the conclusion that T5/7 phosphorylation does not affect Hsp90α chaperone activity.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Protein Multimerization/physiology , Receptors, Glucocorticoid/metabolism , Animals , HEK293 Cells , HSP70 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/chemistry , Humans , Mice , Molecular Chaperones/chemistry , Protein Binding/physiology , Receptors, Glucocorticoid/chemistry
15.
NMR Biomed ; 31(6): e3913, 2018 06.
Article in English | MEDLINE | ID: mdl-29675932

ABSTRACT

Dynamic gadoxetic acid-enhanced magnetic resonance imaging (MRI) allows the investigation of liver function through the observation of the perfusion and uptake of contrast agent in the parenchyma. Voxel-by-voxel quantification of the contrast uptake rate (k1 ) from dynamic gadoxetic acid-enhanced MRI through the standard dual-input, two-compartment model could be susceptible to overfitting of variance in the data. The aim of this study was to develop a linearized, but more robust, model. To evaluate the estimated k1 values using this linearized analysis, high-temporal-resolution gadoxetic acid-enhanced MRI scans were obtained in 13 examinations, and k1 maps were created using both models. Comparison of liver k1 values estimated from the two methods produced a median correlation coefficient of 0.91 across the 12 scans that could be used. Temporally sparse clinical MRI data with gadoxetic acid uptake were also employed to create k1 maps of 27 examinations using the linearized model. Of 20 scans, the created k1 maps were compared with overall liver function as measured by indocyanine green (ICG) retention, and yielded a correlation coefficient of 0.72. In the 27 k1 maps created via the linearized model, the mean liver k1 value was 3.93 ± 1.79 mL/100 mL/min, consistent with previous studies. The results indicate that the linearized model provides a simple and robust method for the assessment of the rate of contrast uptake that can be applied to both high-temporal-resolution dynamic contrast-enhanced MRI and typical clinical multiphase MRI data, and that correlates well with the results of both two-compartment analysis and independent whole liver function measurements.


Subject(s)
Contrast Media/chemistry , Gadolinium DTPA/pharmacokinetics , Liver/diagnostic imaging , Liver/physiology , Magnetic Resonance Imaging , Aged , Arteries/physiology , Computer Simulation , Female , Humans , Indocyanine Green/metabolism , Liver/blood supply , Male , Middle Aged
16.
J Neurooncol ; 138(1): 155-162, 2018 May.
Article in English | MEDLINE | ID: mdl-29388034

ABSTRACT

We hypothesized elderly patients with good Karnofsky Performance Status (KPS) treated with standard dose or dose-escalated radiation therapy (SDRT/DERT) and concurrent temozolomide (TMZ) would have favorable overall survival (OS) compared to historical elderly patients treated with hypofractionated RT (HFRT). From 2004 to 2015, 66 patients age ≥ 60 with newly diagnosed, pathologically proven glioblastoma were treated with SDRT/DERT over 30 fractions with concurrent/adjuvant TMZ at a single institution. Kaplan-Meier methods and the log-rank test were used to assess OS and progression-free survival (PFS). Multivariate analysis (MVA) was performed using Cox Proportional-Hazards. Median follow-up was 12.6 months. Doses ranged from 60 to 81 Gy (median 66). Median KPS was 90 (range 60-100) and median age was 67 years (range 60-81), with 29 patients ≥ 70 years old. 32% underwent gross total resection (GTR). MGMT status was known in 28%, 42% of whom were methylated. Median PFS was 8.3 months (95% CI 6.9-11.0) and OS was 12.7 months (95% CI 9.7-14.1). Patients age ≥ 70 with KPS ≥ 90 had a median OS of 12.4 months. Median OS was 27.1 months for MGMT methylated patients. On MVA controlling for age, dose, KPS, MGMT, GTR, and adjuvant TMZ, younger age (HR 0.9, 95% CI 0.8-0.9, p < 0.01), MGMT methylation (HR:0.2, 95% CI 0.1-0.7, p = 0.01), and GTR (HR:0.5, 95% CI 0.3-0.9, p = 0.01) were associated with improved OS. Our findings do not support routine use of a standard 6-week course of radiation therapy in elderly patients with glioblastoma. However, a select group of elderly patients with excellent performance status and MGMT methylation or GTR may experience favorable survival with a standard 6-week course of treatment.


Subject(s)
Brain Neoplasms/mortality , Brain Neoplasms/radiotherapy , Glioblastoma/mortality , Glioblastoma/radiotherapy , Age Factors , Aged , Aged, 80 and over , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/diagnostic imaging , Dose-Response Relationship, Radiation , Female , Follow-Up Studies , Glioblastoma/diagnostic imaging , Humans , Karnofsky Performance Status , Magnetic Resonance Imaging , Male , Middle Aged , Multivariate Analysis , Progression-Free Survival , Retrospective Studies , Temozolomide/therapeutic use
17.
J Proteome Res ; 16(4): 1763-1772, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28240915

ABSTRACT

Pancreatic cancer is the third leading cause of cancer-related death in the USA. Despite extensive research, minimal improvements in patient outcomes have been achieved. Early identification of treatment response and metastasis would be valuable to determine the appropriate therapeutic course for patients. In this work, we isolated exosomes from the serum of 10 patients with locally advanced pancreatic cancer at serial time points over a course of therapy, and quantitative analysis was performed using the iTRAQ method. We detected approximately 700-800 exosomal proteins per sample, several of which have been implicated in metastasis and treatment resistance. We compared the exosomal proteome of patients at different time points during treatment to healthy controls and identified eight proteins that show global treatment-specific changes. We then tested the effect of patient-derived exosomes on the migration of tumor cells and found that patient-derived exosomes, but not healthy controls, induce cell migration, supporting their role in metastasis. Our data show that exosomes can be reliably extracted from patient serum and analyzed for protein content. The differential loading of exosomes during a course of therapy suggests that exosomes may provide novel insights into the development of treatment resistance and metastasis.


Subject(s)
Blood Proteins/genetics , Neoplasm Recurrence, Local/blood , Pancreatic Neoplasms/blood , Proteome/genetics , Blood Proteins/biosynthesis , Exosomes/drug effects , Exosomes/radiation effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/radiation effects , Humans , Male , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/radiotherapy , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/radiotherapy
20.
Gastroenterology ; 146(4): 1108-18, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24397969

ABSTRACT

BACKGROUND & AIMS: CD44s is a surface marker of tumor-initiating cells (TICs); high tumor levels correlate with metastasis and recurrence, as well as poor outcomes for patients. Monoclonal antibodies against CD44s might eliminate TICs with minimal toxicity. This strategy is unclear for treatment of pancreatic cancer, and little is known about how anti-CD44s affect pancreatic cancer initiation or recurrence after radiotherapy. METHODS: One hundred ninety-two pairs of human pancreatic adenocarcinoma and adjacent nontumor pancreatic tissues were collected from patients undergoing surgery. We measured CD44s levels in tissue samples and pancreatic cancer cell lines by immunohistochemistry, real-time polymerase chain reaction, and immunoblot; levels were correlated with patient survival times. We studied the effects of anti-CD44s in mice with human pancreatic tumor xenografts and used flow cytometry to determine the effects on TICs. Changes in CD44s signaling were examined by real-time polymerase chain reaction, immunoblot, reporter assay, and in vitro tumorsphere formation assays. RESULTS: Levels of CD44s were significantly higher in pancreatic cancer than adjacent nontumor tissues. Patients whose tumors expressed high levels of CD44s had a median survival of 10 months compared with >43 months for those with low levels. Anti-CD44s reduced growth, metastasis, and postradiation recurrence of pancreatic xenograft tumors in mice. The antibody reduced the number of TICs in cultured pancreatic cancer cells and xenograft tumors, as well as their tumorigenicity. In cultured pancreatic cancer cell lines, anti-CD44s down-regulated the stem cell self-renewal genes Nanog, Sox-2, and Rex-1 and inhibited signal transducer and activator of transcription 3-mediated cell proliferation and survival signaling. CONCLUSIONS: The TIC marker CD44s is up-regulated in human pancreatic tumors and associated with patient survival time. CD44s is required for initiation, growth, metastasis, and postradiation recurrence of xenograft tumors in mice. Anti-CD44s eliminated bulk tumor cells as well as TICs from the tumors. Strategies to target CD44s cab be developed to block pancreatic tumor formation and post-radiotherapy recurrence in patients.


Subject(s)
Adenocarcinoma/therapy , Antibodies/pharmacology , Biomarkers, Tumor/immunology , Hyaluronan Receptors/immunology , Neoplasm Recurrence, Local/prevention & control , Neoplastic Stem Cells/drug effects , Pancreatic Neoplasms/therapy , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Adenocarcinoma/metabolism , Adenocarcinoma/mortality , Adenocarcinoma/secondary , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Gene Expression Regulation, Neoplastic , Humans , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Kaplan-Meier Estimate , Mice , Mice, Nude , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/radiation effects , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Signal Transduction/drug effects , Spheroids, Cellular , Time Factors , Transcription Factors/metabolism , Tumor Burden/drug effects , Tumor Cells, Cultured , Up-Regulation , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL