Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add more filters

Publication year range
1.
PLoS Biol ; 20(8): e3001758, 2022 08.
Article in English | MEDLINE | ID: mdl-35998206

ABSTRACT

Many diseases linked with ethnic health disparities associate with changes in microbial communities in the United States, but the causes and persistence of ethnicity-associated microbiome variation are not understood. For instance, microbiome studies that strictly control for diet across ethnically diverse populations are lacking. Here, we performed multiomic profiling over a 9-day period that included a 4-day controlled vegetarian diet intervention in a defined geographic location across 36 healthy Black and White females of similar age, weight, habitual diets, and health status. We demonstrate that individuality and ethnicity account for roughly 70% to 88% and 2% to 10% of taxonomic variation, respectively, eclipsing the effects a short-term diet intervention in shaping gut and oral microbiomes and gut viromes. Persistent variation between ethnicities occurs for microbial and viral taxa and various metagenomic functions, including several gut KEGG orthologs, oral carbohydrate active enzyme categories, cluster of orthologous groups of proteins, and antibiotic-resistant gene categories. In contrast to the gut and oral microbiome data, the urine and plasma metabolites tend to decouple from ethnicity and more strongly associate with diet. These longitudinal, multiomic profiles paired with a dietary intervention illuminate previously unrecognized associations of ethnicity with metagenomic and viromic features across body sites and cohorts within a single geographic location, highlighting the importance of accounting for human microbiome variation in research, health determinants, and eventual therapies. Trial Registration: ClinicalTrials.gov ClinicalTrials.gov Identifier: NCT03314194.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Bacteria/genetics , Ethnicity , Feces , Female , Gastrointestinal Microbiome/genetics , Humans , Microbiota/genetics , Virome
2.
Antimicrob Agents Chemother ; : e0011224, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888319

ABSTRACT

Inhalation anthrax is the most severe form of Bacillus anthracis infection, often progressing to fatal conditions if left untreated. While recommended antibiotics can effectively treat anthrax when promptly administered, strains engineered for antibiotic resistance could render these drugs ineffective. Telavancin, a semisynthetic lipoglycopeptide antibiotic, was evaluated in this study as a novel therapeutic against anthrax disease. Specifically, the aims were to (i) assess in vitro potency of telavancin against 17 B. anthracis isolates by minimum inhibitory concentration (MIC) testing and (ii) evaluate protective efficacy in rabbits infected with a lethal dose of aerosolized anthrax spores and treated with human-equivalent intravenous telavancin doses (30 mg/kg every 12 hours) for 5 days post-antigen detection versus a humanized dose of levofloxacin and vehicle control. Blood samples were collected at various times post-infection to assess the level of bacteremia and antibody production, and tissues were collected to determine bacterial load. The animals' body temperatures were also recorded. Telavancin demonstrated potent bactericidal activity against all strains tested (MICs 0.06-0.125 µg/mL). Further, telavancin conveyed 100% survival in this model and cleared B. anthracis from the bloodstream and organ tissues more effectively than a humanized dose of levofloxacin. Collectively, the low MICs against all strains tested and rapid bactericidal in vivo activity demonstrate that telavancin has the potential to be an effective alternative for the treatment or prophylaxis of anthrax infection.

3.
J Infect Dis ; 228(Suppl 7): S604-S616, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37145930

ABSTRACT

BACKGROUND: Highly pathogenic filoviruses such as Ebola virus (EBOV) hold capacity for delivery by artificial aerosols, and thus potential for intentional misuse. Previous studies have shown that high doses of EBOV delivered by small-particle aerosol cause uniform lethality in nonhuman primates (NHPs), whereas only a few small studies have assessed lower doses in NHPs. METHODS: To further characterize the pathogenesis of EBOV infection via small-particle aerosol, we challenged cohorts of cynomolgus monkeys with low doses of EBOV variant Makona, which may help define risks associated with small particle aerosol exposures. RESULTS: Despite using challenge doses orders of magnitude lower than previous studies, infection via this route was uniformly lethal across all cohorts. Time to death was delayed in a dose-dependent manner between aerosol-challenged cohorts, as well as in comparison to animals challenged via the intramuscular route. Here, we describe the observed clinical and pathological details including serum biomarkers, viral burden, and histopathological changes leading to death. CONCLUSIONS: Our observations in this model highlight the striking susceptibility of NHPs, and likely humans, via small-particle aerosol exposure to EBOV and emphasize the need for further development of diagnostics and postexposure prophylactics in the event of intentional release via deployment of an aerosol-producing device.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Animals , Macaca fascicularis , Aerosols , Viral Load
4.
J Infect Dis ; 228(Suppl 7): S701-S711, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37474248

ABSTRACT

Marburg virus (MARV) causes a hemorrhagic fever disease in human and nonhuman primates with high levels of morbidity and mortality. Concerns about weaponization of aerosolized MARV have spurred the development of nonhuman primate (NHP) models of aerosol exposure. To address the potential threat of aerosol exposure, a monoclonal antibody that binds MARV glycoprotein was tested, MR186YTE, for its efficacy as a prophylactic. MR186YTE was administered intramuscularly to NHPs at 15 or 5 mg/kg 1 month prior to MARV aerosol challenge. Seventy-five percent (3/4) of the 15 mg/kg dose group and 50% (2/4) of the 5 mg/kg dose group survived. Serum analyses showed that the NHP dosed with 15 mg/kg that succumbed to infection developed an antidrug antibody response and therefore had no detectable MR186YTE at the time of challenge. These results suggest that intramuscular dosing of mAbs may be a clinically useful prophylaxis for MARV aerosol exposure.


Subject(s)
Marburg Virus Disease , Marburgvirus , Animals , Humans , Antibodies, Monoclonal , Primates , Aerosols
6.
Int J Technol Assess Health Care ; 39(1): e36, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37336780

ABSTRACT

The Patient-Centered Outcomes Research Institute (PCORI) is a nonprofit, nongovernmental organization established by the U.S. Congress to fund comparative clinical effectiveness research focusing on patient-centered outcomes through the engagement of stakeholders. Evaluation of emerging healthcare innovations is one of PCORI's five National Priorities for Health. One such initiative is PCORI's Emerging Technologies and Therapeutics Reports program, established to provide timely overviews of evidence on new drugs and other healthcare technologies. This article provides an overview of completed and ongoing Emerging Technologies and Therapeutics Reports including lessons learned to date. In addition to systematic searches, systematic selection of studies, and transparent reporting of the available evidence, informed by a select number of stakeholders (i.e., key informants), these reports focus on contextual factors shaping the diffusion of emerging technologies that are often not reported in the medical literature. This article also compares processes and methodologies of health technology assessments (HTAs) from a selected number of national and international publicly funded agencies with a goal toward potential future enhancement of PCORI's Emerging Technologies and Therapeutics Reports program. HTAs vary considerably in terms of funding, types of assessments, the role of manufacturers, stakeholder engagement, timeline to complete from the start to the finish of a draft report publication, and communication of uncertainty for informed decision making. Future Emerging Technologies and Therapeutics Reports may focus on rapid reports to support a more expedient development of evidence. Future research could explore the role of contextual factors identified in these reports on targeted evidence generation.


Subject(s)
Outcome Assessment, Health Care , Patient Outcome Assessment , Humans , Health Facilities , Delivery of Health Care , Academies and Institutes
7.
J Infect Dis ; 221(Suppl 4): S431-S435, 2020 05 11.
Article in English | MEDLINE | ID: mdl-31665351

ABSTRACT

The high case-fatality rates and potential for use as a biological weapon make Nipah virus (NiV) a significant public health concern. Previous studies assessing the pathogenic potential of NiV delivered by the aerosol route in African green monkeys (AGMs) used the Malaysia strain (NiVM), which has caused lower instances of respiratory illness and person-to-person transmission during human outbreaks than the Bangladesh strain (NiVB). Accordingly, we developed a small particle aerosol model of NiVB infection in AGMs. Consistent with other mucosal AGM models of NiVB infection, we achieved uniform lethality and disease pathogenesis reflective of that observed in humans.


Subject(s)
Henipavirus Infections/virology , Nipah Virus/classification , Nipah Virus/physiology , Aerosols , Animals , Henipavirus Infections/pathology
8.
J Infect Dis ; 220(5): 735-742, 2019 07 31.
Article in English | MEDLINE | ID: mdl-31053842

ABSTRACT

BACKGROUND: Chikungunya virus (CHIKV) infection can result in chikungunya fever (CHIKF), a self-limited acute febrile illness that can progress to chronic arthralgic sequelae in a large percentage of patients. A new measles virus-vectored vaccine was developed to prevent CHIKF, and we tested it for immunogenicity and efficacy in a nonhuman primate model. METHODS: Nine cynomolgus macaques were immunized and boosted with the measles virus-vectored chikungunya vaccine or sham-vaccinated. Sera were taken at multiple times during the vaccination phase to assess antibody responses against CHIKV. Macaques were challenged with a dose of CHIKV previously shown to cause fever and viremia, and core body temperature, viremia, and blood cell and chemistry panels were monitored. RESULTS: The vaccine was well tolerated in all macaques, and all seroconverted (high neutralizing antibody [PRNT80 titers, 40-640] and enzyme-linked immunosorbent assay titers) after the boost. Furthermore, the vaccinated primates were protected against viremia, fever, elevated white blood cell counts, and CHIKF-associated cytokine changes after challenge with the virulent La Reunión CHIKV strain. CONCLUSIONS: These results further document the immunogenicity and efficacy of a measles-vectored chikungunya vaccine that shows promise in Phase I-II clinical trials. These findings are critical to human health because no vaccine to combat CHIKF is yet licensed.


Subject(s)
Chikungunya Fever/prevention & control , Immunogenicity, Vaccine/immunology , Measles Vaccine/immunology , Measles/prevention & control , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Body Temperature , Chikungunya Fever/virology , Chikungunya virus/immunology , Cytokines/metabolism , Disease Models, Animal , Female , Genetic Vectors , Humans , Immunization, Secondary , Macaca fascicularis/immunology , Male , Measles virus/immunology , Vaccination , Viremia
9.
N C Med J ; 80(5): 288-291, 2019.
Article in English | MEDLINE | ID: mdl-31471511

ABSTRACT

This commentary shares perspective on critical factors that should be addressed to optimize provider experience during Medicaid transformation to sustain healthy provider participation and viability of public-private collaborations. The authors are from Carolina Complete Health (CCH) and Carolina Complete Health Network (CCHN). CCH is a joint venture of Centene and the doctors (PAs and NPs) of North Carolina.


Subject(s)
Health Personnel/psychology , Medicaid/organization & administration , Humans , North Carolina , Public-Private Sector Partnerships , United States
10.
J Infect Dis ; 218(10): 1602-1610, 2018 10 05.
Article in English | MEDLINE | ID: mdl-29912426

ABSTRACT

Background: Nipah virus (NiV) is a paramyxovirus (genus Henipavirus) that can cause severe respiratory illness and encephalitis in humans. Transmission occurs through consumption of NiV-contaminated foods, and contact with NiV-infected animals or human body fluids. However, it is unclear whether aerosols derived from aforesaid sources or others also contribute to transmission, and current knowledge on NiV-induced pathogenicity after small-particle aerosol exposure is still limited. Methods: Infectivity, pathogenicity, and real-time dissemination of aerosolized NiV in Syrian hamsters was evaluated using NiV-Malaysia (NiV-M) and/or its recombinant expressing firefly luciferase (rNiV-FlucNP). Results: Both viruses had an equivalent pathogenicity in hamsters, which developed respiratory and neurological symptoms of disease, similar to using intranasal route, with no direct correlations to the dose. We showed that virus replication was predominantly initiated in the lower respiratory tract and, although delayed, also intensely in the oronasal cavity and possibly the brain, with gradual increase of signal in these regions until at least day 5-6 postinfection. Conclusion: Hamsters infected with small-particle aerosolized NiV undergo similar clinical manifestations of the disease as previously described using liquid inoculum, and exhibit histopathological lesions consistent with NiV patient reports. NiV droplets could therefore play a role in transmission by close contact.


Subject(s)
Aerosols/administration & dosage , Henipavirus Infections , Nipah Virus/pathogenicity , Administration, Inhalation , Animals , Cricetinae , Disease Models, Animal , Henipavirus Infections/diagnostic imaging , Henipavirus Infections/pathology , Henipavirus Infections/transmission , Henipavirus Infections/virology , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , Lung/diagnostic imaging , Lung/pathology , Lung/virology , Mesocricetus , Optical Imaging , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
12.
Ann Intern Med ; 161(11): 812-8, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25437409

ABSTRACT

Clinical practice guidelines should be based on the best scientific evidence derived from systematic reviews of primary research. However, these studies often do not provide evidence needed by guideline development groups to evaluate the tradeoffs between benefits and harms. In this article, the authors identify 4 areas where models can bridge the gaps between published evidence and the information needed for guideline development applying new or updated information on disease risk, diagnostic test properties, and treatment efficacy; exploring a more complete array of alternative intervention strategies; assessing benefits and harms over a lifetime horizon; and projecting outcomes for the conditions for which the guideline is intended. The use of modeling as an approach to bridge these gaps (provided that the models are high-quality and adequately validated) is considered. Colorectal and breast cancer screening are used as examples to show the utility of models for these purposes. The authors propose that a modeling study is most useful when strong primary evidence is available to inform the model but critical gaps remain between the evidence and the questions that the guideline group must address. In these cases, model results have a place alongside the findings of systematic reviews to inform health care practice and policy.


Subject(s)
Evidence-Based Medicine , Models, Theoretical , Practice Guidelines as Topic , Breast Neoplasms/diagnosis , Colorectal Neoplasms/diagnosis , Early Detection of Cancer , Humans , Mammography , Risk Assessment , Risk Factors
13.
Circ Res ; 110(11): 1474-83, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22511749

ABSTRACT

RATIONALE: Increased activity of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is thought to promote heart failure (HF) progression. However, the importance of CaMKII phosphorylation of ryanodine receptors (RyR2) in HF development and associated diastolic sarcoplasmic reticulum Ca(2+) leak is unclear. OBJECTIVE: Determine the role of CaMKII phosphorylation of RyR2 in patients and mice with nonischemic and ischemic forms of HF. METHODS AND RESULTS: Phosphorylation of the primary CaMKII site S2814 on RyR2 was increased in patients with nonischemic, but not with ischemic, HF. Knock-in mice with an inactivated S2814 phosphorylation site were relatively protected from HF development after transverse aortic constriction compared with wild-type littermates. After transverse aortic constriction, S2814A mice did not exhibit pulmonary congestion and had reduced levels of atrial natriuretic factor. Cardiomyocytes from S2814A mice exhibited significantly lower sarcoplasmic reticulum Ca(2+) leak and improved sarcoplasmic reticulum Ca(2+) loading compared with wild-type mice after transverse aortic constriction. Interestingly, these protective effects on cardiac contractility were not observed in S2814A mice after experimental myocardial infarction. CONCLUSIONS: Our results suggest that increased CaMKII phosphorylation of RyR2 plays a role in the development of pathological sarcoplasmic reticulum Ca(2+) leak and HF development in nonischemic forms of HF such as transverse aortic constriction in mice.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Heart Failure/metabolism , Myocardium/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Adult , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Cardiomegaly/etiology , Cardiomegaly/metabolism , Cardiomyopathy, Dilated/complications , Cardiomyopathy, Dilated/metabolism , Disease Models, Animal , Disease Progression , Female , Gene Knock-In Techniques , Heart Failure/diagnosis , Heart Failure/etiology , Heart Failure/physiopathology , Heart Failure/prevention & control , Humans , Magnetic Resonance Imaging , Male , Mice , Mice, Transgenic , Middle Aged , Mutation , Myocardial Contraction , Myocardial Ischemia/complications , Myocardial Ischemia/metabolism , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Ryanodine Receptor Calcium Release Channel/genetics , Sarcoplasmic Reticulum/metabolism , Serine , Time Factors , Up-Regulation , Ventricular Function, Left , Ventricular Pressure , Ventricular Remodeling
14.
Minn Med ; 97(8): 49-51, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25226655

ABSTRACT

The Agency for Healthcare Research and Quality (AHRQ) has funded systematic reviews of comparative effectiveness research in 17 areas over the last 10 years as part of a federal mandate. These reviews provide a reliable and unbiased source of comprehensive information about the effectiveness and risks of treatment alternatives for patients and clinicians. This article describes comparative effectiveness research, provides an overview of how physicians can use it in clinical practice, and references important contributions made by the Minnesota Evidence-based Practice Center.


Subject(s)
Comparative Effectiveness Research/legislation & jurisprudence , Comparative Effectiveness Research/organization & administration , Evidence-Based Medicine/legislation & jurisprudence , Evidence-Based Medicine/organization & administration , Health Priorities/legislation & jurisprudence , Health Priorities/organization & administration , Health Services Research/legislation & jurisprudence , Health Services Research/organization & administration , Humans , Minnesota , Outcome and Process Assessment, Health Care/legislation & jurisprudence , Outcome and Process Assessment, Health Care/organization & administration , Patient Education as Topic/legislation & jurisprudence , Patient Education as Topic/organization & administration , Practice Guidelines as Topic
15.
bioRxiv ; 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38293171

ABSTRACT

Yersinia pestis , one of the deadliest bacterial pathogens ever known, is responsible for three plague pandemics and several epidemics, with over 200 million deaths during recorded history. Due to high genomic plasticity, Y. pestis is amenable to genetic mutations as well as genetic engineering that can lead to the emergence or intentional development of pan-drug resistant strains. The dissemination of such Y. pestis strains could be catastrophic, with public health consequences far more daunting than those caused by the recent COVID-19 pandemic. Thus, there is an urgent need to develop novel, safe, and effective treatment approaches for managing Y. pestis infections. This includes infections by antigenically distinct strains for which vaccines, none FDA approved yet, may not be effective, and those that cannot be controlled by approved antibiotics. Lytic bacteriophages provide one such alternative approach. In this study, we examined post-exposure efficacy of a bacteriophage cocktail, YPP-401, to combat pneumonic plague caused by Y. pestis CO92. YPP-401 is a four-phage preparation with a 100% lytic activity against a panel of 68 genetically diverse Y. pestis strains. Using a pneumonic plague aerosol challenge model in gender-balanced Brown Norway rats, YPP-401 demonstrated ∼88% protection when delivered 18 hours post-exposure for each of two administration routes (i.e., intraperitoneal and intranasal) in a dose-dependent manner. Our studies suggest that YPP-401 could provide an innovative, safe, and effective approach for managing Y. pestis infections, including those caused by naturally occurring or intentionally developed strains that cannot be managed by vaccines in development and antibiotics.

16.
Res Sq ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38585816

ABSTRACT

The antimicrobial resistance crisis (AMR) is associated with millions of deaths and undermines the franchise of medicine. Of particular concern is the threat of bioweapons, exemplified by anthrax. Introduction of novel antibiotics helps mitigate AMR, but does not address the threat of bioweapons with engineered resistance. We reasoned that teixobactin, an antibiotic with no detectable resistance, is uniquely suited to address the challenge of weaponized anthrax. Teixobactinbinds to immutable targets, precursors of cell wall polymers. Here we show that teixobactinis highly efficacious in a rabbit model of inhalation anthrax. Inhaling spores of Bacillus anthracis causes overwhelming morbidity and mortality. Treating rabbits with teixobactinafter the onset of disease rapidly eliminates the pathogen from blood and tissues, normalizes body temperature, and prevents tissue damage. Teixobactinassembles into an irreversible supramolecular structure of the surface of B. anthracis membrane, likely contributing to its unusually high potency against anthrax. Antibiotics evading resistance provide a rational solution to both AMR and engineered bioweapons.

17.
Biosci Rep ; 43(8)2023 08 31.
Article in English | MEDLINE | ID: mdl-37503762

ABSTRACT

The biological links between cancer and pregnancy are of interest due to parallel proliferative, immunosuppressive, and invasive mechanisms between tumour and placental cells. However, the proliferation and invasion of placental cells are strictly regulated. The understanding of this regulation is largely unknown. Placental extracellular vesicles (EVs) may play an important role in this regulation, as placental EVs are known to contribute to maternal adaptation, including adaptation of the vascular and immune systems. We have previously reported that placental EVs significantly inhibited ovarian cancer cell proliferation by delaying the progression of the cell cycle. We, therefore, performed this pilot in vivo study to investigate whether placental EVs can also inhibit ovarian tumour growth in a SKOV-3 human tumour xenograft model. A single intraperitoneal injection of placental EVs at 15 days post tumour implantation, significantly inhibited the growth of the tumours in our in vivo model. Signs of cellular necrosis were observed in the ovarian tumour tissues, but not in other organs collected from mice that had been treated with placental EVs. Expression of receptor-interacting kinase 1 (RIPK1) and mixed linkage kinase domain-like (MLKL), which are mediators of necroptosis were not observed in our xenografted tumours. However, extensive infiltration of CD169+ macrophages and NK cells in ovarian tumour tissues collected from placental micro-EVs treated mice were observed. We demonstrate here that inhibition of ovarian tumour growth in our xenograft model by placental EVs involves cellular necrosis and infiltration of CD169+ macrophages and NK cells into the tumour tissues.


Subject(s)
Extracellular Vesicles , Ovarian Neoplasms , Pregnancy , Humans , Female , Animals , Mice , Placenta/metabolism , Extracellular Vesicles/metabolism , Pregnancy Trimester, First , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Necrosis
18.
J Biomed Mater Res A ; 111(11): 1722-1733, 2023 11.
Article in English | MEDLINE | ID: mdl-37326365

ABSTRACT

Autologous adipose tissue is commonly used for tissue engraftment for the purposes of soft tissue reconstruction due to its relative abundance in the human body and ease of acquisition using liposuction methods. This has led to the adoption of autologous adipose engraftment procedures that allow for the injection of adipose tissues to be used as a "filler" for correcting cosmetic defects and deformities in soft tissues. However, the clinical use of such methods has several limitations, including high resorption rates and poor cell survivability, which lead to low graft volume retention and inconsistent outcomes. Here, we describe a novel application of milled electrospun poly(lactic-co-glycolic acid) (PLGA) fibers, which can be co-injected with adipose tissue to improve engraftment outcomes. These PLGA fibers had no significant negative impact on the viability of adipocytes in vitro and did not elicit long-term proinflammatory responses in vivo. Furthermore, co-delivery of human adipose tissue with pulverized electrospun PLGA fibers led to significant improvements in reperfusion, vascularity, and retention of graft volume compared to injections of adipose tissue alone. Taken together, the use of milled electrospun fibers to enhance autologous adipose engraftment techniques represents a novel approach for improving upon the shortcomings of such methods.


Subject(s)
Polyglycolic Acid , Tissue Scaffolds , Humans , Polylactic Acid-Polyglycolic Acid Copolymer , Lactic Acid/pharmacology , Tissue Engineering/methods , Glycols , Adipose Tissue
19.
Adv Nanobiomed Res ; 3(10)2023 Oct.
Article in English | MEDLINE | ID: mdl-38911285

ABSTRACT

Direct nuclear reprogramming has the potential to enable the development of ß cell replacement therapies for diabetes that do not require the use of progenitor/stem cell populations. However, despite their promise, current approaches to ß cell-directed reprogramming rely heavily on the use of viral vectors. Here we explored the use of extracellular vesicles (EVs) derived from human dermal fibroblasts (HDFs) as novel non-viral carriers of endocrine cell-patterning transcription factors, to transfect and transdifferentiate pancreatic ductal epithelial cells (PDCs) into hormone-expressing cells. Electrotransfection of HDFs with expression plasmids for Pdx1, Ngn3, and MafA (PNM) led to the release of EVs loaded with PNM at the gene, mRNA, and protein level. Exposing PDC cultures to PNM-loaded EVs led to successful transfection and increased PNM expression in PDCs, which ultimately resulted in endocrine cell-directed conversions based on the expression of insulin/c-peptide, glucagon, and glucose transporter 2 (Glut2). These findings were further corroborated in vivo in a mouse model following intraductal injection of PNM- vs sham-loaded EVs. Collectively these findings suggest that dermal fibroblast-derived EVs could potentially serve as a powerful platform technology for the development and deployment of non-viral reprogramming-based cell therapies for insulin-dependent diabetes.

20.
Biomater Sci ; 11(20): 6834-6847, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37646133

ABSTRACT

Tumor-associated immune cells play a crucial role in cancer progression. Myeloid-derived suppressor cells (MDSCs), for example, are immature innate immune cells that infiltrate the tumor to exert immunosuppressive activity and protect cancer cells from the host's immune system and/or cancer-specific immunotherapies. While tumor-associated immune cells have emerged as a promising therapeutic target, efforts to counter immunosuppression within the tumor niche have been hampered by the lack of approaches that selectively target the immune cell compartment of the tumor, to effectively eliminate "tumor-protecting" immune cells and/or drive an "anti-tumor" phenotype. Here we report on a novel nanotechnology-based approach to target tumor-associated immune cells and promote "anti-tumor" responses in a murine model of breast cancer. Engineered extracellular vesicles (EVs) decorated with ICAM-1 ligands and loaded with miR-146a and Glut1, were biosynthesized (in vitro or in vivo) and administered to tumor-bearing mice once a week for up to 5 weeks. The impact of this treatment modality on the immune cell compartment and tumor progression was evaluated via RT-qPCR, flow cytometry, and histology. Our results indicate that weekly administration of the engineered EVs (i.e., ICAM-1-decorated and loaded with miR-146a and Glut1) hampered tumor progression compared to ICAM-1-decorated EVs with no cargo. Flow cytometry analyses of the tumors indicated a shift in the phenotype of the immune cell population toward a more pro-inflammatory state, which appeared to have facilitated the infiltration of tumor-targeting T cells, and was associated with a reduction in tumor size and decreased metastatic burden. Altogether, our results indicate that ICAM-1-decorated EVs could be a powerful platform nanotechnology for the deployment of immune cell-targeting therapies to solid tumors.

SELECTION OF CITATIONS
SEARCH DETAIL