Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Nature ; 584(7822): 614-618, 2020 08.
Article in English | MEDLINE | ID: mdl-32612233

ABSTRACT

Oral antiretroviral agents provide life-saving treatments for millions of people living with HIV, and can prevent new infections via pre-exposure prophylaxis1-5. However, some people living with HIV who are heavily treatment-experienced have limited or no treatment options, owing to multidrug resistance6. In addition, suboptimal adherence to oral daily regimens can negatively affect the outcome of treatment-which contributes to virologic failure, resistance generation and viral transmission-as well as of pre-exposure prophylaxis, leading to new infections1,2,4,7-9. Long-acting agents from new antiretroviral classes can provide much-needed treatment options for people living with HIV who are heavily treatment-experienced, and additionally can improve adherence10. Here we describe GS-6207, a small molecule that disrupts the functions of HIV capsid protein and is amenable to long-acting therapy owing to its high potency, low in vivo systemic clearance and slow release kinetics from the subcutaneous injection site. Drawing on X-ray crystallographic information, we designed GS-6207 to bind tightly at a conserved interface between capsid protein monomers, where it interferes with capsid-protein-mediated interactions between proteins that are essential for multiple phases of the viral replication cycle. GS-6207 exhibits antiviral activity at picomolar concentrations against all subtypes of HIV-1 that we tested, and shows high synergy and no cross-resistance with approved antiretroviral drugs. In phase-1 clinical studies, monotherapy with a single subcutaneous dose of GS-6207 (450 mg) resulted in a mean log10-transformed reduction of plasma viral load of 2.2 after 9 days, and showed sustained plasma exposure at antivirally active concentrations for more than 6 months. These results provide clinical validation for therapies that target the functions of HIV capsid protein, and demonstrate the potential of GS-6207 as a long-acting agent to treat or prevent infection with HIV.


Subject(s)
Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Capsid Proteins/antagonists & inhibitors , HIV-1/drug effects , Adolescent , Adult , Anti-HIV Agents/chemistry , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cell Line , Cells, Cultured , Drug Resistance, Viral/genetics , Female , HIV-1/growth & development , Humans , Male , Middle Aged , Models, Molecular , Virus Replication/drug effects , Young Adult
2.
Article in English | MEDLINE | ID: mdl-33649107

ABSTRACT

The HIV integrase (IN) strand transfer inhibitor (INSTI) bictegravir (BIC) has a long dissociation half-life (t1/2) from wild-type IN-DNA complexes: BIC 163 hr > dolutegravir (DTG) 96 hr > raltegravir (RAL) 10 hr > elvitegravir (EVG) 3.3 hr. In cells, BIC had more durable antiviral activity against wild-type HIV after drug washout than RAL or EVG. BIC also had a longer t1/2 and maintained longer antiviral activity after drug washout than DTG with the clinically relevant resistance IN mutant G140S+Q148H. Structural analyses indicate that BIC makes more contacts with the IN-DNA complex than DTG mainly via its bicyclic ring system which may contribute to more prolonged residence time and resilience against many resistance mutations.

3.
Antimicrob Agents Chemother ; 60(12): 7086-7097, 2016 12.
Article in English | MEDLINE | ID: mdl-27645238

ABSTRACT

Bictegravir (BIC; GS-9883), a novel, potent, once-daily, unboosted inhibitor of HIV-1 integrase (IN), specifically targets IN strand transfer activity (50% inhibitory concentration [IC50] of 7.5 ± 0.3 nM) and HIV-1 integration in cells. BIC exhibits potent and selective in vitro antiretroviral activity in both T-cell lines and primary human T lymphocytes, with 50% effective concentrations ranging from 1.5 to 2.4 nM and selectivity indices up to 8,700 relative to cytotoxicity. BIC exhibits synergistic in vitro antiviral effects in pairwise combinations with tenofovir alafenamide, emtricitabine, or darunavir and maintains potent antiviral activity against HIV-1 variants resistant to other classes of antiretrovirals. BIC displayed an in vitro resistance profile that was markedly improved compared to the integrase strand transfer inhibitors (INSTIs) raltegravir (RAL) and elvitegravir (EVG), and comparable to that of dolutegravir (DTG), against nine INSTI-resistant site-directed HIV-1 mutants. BIC displayed statistically improved antiviral activity relative to EVG, RAL, and DTG against a panel of 47 patient-derived HIV-1 isolates with high-level INSTI resistance; 13 of 47 tested isolates exhibited >2-fold lower resistance to BIC than DTG. In dose-escalation experiments conducted in vitro, BIC and DTG exhibited higher barriers to resistance than EVG, selecting for HIV-1 variants with reduced phenotypic susceptibility at days 71, 87, and 20, respectively. A recombinant virus with the BIC-selected M50I/R263K dual mutations in IN exhibited only 2.8-fold reduced susceptibility to BIC compared to wild-type virus. All BIC-selected variants exhibited low to intermediate levels of cross-resistance to RAL, DTG, and EVG (<8-fold) but remained susceptible to other classes of antiretrovirals. A high barrier to in vitro resistance emergence for both BIC and DTG was also observed in viral breakthrough studies in the presence of constant clinically relevant drug concentrations. The overall virologic profile of BIC supports its ongoing clinical investigation in combination with other antiretroviral agents for both treatment-naive and -experienced HIV-infected patients.


Subject(s)
Drug Resistance, Viral/drug effects , HIV Integrase Inhibitors/pharmacology , HIV Integrase/metabolism , HIV-1/drug effects , Heterocyclic Compounds, 4 or More Rings/pharmacology , Amides , Anti-HIV Agents/pharmacology , Cell Line , Drug Synergism , HIV Integrase/genetics , HIV-1/genetics , HIV-1/isolation & purification , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Mutation , Oxazines , Piperazines , Pyridones , Raltegravir Potassium/pharmacology
4.
Antimicrob Agents Chemother ; 58(1): 386-96, 2014.
Article in English | MEDLINE | ID: mdl-24165192

ABSTRACT

One of the most challenging goals of hepatitis C virus (HCV) research is to develop well-tolerated regimens with high cure rates across a variety of patient populations. Such a regimen will likely require a combination of at least two distinct direct-acting antivirals (DAAs). Combining two or more DAAs with different resistance profiles increases the number of mutations required for viral breakthrough. Currently, most DAAs inhibit HCV replication. We recently reported that the combination of two distinct classes of HCV inhibitors, entry inhibitors and replication inhibitors, prolonged reductions in extracellular HCV in persistently infected cells. We therefore sought to identify new inhibitors targeting aspects of the HCV replication cycle other than RNA replication. We report here the discovery of the first small-molecule HCV infectivity inhibitor, GS-563253, also called HCV infectivity inhibitor 1 (HCV II-1). HCV II-1 is a substituted tetrahydroquinoline that selectively inhibits genotype 1 and 2 HCVs with low-nanomolar 50% effective concentrations. It was identified through a high-throughput screen and subsequent chemical optimization. HCV II-1 only permits the production and release of noninfectious HCV particles from cells. Moreover, infectious HCV is rapidly inactivated in its presence. HCV II-1 resistance mutations map to HCV E2. In addition, HCV-II prevents HCV endosomal fusion, suggesting that it either locks the viral envelope in its prefusion state or promotes a viral envelope conformation change incapable of fusion. Importantly, the discovery of HCV II-1 opens up a new class of HCV inhibitors that prolong viral suppression by HCV replication inhibitors in persistently infected cell cultures.


Subject(s)
Antiviral Agents/pharmacology , Hepacivirus/drug effects , Antiviral Agents/chemistry , Cell Line , Drug Resistance, Viral , Hepacivirus/metabolism , Hepatitis C/drug therapy , Humans , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
5.
Antimicrob Agents Chemother ; 57(2): 804-10, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23183437

ABSTRACT

GS-9669 is a highly optimized thumb site II nonnucleoside inhibitor of the hepatitis C virus (HCV) RNA polymerase, with a binding affinity of 1.35 nM for the genotype (GT) 1b protein. It is a selective inhibitor of HCV RNA replication, with a mean 50% effective concentration (EC(50)) of ≤ 11 nM in genotype 1 and 5 replicon assays, but lacks useful activity against genotypes 2 to 4. The M423T mutation is readily generated clinically upon monotherapy with the thumb site II inhibitors filibuvir and lomibuvir, and it is notable that GS-9669 exhibited only a 3-fold loss in potency against this variant in the genotype 1b replicon. Rather than M423T, resistance predominantly tracks to residues R422K and L419M and residue I482L in GT 1b and 1a replicons, respectively. GS-9669 exhibited at least additive activity in combination with agents encompassing four other direct modes of action (NS3 protease, NS5A, NS5B via an alternative allosteric binding site, and NS5B nucleotide) as well as with alpha interferon or ribavirin in replicon assays. It exhibited high metabolic stability in in vitro human liver microsomal assays, which, in combination with its pharmacokinetic profiles in rat, dog, and two monkey species, is predictive of good human pharmacokinetics. GS-9669 is well suited for combination with other orally active, direct-acting antiviral agents in the treatment of genotype 1 chronic HCV infection. (This study has been registered at ClinicalTrials.gov under registration number NCT01431898.).


Subject(s)
Antiviral Agents/pharmacology , Furans/pharmacology , Hepacivirus/drug effects , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Thiophenes/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemistry , Cell Line, Tumor , Dogs , Drug Resistance, Viral , Furans/chemistry , Humans , Interferon-alpha/pharmacology , Male , Mutation , Polymorphism, Single Nucleotide , Pyrones/pharmacology , Rats , Rats, Sprague-Dawley , Ribavirin/pharmacology , Thiophenes/chemistry , Triazoles/pharmacology
6.
Bioorg Med Chem Lett ; 19(10): 2865-9, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19386497

ABSTRACT

The synthesis and structure-activity relationships (SAR) of a series of benzothiophene piperazine and piperidine urea FAAH inhibitors is described. These compounds inhibit FAAH by covalently modifying the enzyme's active site serine nucleophile. Activity-based protein profiling (ABPP) revealed that these urea inhibitors were completely selective for FAAH relative to other mammalian serine hydrolases. Several compounds showed in vivo activity in a rat complete Freund's adjuvant (CFA) model of inflammatory pain.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Piperazines/chemistry , Piperidines/chemistry , Thiophenes/chemistry , Urea/analogs & derivatives , Amidohydrolases/metabolism , Animals , Computer Simulation , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Models, Chemical , Piperazines/chemical synthesis , Piperazines/pharmacology , Piperidines/chemical synthesis , Piperidines/pharmacology , Rats , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/pharmacology , Urea/chemical synthesis , Urea/pharmacology
7.
J Med Chem ; 57(5): 1893-901, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24144213

ABSTRACT

Investigation of thiophene-2-carboxylic acid HCV NS5B site II inhibitors, guided by measurement of cell culture medium binding, revealed the structure-activity relationships for intrinsic cellular potency. The pharmacokinetic profile was enhanced through incorporation of heterocyclic ethers on the N-alkyl substituent. Hydroxyl groups were incorporated to modulate protein binding. Intrinsic potency was further improved through enantiospecific introduction of an olefin in the N-acyl motif, resulting in the discovery of the phase 2 clinical candidate GS-9669. The unexpected activity of this compound against the clinically relevant NS5B M423T mutant, relative to the wild type, was shown to arise from both the N-alkyl substituent and the N-acyl group.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Furans/pharmacology , Thiophenes/pharmacology , Viral Nonstructural Proteins/pharmacology , Antiviral Agents/chemistry , Enzyme Inhibitors/chemistry , Furans/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Thiophenes/chemistry , Viral Nonstructural Proteins/chemistry
8.
ACS Med Chem Lett ; 2(2): 91-96, 2011 Feb 10.
Article in English | MEDLINE | ID: mdl-21666860

ABSTRACT

Fatty acid amide hydrolase (FAAH) is an integral membrane serine hydrolase that degrades the fatty acid amide family of signaling lipids, including the endocannabinoid anandamide. Genetic or pharmacological inactivation of FAAH leads to analgesic and anti-inflammatory phenotypes in rodents without showing the undesirable side effects observed with direct cannabinoid receptor agonists, indicating that FAAH may represent an attractive therapeutic target for the treatment of inflammatory pain and other nervous system disorders. Herein, we report the discovery and characterization of a highly efficacious and selective FAAH inhibitor PF-04457845 (23). Compound 23 inhibits FAAH by a covalent, irreversible mechanism involving carbamylation of the active-site serine nucleophile of FAAH with high in vitro potency (k(inact)/K(i) and IC(50) values of 40300 M(-1) s(-1) and 7.2 nM, respectively, for human FAAH). Compound 23 has exquisite selectivity for FAAH relative to other members of the serine hydrolase superfamily as demonstrated by competitive activity-based protein profiling. Oral administration of 23 at 0.1 mg/kg results in efficacy comparable to that of naproxen at 10 mg/kg in a rat model of inflammatory pain. Compound 23 is being evaluated in human clinical trials.

9.
ACS Med Chem Lett ; 2(10): 715-9, 2011 Oct 13.
Article in English | MEDLINE | ID: mdl-24900257

ABSTRACT

A novel series of HCV replication inhibitors based on a pyrido[3,2-d]pyrimidine core were optimized for pharmacokinetics (PK) in rats. Several associations between physicochemical properties and PK were identified and exploited to guide the design of compounds. In addition, a simple new metric that may aid in the prediction of bioavailability for compounds with higher polar surface area is described (3*HBD-cLogP).

10.
J Am Chem Soc ; 127(15): 5288-9, 2005 Apr 20.
Article in English | MEDLINE | ID: mdl-15826144

ABSTRACT

Protein phosphorylation is a major mechanism of post-translational protein modification used to control cellular signaling. A challenge in phosphoproteomics is to identify the direct substrates of each protein kinase. Herein, we describe a chemical strategy for delivery of a bio-orthogonal affinity tag to the substrates of an individual protein kinase. The kinase of interest is engineered to transfer a phosphorothioate moiety to phosphoacceptor hydroxyl groups on direct substrates. In a second nonenzymatic step, the introduced phosphorothioate is alkylated with p-nitrobenzylmesylate (PNBM). Antibodies directed against the alkylated phosphorothioate epitope recognize these labeled substrates, but not alkylation products of other cellular nucleophiles. This strategy is demonstrated with Cdk1/cyclinB substrates using ELISA, western blotting, and immunoprecipitation in the context of whole cell lysates.


Subject(s)
Adenosine Triphosphate/analogs & derivatives , Affinity Labels/chemistry , CDC2 Protein Kinase/metabolism , Cell Cycle Proteins/chemistry , Histones/chemistry , Immunoconjugates/chemistry , Protein-Tyrosine Kinases/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Affinity Labels/metabolism , Cell Cycle Proteins/isolation & purification , Cell Cycle Proteins/metabolism , HeLa Cells , Histones/isolation & purification , Histones/metabolism , Humans , Immunoconjugates/metabolism , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Immunoglobulins/chemistry , Immunoglobulins/metabolism , Mesylates/chemistry , Protein-Tyrosine Kinases/isolation & purification , Protein-Tyrosine Kinases/metabolism , Saccharomyces cerevisiae Proteins/isolation & purification , Saccharomyces cerevisiae Proteins/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL