Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Nat Chem Biol ; 18(8): 894-903, 2022 08.
Article in English | MEDLINE | ID: mdl-35681029

ABSTRACT

Membrane proteins, including ion channels, receptors and transporters, are often composed of multiple subunits and can form large complexes. Their specific composition in native tissues is difficult to determine and remains largely unknown. In this study, we developed a method for determining the subunit composition of endogenous cell surface protein complexes from isolated native tissues. Our method relies on nanobody-based sensors, which enable proximity detection between subunits in time-resolved Förster resonance energy transfer (FRET) measurements. Additionally, given conformation-specific nanobodies, the activation of these complexes can be recorded in native brain tissue. Applied to the metabotropic glutamate receptors in different brain regions, this approach revealed the clear existence of functional metabotropic glutamate (mGlu)2-mGlu4 heterodimers in addition to mGlu2 and mGlu4 homodimers. Strikingly, the mGlu4 subunits appear to be mainly heterodimers in the brain. Overall, these versatile biosensors can determine the presence and activity of endogenous membrane proteins in native tissues with high fidelity and convenience.


Subject(s)
Glutamic Acid , Receptors, Metabotropic Glutamate , Brain/metabolism , Fluorescence Resonance Energy Transfer/methods , Receptors, Metabotropic Glutamate/metabolism
2.
Proc Natl Acad Sci U S A ; 113(26): E3619-28, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27233938

ABSTRACT

Fragile X syndrome (FXS) is caused by the absence of the Fragile X Mental Retardation Protein (FMRP) in neurons. In the mouse, the lack of FMRP is associated with an excessive translation of hundreds of neuronal proteins, notably including postsynaptic proteins. This local protein synthesis deregulation is proposed to underlie the observed defects of glutamatergic synapse maturation and function and to affect preferentially the hundreds of mRNA species that were reported to bind to FMRP. How FMRP impacts synaptic protein translation and which mRNAs are most important for the pathology remain unclear. Here we show by cross-linking immunoprecipitation in cortical neurons that FMRP is mostly associated with one unique mRNA: diacylglycerol kinase kappa (Dgkκ), a master regulator that controls the switch between diacylglycerol and phosphatidic acid signaling pathways. The absence of FMRP in neurons abolishes group 1 metabotropic glutamate receptor-dependent DGK activity combined with a loss of Dgkκ expression. The reduction of Dgkκ in neurons is sufficient to cause dendritic spine abnormalities, synaptic plasticity alterations, and behavior disorders similar to those observed in the FXS mouse model. Overexpression of Dgkκ in neurons is able to rescue the dendritic spine defects of the Fragile X Mental Retardation 1 gene KO neurons. Together, these data suggest that Dgkκ deregulation contributes to FXS pathology and support a model where FMRP, by controlling the translation of Dgkκ, indirectly controls synaptic proteins translation and membrane properties by impacting lipid signaling in dendritic spine.


Subject(s)
Diacylglycerol Kinase/metabolism , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/metabolism , Neurons/enzymology , Aged , Animals , Dendritic Spines/enzymology , Dendritic Spines/metabolism , Diacylglycerol Kinase/genetics , Diglycerides/metabolism , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/enzymology , Fragile X Syndrome/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Neurons/metabolism , Signal Transduction
3.
Addict Biol ; 22(5): 1205-1217, 2017 Sep.
Article in English | MEDLINE | ID: mdl-27126842

ABSTRACT

Unified theories of addiction are challenged by differing drug-seeking behaviors and neurobiological adaptations across drug classes, particularly for narcotics and psychostimulants. We previously showed that protracted abstinence to opiates leads to despair behavior and social withdrawal in mice, and we identified a transcriptional signature in the extended amygdala that was also present in animals abstinent from nicotine, Δ9-tetrahydrocannabinol (THC) and alcohol. Here we examined whether protracted abstinence to these four drugs would also share common behavioral features, and eventually differ from abstinence to the prototypic psychostimulant cocaine. We found similar reduced social recognition, increased motor stereotypies and increased anxiety with relevant c-fos response alterations in morphine, nicotine, THC and alcohol abstinent mice. Protracted abstinence to cocaine, however, led to strikingly distinct, mostly opposing adaptations at all levels, including behavioral responses, neuronal activation and gene expression. Together, these data further document the existence of common hallmarks for protracted abstinence to opiates, nicotine, THC and alcohol that develop within motivation/emotion brain circuits. In our model, however, these do not apply to cocaine, supporting the notion of unique mechanisms in psychostimulant abuse.


Subject(s)
Amygdala/metabolism , Analgesics, Opioid/adverse effects , Behavior, Animal , Cannabinoid Receptor Agonists/adverse effects , Central Nervous System Depressants/adverse effects , Dopamine Uptake Inhibitors/adverse effects , Nicotinic Agonists/adverse effects , Social Behavior , Substance Withdrawal Syndrome/physiopathology , Alcohol Abstinence , Animals , Anxiety/psychology , Brain/metabolism , Cocaine/adverse effects , Dronabinol/adverse effects , Drug-Seeking Behavior , Emotions , Ethanol/adverse effects , Male , Mice , Morphine/adverse effects , Motivation , Nicotine/adverse effects , Proto-Oncogene Proteins c-fos/metabolism , Stereotyped Behavior/physiology , Substance Withdrawal Syndrome/metabolism , Substance Withdrawal Syndrome/psychology
4.
Neuropharmacology ; 248: 109889, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38401792

ABSTRACT

Autism spectrum disorders (ASD) are complex neurodevelopmental disorders characterized by deficient social communication and interaction together with restricted, stereotyped behaviors. Currently approved treatments relieve comorbidities rather than core symptoms. Since excitation/inhibition balance and synaptic plasticity are disrupted in ASD, molecules targeting excitatory synaptic transmission appear as highly promising candidates to treat this pathology. Among glutamatergic receptors, the NMDA receptor has received particular attention through the last decade to develop novel allosteric modulators. Here, we show that positive NMDA receptor modulation by zelquistinel, a spirocyclic ß-lactam platform chemical, relieves core symptoms in two genetic and one environmental mouse models of ASD. A single oral dose of zelquistinel rescued, in a dose-response manner, social deficits and stereotypic behavior in Shank3Δex13-16-/- mice while chronic intraperitoneal administration promoted a long-lasting relief of such autistic-like features in these mice. Subchronic oral mid-dose zelquistinel treatment demonstrated durable effects in Shank3Δex13-16-/-, Fmr1-/- and in utero valproate-exposed mice. Carry-over effects were best maintained in the Fmr1 null mouse model, with social parameters being still fully recovered two weeks after treatment withdrawal. Among recently developed NMDA receptor subunit modulators, zelquistinel displays a promising therapeutic potential to relieve core symptoms in ASD patients, with oral bioavailability and long-lasting effects boding well for clinical applications. Efficacy in three mouse models with different etiologies supports high translational value. Further, this compound represents an innovative pharmacological tool to investigate plasticity mechanisms underlying behavioral deficits in animal models of ASD.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Mice , Humans , Animals , Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/genetics , Receptors, N-Methyl-D-Aspartate , Stereotyped Behavior , Mice, Knockout , Disease Models, Animal , Microfilament Proteins , Nerve Tissue Proteins , Fragile X Mental Retardation Protein
5.
Biol Psychiatry ; 95(2): 123-135, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37207936

ABSTRACT

BACKGROUND: Deficient social interactions are a hallmark of major neuropsychiatric disorders, and accumulating evidence points to altered social reward and motivation as key underlying mechanisms of these pathologies. In the present study, we further explored the role of the balance of activity between D1 and D2 receptor-expressing striatal projection neurons (D1R- and D2R-SPNs) in the control of social behavior, challenging the hypothesis that excessive D2R-SPN activity, rather than deficient D1R-SPN activity, compromises social behavior. METHODS: We selectively ablated D1R- and D2R-SPNs using an inducible diphtheria toxin receptor-mediated cell targeting strategy and assessed social behavior as well as repetitive/perseverative behavior, motor function, and anxiety levels. We tested the effects of optogenetic stimulation of D2R-SPNs in the nucleus accumbens (NAc) and pharmacological compounds repressing D2R-SPN. RESULTS: Targeted deletion of D1R-SPNs in the NAc blunted social behavior in mice, facilitated motor skill learning, and increased anxiety levels. These behaviors were normalized by pharmacological inhibition of D2R-SPN, which also repressed transcription in the efferent nucleus, the ventral pallidum. Ablation of D1R-SPNs in the dorsal striatum had no impact on social behavior but impaired motor skill learning and decreased anxiety levels. Deletion of D2R-SPNs in the NAc produced motor stereotypies but facilitated social behavior and impaired motor skill learning. We mimicked excessive D2R-SPN activity by optically stimulating D2R-SPNs in the NAc and observed a severe deficit in social interaction that was prevented by D2R-SPN pharmacological inhibition. CONCLUSIONS: Repressing D2R-SPN activity may represent a promising therapeutic strategy to relieve social deficits in neuropsychiatric disorders.


Subject(s)
Neurons , Nucleus Accumbens , Mice , Animals , Neurons/physiology , Social Behavior , Motivation , Learning , Receptors, Dopamine D1/metabolism
6.
J Neurosci ; 32(21): 7301-10, 2012 May 23.
Article in English | MEDLINE | ID: mdl-22623675

ABSTRACT

G-protein-coupled receptors (GPCRs) mediate numerous physiological functions and represent prime therapeutic targets. Receptor trafficking upon agonist stimulation is critical for GPCR function, but examining this process in vivo remains a true challenge. Using knock-in mice expressing functional fluorescent delta opioid receptors under the control of the endogenous promoter, we visualized in vivo internalization of this native GPCR upon physiological stimulation. We developed a paradigm in which animals were made dependent on morphine in a drug-paired context. When re-exposed to this context in a drug-free state, mice showed context-dependent withdrawal signs and activation of the hippocampus. Receptor internalization was transiently detected in a subset of CA1 neurons, uncovering regionally restricted opioid peptide release. Importantly, a pool of surface receptors always remained, which contrasts with the in vivo profile previously established for exogenous drug-induced internalization. Therefore, a distinct response is observed at the receptor level upon a physiological or pharmacological stimulation. Altogether, direct in vivo GPCR visualization enables mapping receptor stimulation promoted by a behavioral challenge and represents a powerful approach to study endogenous GPCR physiology.


Subject(s)
Hippocampus/metabolism , Protein Transport , Receptors, Opioid, delta/metabolism , Animals , Enkephalin, Methionine/metabolism , Female , Gene Knock-In Techniques , Hippocampus/drug effects , Male , Mice , Mice, Inbred C57BL , Molecular Imaging , Morphine/pharmacology , Receptors, Opioid, delta/agonists , Receptors, Opioid, delta/genetics , Substance Withdrawal Syndrome/metabolism
7.
Addict Biol ; 17(1): 1-12, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21955143

ABSTRACT

Addiction is a chronic brain disorder. Prolonged abstinence from drugs of abuse involves dysphoria, high stress responsiveness and craving. The neurobiology of drug abstinence, however, is poorly understood. We previously identified a unique set of hundred mu-opioid receptor-dependent genes in the extended amygdala, a key site for hedonic and stress processing in the brain. Here we examined these candidate genes either immediately after chronic morphine, nicotine, Δ9-tetrahydrocannabinol or alcohol, or following 4 weeks of abstinence. Regulation patterns strongly differed among chronic groups. In contrast, gene regulations strikingly converged in the abstinent groups and revealed unforeseen common adaptations within a novel huntingtin-centered molecular network previously unreported in addiction research. This study demonstrates that, regardless the drug, a specific set of transcriptional regulations develops in the abstinent brain, which possibly contributes to the negative affect characterizing protracted abstinence. This transcriptional signature may represent a hallmark of drug abstinence and a unitary adaptive molecular mechanism in substance abuse disorders.


Subject(s)
Behavior, Addictive/physiopathology , Brain/drug effects , Gene Expression/drug effects , Gene Regulatory Networks/drug effects , Substance Withdrawal Syndrome/physiopathology , Substance-Related Disorders/physiopathology , Amygdala/drug effects , Animals , Behavior, Addictive/genetics , Cluster Analysis , Disease Models, Animal , Dronabinol/administration & dosage , Ethanol/administration & dosage , Gene Expression/genetics , Gene Regulatory Networks/genetics , Male , Mice , Mice, Inbred C57BL , Morphine/administration & dosage , Nicotine/administration & dosage , Principal Component Analysis , Real-Time Polymerase Chain Reaction , Receptors, Opioid, mu/drug effects , Receptors, Opioid, mu/genetics , Substance Withdrawal Syndrome/genetics , Substance-Related Disorders/genetics , Temperance , Time , Transcriptional Activation/drug effects , Transcriptional Activation/genetics
8.
Neuropsychopharmacology ; 47(9): 1680-1692, 2022 08.
Article in English | MEDLINE | ID: mdl-35418620

ABSTRACT

Autism Spectrum Disorders (ASD) are neurodevelopmental disorders whose diagnosis relies on deficient social interaction and communication together with repetitive behavior. To date, no pharmacological treatment has been approved that ameliorates social behavior in patients with ASD. Based on the excitation/inhibition imbalance theory of autism, we hypothesized that bromide ions, long used as an antiepileptic medication, could relieve core symptoms of ASD. We evaluated the effects of chronic sodium bromide (NaBr) administration on autistic-like symptoms in three genetic mouse models of autism: Oprm1-/-, Fmr1-/- and Shank3Δex13-16-/- mice. We showed that chronic NaBr treatment relieved autistic-like behaviors in these three models. In Oprm1-/- mice, these beneficial effects were superior to those of chronic bumetanide administration. At transcriptional level, chronic NaBr in Oprm1 null mice was associated with increased expression of genes coding for chloride ions transporters, GABAA receptor subunits, oxytocin and mGlu4 receptor. Lastly, we uncovered synergistic alleviating effects of chronic NaBr and a positive allosteric modulator (PAM) of mGlu4 receptor on autistic-like behavior in Oprm1-/- mice. We evidenced in heterologous cells that bromide ions behave as PAMs of mGlu4, providing a molecular mechanism for such synergy. Our data reveal the therapeutic potential of bromide ions, alone or in combination with a PAM of mGlu4 receptor, for the treatment of ASDs.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Animals , Autism Spectrum Disorder/drug therapy , Autistic Disorder/drug therapy , Behavior, Animal , Bromides/pharmacology , Bromides/therapeutic use , Disease Models, Animal , Fragile X Mental Retardation Protein , Mice , Mice, Knockout , Microfilament Proteins/pharmacology , Microfilament Proteins/therapeutic use , Nerve Tissue Proteins/genetics , Receptors, GABA-A , Social Behavior , Sodium Compounds
9.
Neuropsychopharmacology ; 46(7): 1373-1385, 2021 06.
Article in English | MEDLINE | ID: mdl-33349673

ABSTRACT

Understanding the neurobiological underpinnings of abstinence from drugs of abuse is critical to allow better recovery and ensure relapse prevention in addicted subjects. By comparing the long-term transcriptional consequences of morphine and cocaine exposure, we identified the metabotropic glutamate receptor subtype 4 (mGluR4) as a promising pharmacological target in morphine abstinence. We evaluated the behavioral and molecular effects of facilitating mGluR4 activity in abstinent mice. Transcriptional regulation of marker genes of medium spiny neurons (MSNs) allowed best discriminating between 4-week morphine and cocaine abstinence in the nucleus accumbens (NAc). Among these markers, Grm4, encoding mGluR4, displayed down-regulated expression in the caudate putamen and NAc of morphine, but not cocaine, abstinent mice. Chronic administration of the mGluR4 positive allosteric modulator (PAM) VU0155041 (2.5 and 5 mg/kg) rescued social behavior, normalized stereotypies and anxiety and blunted locomotor sensitization in morphine abstinent mice. This treatment improved social preference but increased stereotypies in cocaine abstinent mice. Finally, the beneficial behavioral effects of VU0155041 treatment in morphine abstinent mice were correlated with restored expression of key MSN and neural activity marker genes in the NAc. This study reports that chronic administration of the mGluR4 PAM VU0155041 relieves long-term deleterious consequences of morphine exposure. It illustrates the neurobiological differences between opiate and psychostimulant abstinence and points to pharmacological repression of excessive activity of D2-MSNs in the NAc as a promising therapeutic lever in drug addiction.


Subject(s)
Cocaine , Receptors, Metabotropic Glutamate , Animals , Male , Mice , Mice, Inbred C57BL , Morphine/pharmacology , Nucleus Accumbens
10.
Microbiome ; 9(1): 157, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34238386

ABSTRACT

BACKGROUND: Autism spectrum disorders (ASD) are associated with dysregulation of the microbiota-gut-brain axis, changes in microbiota composition as well as in the fecal, serum, and urine levels of microbial metabolites. Yet a causal relationship between dysregulation of the microbiota-gut-brain axis and ASD remains to be demonstrated. Here, we hypothesized that the microbial metabolite p-Cresol, which is more abundant in ASD patients compared to neurotypical individuals, could induce ASD-like behavior in mice. RESULTS: Mice exposed to p-Cresol for 4 weeks in drinking water presented social behavior deficits, stereotypies, and perseverative behaviors, but no changes in anxiety, locomotion, or cognition. Abnormal social behavior induced by p-Cresol was associated with decreased activity of central dopamine neurons involved in the social reward circuit. Further, p-Cresol induced changes in microbiota composition and social behavior deficits could be transferred from p-Cresol-treated mice to control mice by fecal microbiota transplantation (FMT). We also showed that mice transplanted with the microbiota of p-Cresol-treated mice exhibited increased fecal p-Cresol excretion, compared to mice transplanted with the microbiota of control mice. In addition, we identified possible p-Cresol bacterial producers. Lastly, the microbiota of control mice rescued social interactions, dopamine neurons excitability, and fecal p-Cresol levels when transplanted to p-Cresol-treated mice. CONCLUSIONS: The microbial metabolite p-Cresol induces selectively ASD core behavioral symptoms in mice. Social behavior deficits induced by p-Cresol are dependant on changes in microbiota composition. Our study paves the way for therapeutic interventions targeting the microbiota and p-Cresol production to treat patients with ASD. Video abstract.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Gastrointestinal Microbiome , Animals , Autistic Disorder/etiology , Cresols , Fecal Microbiota Transplantation , Humans , Mice
11.
Elife ; 92020 01 31.
Article in English | MEDLINE | ID: mdl-32003745

ABSTRACT

GPR88 is an orphan G protein-coupled receptor (GPCR) considered as a promising therapeutic target for neuropsychiatric disorders; its pharmacology, however, remains scarcely understood. Based on our previous report of increased delta opioid receptor activity in Gpr88 null mice, we investigated the impact of GPR88 co-expression on the signaling of opioid receptors in vitro and revealed that GPR88 inhibits the activation of both their G protein- and ß-arrestin-dependent signaling pathways. In Gpr88 knockout mice, morphine-induced locomotor sensitization, withdrawal and supra-spinal analgesia were facilitated, consistent with a tonic inhibitory action of GPR88 on µOR signaling. We then explored GPR88 interactions with more striatal versus non-neuronal GPCRs, and revealed that GPR88 can decrease the G protein-dependent signaling of most receptors in close proximity, but impedes ß-arrestin recruitment by all receptors tested. Our study unravels an unsuspected buffering role of GPR88 expression on GPCR signaling, with intriguing consequences for opioid and striatal functions.


Subject(s)
Corpus Striatum/metabolism , Receptors, G-Protein-Coupled , Receptors, Opioid/metabolism , Signal Transduction/genetics , Animals , Female , Male , Mice , Mice, Knockout , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Opioid/genetics , beta-Arrestins/metabolism
12.
Mol Metab ; 21: 22-35, 2019 03.
Article in English | MEDLINE | ID: mdl-30686771

ABSTRACT

OBJECTIVES: The Fragile X Mental Retardation Protein (FMRP) is a widely expressed RNA-binding protein involved in translation regulation. Since the absence of FMRP leads to Fragile X Syndrome (FXS) and autism, FMRP has been extensively studied in brain. The functions of FMRP in peripheral organs and on metabolic homeostasis remain elusive; therefore, we sought to investigate the systemic consequences of its absence. METHODS: Using metabolomics, in vivo metabolic phenotyping of the Fmr1-KO FXS mouse model and in vitro approaches, we show that the absence of FMRP induced a metabolic shift towards enhanced glucose tolerance and insulin sensitivity, reduced adiposity, and increased ß-adrenergic-driven lipolysis and lipid utilization. RESULTS: Combining proteomics and cellular assays, we highlight that FMRP loss increased hepatic protein synthesis and impacted pathways notably linked to lipid metabolism. Mapping metabolomic and proteomic phenotypes onto a signaling and metabolic network, we predicted that the coordinated metabolic response to FMRP loss was mediated by dysregulation in the abundances of specific hepatic proteins. We experimentally validated these predictions, demonstrating that the translational regulator FMRP associates with a subset of mRNAs involved in lipid metabolism. Finally, we highlight that FXS patients mirror metabolic variations observed in Fmr1-KO mice with reduced circulating glucose and insulin and increased free fatty acids. CONCLUSIONS: Loss of FMRP results in a widespread coordinated systemic response that notably involves upregulation of protein translation in the liver, increased utilization of lipids, and significant changes in metabolic homeostasis. Our study unravels metabolic phenotypes in FXS and further supports the importance of translational regulation in the homeostatic control of systemic metabolism.


Subject(s)
Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/metabolism , Glucose/metabolism , Lipolysis , Adipocytes/metabolism , Animals , Disease Models, Animal , Fatty Acids, Nonesterified/metabolism , Female , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/blood , Fragile X Syndrome/pathology , Gene Knockout Techniques , Glucose/analysis , Homeostasis , Humans , Insulin/analysis , Insulin/metabolism , Leptin/metabolism , Liver/metabolism , Male , Metabolomics , Mice , Mice, Knockout , Protein Biosynthesis , Proteomics , RNA, Messenger/metabolism
13.
Psychopharmacology (Berl) ; 201(2): 219-28, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18670763

ABSTRACT

RATIONALE: Reinforcement in the medial septal division (MSDB) might involve local GABAergic mechanisms. OBJECTIVES: We used intracranial self-administration to determine whether the GABAA agonist muscimol or antagonist bicuculline might have rewarding effects when infused into the MSDB. We assessed the anatomical specificity of muscimol intra-MSDB self-administration by injecting this molecule into the nucleus accumbens (NAc). Finally, we evaluated the involvement of dopaminergic mechanisms in muscimol self-administration. MATERIALS AND METHODS: BALB/c mice were implanted with a guide cannula targeting the MSDB or the NAc. They were trained to discriminate between the two arms of a Y-maze, one arm being reinforced by muscimol or bicuculline injections. Another group of MSDB implanted mice was pre-treated intraperitoneally before muscimol self-administration with a D1 (SCH23390) or D2/D3 (sulpiride) receptor antagonist or vehicle. A last group of MSDB mice received additional bilateral guide cannulae targeting the ventral tegmental area (VTA) or a more dorsal region to assess the effects of intra-VTA injection of SCH23390 on intra-MSDB muscimol self-administration. RESULTS: Mice self-administered intra-MSDB muscimol (0.6, 1.2, or 12 ng/50 nl), but not bicuculline (1.5 or 3 ng/50 nl). Systemic pre-treatment with SCH23390 (25 microg/kg) or sulpiride (50 mg/kg) or bilateral injection of SCH23390 (0.25 microg/0.1 microl) into the VTA prevented acquisition of intra-MSDB muscimol self-administration. CONCLUSION: The activation of GABAA receptors in the MSDB supports self-administration, and dopamine release from the VTA may be involved in the acquisition of this behaviour. The MSDB could represent a common brain substrate for the rewarding properties of drugs facilitating GABAA tone.


Subject(s)
GABA-A Receptor Agonists , Muscimol/administration & dosage , Self Administration/methods , Septal Nuclei/drug effects , Analysis of Variance , Animals , Behavior, Animal/physiology , Benzazepines/pharmacology , Bicuculline/administration & dosage , Bicuculline/analogs & derivatives , Bicuculline/pharmacokinetics , Data Interpretation, Statistical , Dopamine/physiology , Dopamine D2 Receptor Antagonists , Dose-Response Relationship, Drug , Injections, Intraventricular , Male , Mice , Mice, Inbred BALB C/genetics , Microinjections/methods , Muscimol/pharmacokinetics , Nucleus Accumbens/drug effects , Photomicrography/methods , Receptors, Dopamine D1/antagonists & inhibitors , Reinforcement Schedule , Sulpiride/pharmacology , Ventral Tegmental Area/drug effects , Vestibular Nuclei/drug effects
14.
Br J Pharmacol ; 175(14): 2750-2769, 2018 07.
Article in English | MEDLINE | ID: mdl-28369738

ABSTRACT

The endogenous opioid system is well known to relieve pain and underpin the rewarding properties of most drugs of abuse. Among opioid receptors, the µ receptor mediates most of the analgesic and rewarding properties of opioids. Based on striking similarities between social distress, physical pain and opiate withdrawal, µ receptors have been proposed to play a critical role in modulating social behaviour in humans and animals. This review summarizes experimental data demonstrating such role and proposes a novel model, the µ opioid receptor balance model, to account for the contribution of µ receptors to the subtle regulation of social behaviour. Interestingly, µ receptor null mice show behavioural deficits similar to those observed in patients with autism spectrum disorder (ASD), including severe impairment in social interactions. Therefore, after a brief summary of recent evidence for blunted (social) reward processes in subjects with ASD, we review here arguments for altered µ receptor function in this pathology. This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.


Subject(s)
Autism Spectrum Disorder/metabolism , Receptors, Opioid, mu/metabolism , Reward , Social Behavior , Animals , Humans , Receptors, Opioid, mu/genetics
15.
Transl Psychiatry ; 8(1): 197, 2018 09 21.
Article in English | MEDLINE | ID: mdl-30242222

ABSTRACT

The mu opioid receptor (MOR) plays a critical role in modulating social behavior in humans and animals. Accordingly, MOR null mice display severe alterations in their social repertoire as well as multiple other behavioral deficits, recapitulating core and secondary symptoms of autism spectrum disorder (ASD). Such behavioral profile suggests that MOR dysfunction, and beyond this, altered reward processes may contribute to ASD etiopathology. Interestingly, the only treatments that proved efficacy in relieving core symptoms of ASD, early behavioral intervention programs, rely principally on positive reinforcement to ameliorate behavior. The neurobiological underpinnings of their beneficial effects, however, remain poorly understood. Here we back-translated applied behavior analysis (ABA)-based behavioral interventions to mice lacking the MOR (Oprm1-/-), as a model of autism with blunted reward processing. By associating a positive reinforcement, palatable food reward, to daily encounter with a wild-type congener, we were able to rescue durably social interaction and preference in Oprm1-/- mice. Along with behavioral improvements, the expression of marker genes of neuronal activity and plasticity as well as genes of the oxytocin/vasopressin system were remarkably normalized in the reward/social circuitry. Our study provides further evidence for a critical involvement of reward processes in driving social behavior and opens new perspectives regarding therapeutic intervention in ASD.


Subject(s)
Autism Spectrum Disorder/therapy , Behavior Therapy , Behavior, Animal , Receptors, Opioid, mu/genetics , Reward , Social Behavior , Animals , Applied Behavior Analysis , Autism Spectrum Disorder/genetics , Disease Models, Animal , Female , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Neuronal Plasticity/genetics
16.
J Med Chem ; 61(19): 8670-8692, 2018 10 11.
Article in English | MEDLINE | ID: mdl-30199637

ABSTRACT

Oxytocin (OT) and its receptor (OT-R) are implicated in the etiology of autism spectrum disorders (ASD), and OT-R is a potential target for therapeutic intervention. Very few nonpeptide oxytocin agonists have currently been reported. Their molecular and in vivo pharmacology remain to be clarified, and none of them has been shown to be efficient in improving social interaction in animal models relevant to ASD. In an attempt to rationalize the design of centrally active nonpeptide full agonists, we studied in a systematic way the structural determinants of the affinity and efficacy of representative ligands of the V1a and V2 vasopressin receptor subtypes (V1a-R and V2-R) and of the oxytocin receptor. Our results confirm the subtlety of the structure-affinity and structure-efficacy relationships around vasopressin/oxytocin receptor ligands and lead however to the first nonpeptide OT receptor agonist active in a mouse model of ASD after peripheral ip administration.


Subject(s)
Autistic Disorder/drug therapy , Disease Models, Animal , Interpersonal Relations , Psychotropic Drugs/pharmacology , Pyrazoles/pharmacology , Pyrrolidines/pharmacology , Receptors, Opioid, mu/physiology , Receptors, Oxytocin/administration & dosage , Receptors, Oxytocin/agonists , Animals , Autistic Disorder/psychology , Blood-Brain Barrier/drug effects , Female , HEK293 Cells , Humans , Ligands , Male , Mice , Mice, Knockout , Psychotropic Drugs/chemistry , Pyrazoles/therapeutic use , Pyrrolidines/therapeutic use , Receptors, Oxytocin/therapeutic use , Structure-Activity Relationship
17.
J Neurosci ; 26(27): 7163-71, 2006 Jul 05.
Article in English | MEDLINE | ID: mdl-16822973

ABSTRACT

Repeated administration of abused drugs sensitizes their stimulant effects and results in a drug-paired environment eliciting conditioned activity. We tested whether food induces similar effects. Food-deprived male mice were given novel food during 30 min tests in a runway (FR group) that measured locomotor activity. Whereas the activity of this group increased with repeated testing, that of a group exposed to the runways but that received the food in the home cage (FH group), or of a group satiated by prefeeding before testing (SAT group), decreased. When exposed to the runways in the absence of food, the paired group was more active than the other groups (conditioned activity); no activity differences were seen in an alternative, non-food-paired, apparatus. Conditioned activity survived a 3-week period without runway exposure. Conditioned activity was selectively reduced by the opiate antagonist naltrexone (10-20 mg/kg) and by the noncompetitive AMPA receptor antagonist GYKI 52466 [1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride] (5-10 mg/kg). The D1 antagonist SCH23390 [R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride] (15-30 microg/kg) and D2 antagonist sulpiride (25-125 mg/kg) reduced activity nonspecifically. A single intraperitoneal dose of cocaine (10 mg/kg) or morphine (20 mg/kg) increased activity compared with saline, the stimulant effect being larger in the FR group, suggesting "cross-sensitization" to these drugs. However, pretreatment with GYKI 52466 or naltrexone at doses that suppressed conditioned activity in FR animals suppressed cross-sensitization to cocaine. When allowed ad libitum access to food in the runway, FR mice consumed more pellets in a time-limited test. Thus, many of the features of behavioral sensitization to drugs can be demonstrated using food reward and may contribute to excessive eating.


Subject(s)
Analgesics, Opioid/pharmacology , Cocaine/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Eating/drug effects , Morphine/pharmacology , Animals , Benzazepines/pharmacology , Benzodiazepines/pharmacology , Conditioning, Psychological/drug effects , Dopamine Antagonists/pharmacology , Drug Interactions , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Feeding Behavior/drug effects , Male , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , Naltrexone/pharmacology , Narcotic Antagonists/pharmacology , Receptors, Dopamine D1/antagonists & inhibitors , Sulpiride/pharmacology , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
18.
Behav Brain Res ; 180(2): 203-17, 2007 Jun 18.
Article in English | MEDLINE | ID: mdl-17467070

ABSTRACT

Mice self-administer morphine into the lateral septum (LS), but the neuronal connections underlying this behaviour remain unknown. The present study tested whether the acquisition of intra-LS morphine self-administration depends on dopaminergic mechanisms. Mice were allowed to self-inject morphine (5 or 20ng/50nl) or vehicle directly into the LS using a spatial discrimination Y-maze task. Fos imaging was used to evaluate neuronal activation in cerebral structures directly connected to the LS or belonging to the dopaminergic system. The involvement of dopaminergic and opioidergic mechanisms was assessed by pre-treating naive mice peripherally with the D1 antagonist SCH23390, the D2/D3 antagonist sulpiride or the opiate antagonist naloxone before daily self-administration sessions. Mice acquired self-administration behaviour for intra-LS morphine that was associated with increased Fos expression in the ventral tegmental area (VTA), dorsal and ventral striatum and prefrontal cortex. Pre-treating animals with naloxone, SCH23390 or sulpiride completely prevented them from acquiring intra-LS morphine self-administration. All three antagonists consistently blocked Fos expression in the prefrontal cortex, but not in the VTA and striatum. Taken together, our results show that morphine self-administration into the LS depends on dopaminergic (D1 and D2/D3) and opioidergic mechanisms. Furthermore, they suggest that opioid peptides released in the LS could participate in regulating the activity of mesotegmental dopaminergic neurons.


Subject(s)
Dopamine/metabolism , Morphine/administration & dosage , Narcotics/administration & dosage , Oncogene Proteins v-fos/metabolism , Septal Nuclei/drug effects , Analysis of Variance , Animals , Behavior, Animal/drug effects , Benzazepines/pharmacology , Cell Count , Choice Behavior/drug effects , Dopamine Antagonists/pharmacology , Dose-Response Relationship, Drug , Male , Maze Learning/drug effects , Mice , Mice, Inbred BALB C , Naloxone/pharmacology , Narcotic Antagonists/pharmacology , Reaction Time/drug effects , Self Administration/methods , Sulpiride/pharmacology
19.
Psychopharmacology (Berl) ; 185(2): 188-200, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16470400

ABSTRACT

RATIONALE: Increased anxiety is a characteristic of the acute ethanol withdrawal syndrome. Repeated exposure of rats to withdrawal from chronic ethanol increases sensitivity to seizures. OBJECTIVES: We investigated whether repeated withdrawal experience increases withdrawal-induced anxiety and stress, and if it changes withdrawal-induced activation of related brain areas. METHODS: Rats were chronically treated with an ethanol-containing liquid diet either for 24 days continuously (single withdrawal, SWD) or interspersed with 2x3-day withdrawal periods (repeated withdrawal, RWD), or with a control diet. Eight hours after ethanol withdrawal, anxiety-like behaviour was tested in the elevated plus-maze, blood corticosterone levels were measured, and expression level of markers of neuronal activity and plasticity, c-fos and zif268, was assessed. RESULTS: Eight hours after ethanol withdrawal, SWD rats showed increased anxiety on the elevated plus-maze relative to control rats. Rats given previous withdrawal experiences did not show further increases in measures of anxiety. Corticosterone levels were elevated during withdrawal in SWD rats but not in RWD rats. RWD resulted in marked increases in c-fos expression in amygdala, hippocampus, nucleus accumbens and dorsolateral periaqueductal grey. In contrast, zif268 expression was not increased after RWD, and in central amygdala the marked increase in zif268 seen after SWD was absent after RWD. CONCLUSIONS: The data suggest increased ability of withdrawal to activate neuronal circuits but reduced plasticity after RWD. We suggest parallels between the consequences of repeated ethanol withdrawal and repeated exposure to stress, and discuss implications of withdrawal for brain plasticity.


Subject(s)
Anxiety/metabolism , Corticosterone/blood , Ethanol/adverse effects , Limbic System/metabolism , Proto-Oncogene Proteins c-fos/biosynthesis , Substance Withdrawal Syndrome/metabolism , Animals , Anxiety/chemically induced , Anxiety/physiopathology , Early Growth Response Protein 1/biosynthesis , Male , Maze Learning/drug effects , Rats , Stress, Psychological/metabolism , Stress, Psychological/physiopathology , Substance Withdrawal Syndrome/etiology , Substance Withdrawal Syndrome/physiopathology
20.
Pharmacol Biochem Behav ; 83(3): 465-79, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16626794

ABSTRACT

Morphine and opiates are known to exert anxiolytic effects, probably by interacting with the GABAergic system. The lateral septum (LS), mainly constituted of GABA neurons, exhibits high densities of mu-opiate receptors and could thus represent one the brain sites where opiates interact with GABAergic transmission to modulate anxiety. We examined the effects of intra-LS morphine injections on measures of anxiety using the elevated plus-maze and hole-board tests. Fos imaging was used to identify neural circuits involved in anxiety modulation. Unilateral intra-LS morphine (100 or 500 ng/100 nl) decreased open-arm exploration in the plus-maze and reduced head-dipping frequency in the hole-board, an anxiogenic-like effect associated with decreased Fos expression in the ventral LS, the dorsal hippocampus and the anterior hypothalamus. Anatomical specificity was assessed by injecting morphine into the medial septum, which failed to produce anxiogenesis. Pre-injection of the mu-opioid receptor antagonist naloxonazine (100 ng/100 nl) into LS reversed morphine-induced anxiogenesis and the associated pattern of Fos expression, indicating a specific recruitment of mu-opioid receptors by morphine. Surprisingly, bilateral morphine injections (20 to 500 ng/100 nl) were not found anxiogenic, perhaps due to their stimulant effect. Taken together, these results suggest that LS mu-opioid receptors participate to the modulation of anxiety.


Subject(s)
Anxiety/metabolism , Receptors, Opioid, mu/metabolism , Septal Nuclei/metabolism , Animals , Anxiety/etiology , Anxiety/pathology , Anxiety/physiopathology , Male , Maze Learning/drug effects , Maze Learning/physiology , Mice , Mice, Inbred BALB C , Morphine/administration & dosage , Motor Activity/drug effects , Motor Activity/physiology , Naloxone/administration & dosage , Naloxone/analogs & derivatives , Narcotic Antagonists/administration & dosage , Receptors, Opioid, mu/physiology , Septal Nuclei/drug effects , Septal Nuclei/pathology , Septal Nuclei/physiopathology , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL