Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
RNA ; 30(1): 89-98, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37914399

ABSTRACT

The eukaryotic THO complex coordinates the assembly of so-called messenger RNA-ribonucleoprotein particles (mRNPs), a process that involves cotranscriptional coating of nascent mRNAs with proteins. Once formed, mRNPs undergo a quality control step that marks them either for active transport to the cytoplasm, or Rrp6/RNA exosome-mediated degradation in the nucleus. However, the mechanism behind the quality control of nascent mRNPs is still unclear. We investigated the cotranscriptional quality control of mRNPs in budding yeast by expressing the bacterial Rho helicase, which globally perturbs yeast mRNP formation. We examined the genome-wide binding profiles of the THO complex subunits Tho2, Thp2, Hpr1, and Mft1 upon perturbation of the mRNP biogenesis, and found that Tho2 plays two roles. In addition to its function as a subunit of the THO complex, upon perturbation of mRNP biogenesis Tho2 targets Rrp6 to chromatin via its carboxy-terminal domain. Interestingly, other THO subunits are not enriched on chromatin upon perturbation of mRNP biogenesis and are not necessary for localizing Rrp6 at its target loci. Our study highlights the potential role of Tho2 in cotranscriptional mRNP quality control, which is independent of other THO subunits. Considering that both the THO complex and the RNA exosome are evolutionarily highly conserved, our findings are likely relevant for mRNP surveillance in mammals.


Subject(s)
Chromatin , Saccharomyces cerevisiae Proteins , Chromatin/genetics , Chromatin/metabolism , Exosome Multienzyme Ribonuclease Complex/genetics , Exosome Multienzyme Ribonuclease Complex/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
2.
RNA Biol ; 16(7): 879-889, 2019 07.
Article in English | MEDLINE | ID: mdl-31007122

ABSTRACT

Eukaryotic cells have evolved a nuclear quality control (QC) system to monitor the co-transcriptional mRNA processing and packaging reactions that lead to the formation of export-competent ribonucleoprotein particles (mRNPs). Aberrant mRNPs that fail to pass the QC steps are retained in the nucleus and eliminated by the exonuclease activity of Rrp6. It is still unclear how the surveillance system is precisely coordinated both physically and functionally with the transcription machinery to detect the faulty events that may arise at each step of transcript elongation and mRNP formation. To dissect the QC mechanism, we previously implemented a powerful assay based on global perturbation of mRNP biogenesis in yeast by the bacterial Rho helicase. By monitoring model genes, we have shown that the QC process is coordinated by Nrd1, a component of the NNS complex (Nrd1-Nab3-Sen1) involved in termination, processing and decay of ncRNAs which is recruited by the CTD of RNAP II. Here, we have extended our investigations by analyzing the QC behaviour over the whole yeast genome. We performed high-throughput RNA sequencing (RNA-seq) to survey a large collection of mRNPs whose biogenesis is affected by Rho action and which can be rescued upon Rrp6 depletion. This genome-wide perspective was extended by generating high-resolution binding landscapes (ChIP-seq) of QC components along the yeast chromosomes before and after perturbation of mRNP biogenesis. Our results show that perturbation of mRNP biogenesis redistributes the QC components over the genome with a significant hijacking of Nrd1 and Nab3 from genomic loci producing ncRNAs to Rho-affected protein-coding genes, triggering termination and processing defects of ncRNAs.


Subject(s)
Exosome Multienzyme Ribonuclease Complex/metabolism , Genome, Fungal , Ribonucleoproteins/biosynthesis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Chromatin/metabolism , DNA Helicases/metabolism , Down-Regulation/genetics , Gene Expression Regulation, Fungal , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Untranslated/metabolism
3.
Methods Mol Biol ; 2209: 251-265, 2021.
Article in English | MEDLINE | ID: mdl-33201474

ABSTRACT

In eukaryotic cells, aberrant mRNPs with processing and packaging defects are targeted co-transcriptionally by a surveillance system that triggers their nuclear retention and ultimately the degradation of their mRNA component by the 3'-5' activity of the exosome-associated exonuclease Rrp6. This mRNP quality control process is stimulated by the NNS complex (Nrd1-Nab3-Sen1), which otherwise mediates termination, processing, and decay of ncRNAs. The process involves also the exosome co-activator TRAMP complex (Trf4-Air2-Mtr4). Here, we describe a genome-wide approach to visualize the dynamic movement and coordination of these quality control components over the yeast chromosomes upon perturbation of mRNP biogenesis. The method provides valuable information on how the surveillance system is precisely coordinated both physically and functionally with the transcription machinery to detect the faulty events during perturbation of mRNP biogenesis. The overview shows also that the gathering of the quality control components over affected mRNA genes takes place at the expense of their commitment to be recruited at ncRNA genomic features, provoking termination and processing defects of ncRNAs.


Subject(s)
RNA, Fungal/genetics , RNA, Messenger/genetics , RNA, Untranslated/genetics , RNA-Binding Proteins/chemistry , Ribonucleoproteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Gene Expression Regulation, Fungal , High-Throughput Nucleotide Sequencing/methods , Saccharomyces cerevisiae/genetics , Transcription, Genetic
4.
J Antibiot (Tokyo) ; 71(4): 447-455, 2018 03.
Article in English | MEDLINE | ID: mdl-29371644

ABSTRACT

The alarming issue of antibiotic resistance expansion requires a continuous search for new and efficient antibacterial agents. Here we describe the design of new tools to screen for target-specific inhibitors of the bacterial Rho factor directly inside eukaryotic cells. Rho factor is a global regulator of gene expression which is essential to most bacteria, especially Gram-negative. Since Rho has no functional or structural homolog in eukaryotes, it constitutes a valuable and well known bacterial target as evidenced by its inhibition by the natural antibiotic, Bicyclomycin. Our screening tools are based on perturbation of mRNA processing and packaging reactions in the nucleus of eukaryotic cells by the RNA-dependent helicase/translocase activity of bacterial Rho factor leading to a growth defect phenotype. In this approach, any compound that impedes Rho activity should restore growth to yeast or human cells expressing Rho protein, providing valuable means to screen for target-specific antibacterial agents within the environment of a eukaryotic cell. The yeast tool expressing E. coli Rho factor was validated using Bicyclomycin as the control antibacterial agent. The validation of the screening tool was further extended with a stable human cell line expressing Rho factor conditionally. Finally, we show that Rho factors from different bacterial pathogens can also be designed as yeast-based screening tools which can reveal subtle variations in the functional features of the proteins.


Subject(s)
Anti-Bacterial Agents/pharmacology , Rho Factor/drug effects , Yeasts/drug effects , Bacterial Infections/microbiology , Cell Line , Cell Survival/drug effects , Drug Evaluation, Preclinical , Escherichia coli/drug effects , Escherichia coli/genetics , Gram-Negative Bacteria/drug effects , HEK293 Cells , Humans , Saccharomyces cerevisiae/drug effects , Transcription, Genetic
5.
Orphanet J Rare Dis ; 10: 7, 2015 Jan 23.
Article in English | MEDLINE | ID: mdl-25612837

ABSTRACT

BACKGROUND: Lesch-Nyhan disease is a rare X-linked neurodevelopemental metabolic disorder caused by a wide variety of mutations in the HPRT1 gene leading to a deficiency of the purine recycling enzyme hypoxanthine-guanine phosphoribosyltransferase (HGprt). The residual HGprt activity correlates with the various phenotypes of Lesch-Nyhan (LN) patients and in particular with the different degree of neurobehavioral disturbances. The prevalence of this disease is considered to be underestimated due to large heterogeneity of its clinical symptoms and the difficulty of diagnosing of the less severe forms of the disease. We therefore searched for metabolic changes that would facilitate an early diagnosis and give potential clues on the disease pathogenesis and potential therapeutic approaches. METHODS: Lesch-Nyhan patients were diagnosed using HGprt enzymatic assay in red blood cells and identification of the causal HPRT1 gene mutations. These patients were subsequently classified into the three main phenotypic subgroups ranging from patients with only hyperuricemia to individuals presenting motor dysfunction, cognitive disability and self-injurious behavior. Metabolites from the three classes of patients were analyzed and quantified by High Performance Ionic Chromatography and biomarkers of HGprt deficiency were then validated by statistical analyses. RESULTS: A cohort of 139 patients, from 112 families, diagnosed using HGprt enzymatic assay in red blood cells, was studied. 98 displayed LN full phenotype (86 families) and 41 (26 families) had attenuated clinical phenotypes. Genotype/phenotype correlations show that LN full phenotype was correlated to genetic alterations resulting in null enzyme function, while variant phenotypes are often associated with missense mutations allowing some residual HGprt activity. Analysis of metabolites extracted from red blood cells from 56 LN patients revealed strong variations specific to HGprt deficiency for six metabolites (AICAR mono- and tri-phosphate, nicotinamide, nicotinic acid, ATP and Succinyl-AMP) as compared to controls including hyperuricemic patients without HGprt deficiency. CONCLUSIONS: A highly significant correlation between six metabolites and the HGprt deficiency was established, each of them providing an easily measurable marker of the disease. Their combination strongly increases the probability of an early and reliable diagnosis for HGprt deficiency.


Subject(s)
Hypoxanthine Phosphoribosyltransferase/metabolism , Lesch-Nyhan Syndrome/diagnosis , Biomarkers , Cohort Studies , Family , Gene Expression Regulation, Enzymologic , Genotype , Humans , Hypoxanthine Phosphoribosyltransferase/genetics , Lesch-Nyhan Syndrome/metabolism , Mutation/genetics , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL