Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Annu Rev Microbiol ; 77: 255-276, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37268002

ABSTRACT

Plasmodium falciparum, the human malaria parasite, infects two hosts and various cell types, inducing distinct morphological and physiological changes in the parasite in response to different environmental conditions. These variations required the parasite to adapt and develop elaborate molecular mechanisms to ensure its spread and transmission. Recent findings have significantly improved our understanding of the regulation of gene expression in P. falciparum. Here, we provide an up-to-date overview of technologies used to highlight the transcriptomic adjustments occurring in the parasite throughout its life cycle. We also emphasize the complementary and complex epigenetic mechanisms regulating gene expression in malaria parasites. This review concludes with an outlook on the chromatin architecture, the remodeling systems, and how this 3D genome organization is critical in various biological processes.


Subject(s)
Malaria, Falciparum , Parasites , Humans , Animals , Chromatin Assembly and Disassembly , Epigenesis, Genetic , Chromatin/genetics
2.
PLoS Biol ; 20(7): e3001704, 2022 07.
Article in English | MEDLINE | ID: mdl-35900985

ABSTRACT

Kinesins are microtubule (MT)-based motors important in cell division, motility, polarity, and intracellular transport in many eukaryotes. However, they are poorly studied in the divergent eukaryotic pathogens Plasmodium spp., the causative agents of malaria, which manifest atypical aspects of cell division and plasticity of morphology throughout the life cycle in both mammalian and mosquito hosts. Here, we describe a genome-wide screen of Plasmodium kinesins, revealing diverse subcellular locations and functions in spindle assembly, axoneme formation, and cell morphology. Surprisingly, only kinesin-13 is essential for growth in the mammalian host while the other 8 kinesins are required during the proliferative and invasive stages of parasite transmission through the mosquito vector. In-depth analyses of kinesin-13 and kinesin-20 revealed functions in MT dynamics during apical cell polarity formation, spindle assembly, and axoneme biogenesis. These findings help us to understand the importance of MT motors and may be exploited to discover new therapeutic interventions against malaria.


Subject(s)
Culicidae , Malaria , Parasites , Plasmodium , Animals , Humans , Kinesins/genetics , Life Cycle Stages/genetics , Malaria/metabolism , Mammals , Microtubules/metabolism , Plasmodium/genetics
3.
Trends Genet ; 37(1): 73-85, 2021 01.
Article in English | MEDLINE | ID: mdl-32988634

ABSTRACT

Multiple hosts and various life cycle stages prompt the human malaria parasite, Plasmodium falciparum, to acquire sophisticated molecular mechanisms to ensure its survival, spread, and transmission to its next host. To face these environmental challenges, increasing evidence suggests that the parasite has developed complex and complementary layers of regulatory mechanisms controlling gene expression. Here, we discuss the recent developments in the discovery of molecular components that contribute to cell replication and differentiation and highlight the major contributions of epigenetics, transcription factors, and nuclear architecture in controlling gene regulation and life cycle progression in Plasmodium spp.


Subject(s)
Chromatin/chemistry , Chromatin/metabolism , Epigenesis, Genetic , Gene Expression Regulation , Host-Parasite Interactions , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Animals , Chromatin/genetics , Humans , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Transcription Factors
4.
Genome Res ; 31(5): 834-851, 2021 05.
Article in English | MEDLINE | ID: mdl-33906962

ABSTRACT

Toxoplasma gondii is a useful model for intracellular parasitism given its ease of culture in the laboratory and genomic resources. However, as for many other eukaryotes, the T. gondii genome contains hundreds of sequence gaps owing to repetitive and/or unclonable sequences that disrupt the assembly process. Here, we use the Oxford Nanopore Minion platform to generate near-complete de novo genome assemblies for multiple strains of T. gondii and its near relative, N. caninum We significantly improved T. gondii genome contiguity (average N50 of ∼6.6 Mb) and added ∼2 Mb of newly assembled sequence. For all of the T. gondii strains that we sequenced (RH, ME49, CTG, II×III progeny clones CL13, S27, S21, S26, and D3X1), the largest contig ranged in size between 11.9 and 12.1 Mb in size, which is larger than any previously reported T. gondii chromosome, and found to be due to a consistent fusion of Chromosomes VIIb and VIII. These data were validated by mapping existing T. gondii ME49 Hi-C data to our assembly, providing parallel lines of evidence that the T. gondii karyotype consists of 13, rather than 14, chromosomes. By using this technology, we also resolved hundreds of tandem repeats of varying lengths, including in well-known host-targeting effector loci like rhoptry protein 5 (ROP5) and ROP38 Finally, when we compared T. gondii with N. caninum, we found that although the 13-chromosome karyotype was conserved, extensive, previously unappreciated chromosome-scale rearrangements had occurred in T. gondii and N. caninum since their most recent common ancestry.


Subject(s)
Toxoplasma , DNA Copy Number Variations , Genome , Karyotype , Sequence Analysis, DNA , Toxoplasma/genetics
5.
J Am Chem Soc ; 145(6): 3716-3726, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36730688

ABSTRACT

We describe a total synthesis of the rare isocyanoterpene natural product isoneoamphilectane and two of its unnatural diastereomers. The significantly strained ring system of the reported natural product─along with a hypothesis about a biosynthetic relationship to related family members─inspired us to consider a potential misassignment in the structure's relative configuration. As a result, we initially targeted two less strained, more accessible, stereoisomers of the reported natural product. When these compounds failed to exhibit spectroscopic data that matched those of isoneoamphilectane, we embarked on a synthesis of the originally proposed strained structure via an approach that hinged on a challenging cis-to-trans decalone epimerization. Ultimately, we implemented a novel cyclic sulfite pinacol-type rearrangement to generate the strained ring system. Additional features of this work include the application of a stereocontrolled Mukaiyama-Michael addition of an acyclic silylketene acetal, an unusual intramolecular alkoxide-mediated regioselective elimination, and an HAT-mediated alkene hydroazidation to forge the C-N bond of the tertiary isonitrile. Throughout this work, our synthetic planning was heavily guided by computational analyses to inform on key issues of stereochemical control.

6.
PLoS Pathog ; 17(2): e1009207, 2021 02.
Article in English | MEDLINE | ID: mdl-33539484

ABSTRACT

The recent Coronavirus Disease 2019 pandemic has once again reminded us the importance of understanding infectious diseases. One important but understudied area in infectious disease research is the role of nuclear architecture or the physical arrangement of the genome in the nucleus in controlling gene regulation and pathogenicity. Recent advances in research methods, such as Genome-wide chromosome conformation capture using high-throughput sequencing (Hi-C), have allowed for easier analysis of nuclear architecture and chromosomal reorganization in both the infectious disease agents themselves as well as in their host cells. This review will discuss broadly on what is known about nuclear architecture in infectious disease, with an emphasis on chromosomal reorganization, and briefly discuss what steps are required next in the field.


Subject(s)
Cell Nucleus/genetics , Chromatin/metabolism , Communicable Diseases/genetics , Animals , COVID-19/genetics , COVID-19/metabolism , Cell Nucleus/metabolism , Chromatin/genetics , Chromosomes/genetics , Chromosomes/metabolism , Communicable Diseases/metabolism , Gene Expression Regulation , Humans
7.
PLoS Genet ; 16(9): e1008993, 2020 09.
Article in English | MEDLINE | ID: mdl-32925902

ABSTRACT

Plant NLR-type receptors serve as sensitive triggers of host immunity. Their expression has to be well-balanced, due to their interference with various cellular processes and dose-dependency of their defense-inducing activity. A genetic "arms race" with fast-evolving pathogenic microbes requires plants to constantly innovate their NLR repertoires. We previously showed that insertion of the COPIA-R7 retrotransposon into RPP7 co-opted the epigenetic transposon silencing signal H3K9me2 to a new function promoting expression of this Arabidopsis thaliana NLR gene. Recruitment of the histone binding protein EDM2 to COPIA-R7-associated H3K9me2 is required for optimal expression of RPP7. By profiling of genome-wide effects of EDM2, we now uncovered additional examples illustrating effects of transposons on NLR gene expression, strongly suggesting that these mobile elements can play critical roles in the rapid evolution of plant NLR genes by providing the "raw material" for gene expression mechanisms. We further found EDM2 to have a global role in NLR expression control. Besides serving as a positive regulator of RPP7 and a small number of other NLR genes, EDM2 acts as a suppressor of a multitude of additional NLR genes. We speculate that the dual functionality of EDM2 in NLR expression control arose from the need to compensate for fitness penalties caused by high expression of some NLR genes by suppression of others. Moreover, we are providing new insights into functional relationships of EDM2 with its interaction partner, the RNA binding protein EDM3/AIPP1, and its target gene IBM1, encoding an H3K9-demethylase.


Subject(s)
Arabidopsis Proteins/genetics , NLR Proteins/genetics , Receptors, Immunologic/genetics , Transcription Factors/genetics , Arabidopsis , Arabidopsis Proteins/metabolism , Epigenesis, Genetic , Gene Expression , Gene Expression Regulation, Plant , Genes, Plant , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , NLR Proteins/biosynthesis , NLR Proteins/metabolism , PHD Zinc Fingers , Plants, Genetically Modified , Protein Domains , RNA-Binding Proteins/genetics , Transcription Factors/metabolism
8.
J Cell Sci ; 134(5)2020 06 30.
Article in English | MEDLINE | ID: mdl-32501284

ABSTRACT

Eukaryotic cell proliferation requires chromosome replication and precise segregation to ensure daughter cells have identical genomic copies. Species of the genus Plasmodium, the causative agents of malaria, display remarkable aspects of nuclear division throughout their life cycle to meet some peculiar and unique challenges to DNA replication and chromosome segregation. The parasite undergoes atypical endomitosis and endoreduplication with an intact nuclear membrane and intranuclear mitotic spindle. To understand these diverse modes of Plasmodium cell division, we have studied the behaviour and composition of the outer kinetochore NDC80 complex, a key part of the mitotic apparatus that attaches the centromere of chromosomes to microtubules of the mitotic spindle. Using NDC80-GFP live-cell imaging in Plasmodium berghei, we observe dynamic spatiotemporal changes during proliferation, including highly unusual kinetochore arrangements during sexual stages. We identify a very divergent candidate for the SPC24 subunit of the NDC80 complex, previously thought to be missing in Plasmodium, which completes a canonical, albeit unusual, NDC80 complex structure. Altogether, our studies reveal the kinetochore to be an ideal tool to investigate the non-canonical modes of chromosome segregation and cell division in Plasmodium.


Subject(s)
Parasites , Plasmodium , Animals , Cell Division , Chromosome Segregation/genetics , Kinetochores , Microtubules , Mitosis/genetics , Plasmodium/genetics , Spindle Apparatus/genetics
9.
Nucleic Acids Res ; 48(5): 2303-2311, 2020 03 18.
Article in English | MEDLINE | ID: mdl-32034421

ABSTRACT

Chromatin conformation assays such as Hi-C cannot directly measure differences in 3D architecture between cell types or cell states. For this purpose, two or more Hi-C experiments must be carried out, but direct comparison of the resulting Hi-C matrices is confounded by several features of Hi-C data. Most notably, the genomic distance effect, whereby contacts between pairs of genomic loci that are proximal along the chromosome exhibit many more Hi-C contacts that distal pairs of loci, dominates every Hi-C matrix. Furthermore, the form that this distance effect takes often varies between different Hi-C experiments, even between replicate experiments. Thus, a statistical confidence measure designed to identify differential Hi-C contacts must accurately account for the genomic distance effect or risk being misled by large-scale but artifactual differences. ACCOST (Altered Chromatin COnformation STatistics) accomplishes this goal by extending the statistical model employed by DEseq, re-purposing the 'size factors,' which were originally developed to account for differences in read depth between samples, to instead model the genomic distance effect. We show via analysis of simulated and real data that ACCOST provides unbiased statistical confidence estimates that compare favorably with competing methods such as diffHiC, FIND and HiCcompare. ACCOST is freely available with an Apache license at https://bitbucket.org/noblelab/accost.


Subject(s)
Chromatin/chemistry , DNA/chemistry , Genetic Loci , Genome , Software , Animals , Cell Line , Chromatin/metabolism , DNA/metabolism , Epistasis, Genetic , Epithelial Cells/cytology , Epithelial Cells/metabolism , Humans , Lymphocytes/cytology , Lymphocytes/metabolism , Mice , Molecular Conformation , Plasmodium falciparum/genetics , Sporozoites/genetics , Trophozoites/genetics
10.
Proc Natl Acad Sci U S A ; 116(8): 3183-3192, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30723152

ABSTRACT

The positioning of chromosomes in the nucleus of a eukaryotic cell is highly organized and has a complex and dynamic relationship with gene expression. In the human malaria parasite Plasmodium falciparum, the clustering of a family of virulence genes correlates with their coordinated silencing and has a strong influence on the overall organization of the genome. To identify conserved and species-specific principles of genome organization, we performed Hi-C experiments and generated 3D genome models for five Plasmodium species and two related apicomplexan parasites. Plasmodium species mainly showed clustering of centromeres, telomeres, and virulence genes. In P. falciparum, the heterochromatic virulence gene cluster had a strong repressive effect on the surrounding nuclear space, while this was less pronounced in Plasmodium vivax and Plasmodium berghei, and absent in Plasmodium yoelii In Plasmodium knowlesi, telomeres and virulence genes were more dispersed throughout the nucleus, but its 3D genome showed a strong correlation with gene expression. The Babesia microti genome showed a classical Rabl organization with colocalization of subtelomeric virulence genes, while the Toxoplasma gondii genome was dominated by clustering of the centromeres and lacked virulence gene clustering. Collectively, our results demonstrate that spatial genome organization in most Plasmodium species is constrained by the colocalization of virulence genes. P. falciparum and P. knowlesi, the only two Plasmodium species with gene families involved in antigenic variation, are unique in the effect of these genes on chromosome folding, indicating a potential link between genome organization and gene expression in more virulent pathogens.


Subject(s)
Genome, Protozoan/genetics , Heterochromatin/genetics , Malaria, Falciparum/genetics , Plasmodium falciparum/genetics , Animals , Centromere/genetics , Gene Expression Regulation/genetics , Genomics , Humans , Malaria, Falciparum/parasitology , Plasmodium berghei/genetics , Plasmodium berghei/pathogenicity , Plasmodium falciparum/pathogenicity , Plasmodium knowlesi/genetics , Plasmodium knowlesi/pathogenicity , Plasmodium vivax/genetics , Plasmodium vivax/pathogenicity , Telomere/genetics , Toxoplasma/genetics , Toxoplasma/pathogenicity
11.
Semin Cell Dev Biol ; 90: 144-153, 2019 06.
Article in English | MEDLINE | ID: mdl-30009946

ABSTRACT

The chromosomes within the eukaryotic cell nucleus are highly dynamic and adopt complex hierarchical structures. Understanding how this three-dimensional (3D) nuclear architectureaffects gene regulation, cell cycle progression and disease pathogenesis are important biological questions in development and disease. Recently, many genome-wide technologies including chromosome conformation capture (3C) and 3C-based methodologies (4C, 5C, and Hi-C) have been developed to investigate 3D chromatin structure. In this review, we introduce 3D genome methodologies, with a focus on their application for understanding the nuclear architecture of the human malaria parasite, Plasmodium falciparum. An increasing amount of evidence now suggests that gene regulation in the parasite is largely regulated by epigenetic mechanisms and nuclear reorganization. Here, we explore the 3D genome architecture of P. falciparum, including local and global chromatin structure. In addition, molecular components important for maintaining 3D chromatin organization including architectural proteins and long non-coding RNAs are discussed. Collectively, these studies contribute to our understanding of how the plasticity of 3D genome architecture regulates gene expression and cell cycle progression in this deadly parasite.


Subject(s)
Chromatin/genetics , Genome, Protozoan/genetics , Malaria/genetics , Plasmodium falciparum/genetics , Animals , Chromatin/chemistry , Chromatin/metabolism , Humans , Malaria/metabolism , Plasmodium falciparum/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
12.
PLoS Pathog ; 15(10): e1008048, 2019 10.
Article in English | MEDLINE | ID: mdl-31600347

ABSTRACT

Kinesin-8 proteins are microtubule motors that are often involved in regulation of mitotic spindle length and chromosome alignment. They move towards the plus ends of spindle microtubules and regulate the dynamics of these ends due, at least in some species, to their microtubule depolymerization activity. Plasmodium spp. exhibit an atypical endomitotic cell division in which chromosome condensation and spindle dynamics in the different proliferative stages are not well understood. Genome-wide shared orthology analysis of Plasmodium spp. revealed the presence of two kinesin-8 motor proteins, kinesin-8X and kinesin-8B. Here we studied the biochemical properties of kinesin-8X and its role in parasite proliferation. In vitro, kinesin-8X has motility and depolymerization activities like other kinesin-8 motors. To understand the role of Plasmodium kinesin-8X in cell division, we used fluorescence-tagging and live cell imaging to define its location, and gene targeting to analyse its function, during all proliferative stages of the rodent malaria parasite P. berghei life cycle. The results revealed a spatio-temporal involvement of kinesin-8X in spindle dynamics and an association with both mitotic and meiotic spindles and the putative microtubule organising centre (MTOC). Deletion of the kinesin-8X gene revealed a defect in oocyst development, confirmed by ultrastructural studies, suggesting that this protein is required for oocyst development and sporogony. Transcriptome analysis of Δkinesin-8X gametocytes revealed modulated expression of genes involved mainly in microtubule-based processes, chromosome organisation and the regulation of gene expression, supporting a role for kinesin-8X in cell division. Kinesin-8X is thus required for parasite proliferation within the mosquito and for transmission to the vertebrate host.


Subject(s)
Kinesins/metabolism , Malaria/parasitology , Malaria/transmission , Oocysts/cytology , Plasmodium/physiology , Protozoan Proteins/metabolism , Spindle Apparatus/physiology , Animals , Chromosome Segregation , Female , Kinesins/genetics , Male , Mice, Inbred BALB C , Microtubules/metabolism , Mitosis , Oocysts/physiology , Protozoan Proteins/genetics
13.
PLoS Comput Biol ; 15(9): e1007329, 2019 09.
Article in English | MEDLINE | ID: mdl-31509524

ABSTRACT

Empirical evidence suggests that the malaria parasite Plasmodium falciparum employs a broad range of mechanisms to regulate gene transcription throughout the organism's complex life cycle. To better understand this regulatory machinery, we assembled a rich collection of genomic and epigenomic data sets, including information about transcription factor (TF) binding motifs, patterns of covalent histone modifications, nucleosome occupancy, GC content, and global 3D genome architecture. We used these data to train machine learning models to discriminate between high-expression and low-expression genes, focusing on three distinct stages of the red blood cell phase of the Plasmodium life cycle. Our results highlight the importance of histone modifications and 3D chromatin architecture in Plasmodium transcriptional regulation and suggest that AP2 transcription factors may play a limited regulatory role, perhaps operating in conjunction with epigenetic factors.


Subject(s)
Computational Biology/methods , Histone Code/genetics , Models, Statistical , Nucleosomes/genetics , Plasmodium falciparum/genetics , Erythrocytes/parasitology , Gene Expression Profiling , Gene Expression Regulation/genetics , Genes, Protozoan/genetics , Humans , Life Cycle Stages/genetics , Machine Learning , Malaria, Falciparum , Models, Biological , Plasmodium falciparum/cytology , Plasmodium falciparum/pathogenicity
14.
J Comput Aided Mol Des ; 34(11): 1117-1132, 2020 11.
Article in English | MEDLINE | ID: mdl-32833084

ABSTRACT

There is a pressing need to improve the efficiency of drug development, and nowhere is that need more clear than in the case of neglected diseases like malaria. The peculiarities of pyrimidine metabolism in Plasmodium species make inhibition of dihydroorotate dehydrogenase (DHODH) an attractive target for antimalarial drug design. By applying a pair of complementary quantitative structure-activity relationships derived for inhibition of a truncated, soluble form of the enzyme from Plasmodium falciparum (s-PfDHODH) to data from a large-scale phenotypic screen against cultured parasites, we were able to identify a class of antimalarial leads that inhibit the enzyme and abolish parasite growth in blood culture. Novel analogs extending that class were designed and synthesized with a goal of improving potency as well as the general pharmacokinetic and toxicological profiles. Their synthesis also represented an opportunity to prospectively validate our in silico property predictions. The seven analogs synthesized exhibited physicochemical properties in good agreement with prediction, and five of them were more active against P. falciparum growing in blood culture than any of the compounds in the published lead series. The particular analogs prepared did not inhibit s-PfDHODH in vitro, but advanced biological assays indicated that other examples from the class did inhibit intact PfDHODH bound to the mitochondrial membrane. The new analogs, however, killed the parasites by acting through some other, unidentified mechanism 24-48 h before PfDHODH inhibition would be expected to do so.


Subject(s)
Antimalarials/chemistry , Enzyme Inhibitors/chemistry , Malaria, Falciparum/drug therapy , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Plasmodium falciparum/drug effects , Quinolones/chemistry , Antimalarials/adverse effects , Antimalarials/pharmacokinetics , Dihydroorotate Dehydrogenase , Drug Design , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/pharmacokinetics , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Molecular Structure , Quantitative Structure-Activity Relationship , Quinolones/adverse effects , Quinolones/pharmacokinetics
15.
Nucleic Acids Res ; 45(13): 7825-7840, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28531310

ABSTRACT

Gene expression in Plasmodium falciparum is tightly regulated to ensure successful propagation of the parasite throughout its complex life cycle. The earliest transcriptomics studies in P. falciparum suggested a cascade of transcriptional activity over the course of the 48-hour intraerythrocytic developmental cycle (IDC); however, the just-in-time transcriptional model has recently been challenged by findings that show the importance of post-transcriptional regulation. To further explore the role of transcriptional regulation, we performed the first genome-wide nascent RNA profiling in P. falciparum. Our findings indicate that the majority of genes are transcribed simultaneously during the trophozoite stage of the IDC and that only a small subset of genes is subject to differential transcriptional timing. RNA polymerase II is engaged with promoter regions prior to this transcriptional burst, suggesting that Pol II pausing plays a dominant role in gene regulation. In addition, we found that the overall transcriptional program during gametocyte differentiation is surprisingly similar to the IDC, with the exception of relatively small subsets of genes. Results from this study suggest that further characterization of the molecular players that regulate stage-specific gene expression and Pol II pausing will contribute to our continuous search for novel antimalarial drug targets.


Subject(s)
Genes, Protozoan , Plasmodium falciparum/genetics , RNA, Protozoan/genetics , Animals , Epigenesis, Genetic , Gene Expression Profiling , Gene Expression Regulation, Developmental , Humans , Malaria, Falciparum/blood , Malaria, Falciparum/parasitology , Plasmodium falciparum/growth & development , Plasmodium falciparum/pathogenicity , Promoter Regions, Genetic , RNA Polymerase II/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Protozoan/metabolism , Sequence Analysis, RNA , Transcription, Genetic
16.
Angew Chem Int Ed Engl ; 58(39): 13749-13752, 2019 09 23.
Article in English | MEDLINE | ID: mdl-31270921

ABSTRACT

The flagship member of the antiplasmodial isocyanoterpenes, 7,20-diisocyanoadociane (DICA), was synthesized from dehydrocryptone in 10 steps, and in 13 steps from commercially available material. Our previous formal synthesis was reengineered, leveraging only productive transformations to deliver DICA in fewer than half the number of steps of our original effort. Important contributions, in addition to the particularly concise strategy, include a solution to the problem of axial nucleophilic methylation of a late-stage cyclohexanone, and the first selective synthesis and antiplasmodial evaluation of the DICA stereoisomer with both isonitriles equatorial.


Subject(s)
Antimalarials/chemical synthesis , Nitriles/chemical synthesis , Pyrenes/chemical synthesis , Molecular Structure
17.
Genome Res ; 24(6): 974-88, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24671853

ABSTRACT

The development of the human malaria parasite Plasmodium falciparum is controlled by coordinated changes in gene expression throughout its complex life cycle, but the corresponding regulatory mechanisms are incompletely understood. To study the relationship between genome architecture and gene regulation in Plasmodium, we assayed the genome architecture of P. falciparum at three time points during its erythrocytic (asexual) cycle. Using chromosome conformation capture coupled with next-generation sequencing technology (Hi-C), we obtained high-resolution chromosomal contact maps, which we then used to construct a consensus three-dimensional genome structure for each time point. We observed strong clustering of centromeres, telomeres, ribosomal DNA, and virulence genes, resulting in a complex architecture that cannot be explained by a simple volume exclusion model. Internal virulence gene clusters exhibit domain-like structures in contact maps, suggesting that they play an important role in the genome architecture. Midway during the erythrocytic cycle, at the highly transcriptionally active trophozoite stage, the genome adopts a more open chromatin structure with increased chromosomal intermingling. In addition, we observed reduced expression of genes located in spatial proximity to the repressive subtelomeric center, and colocalization of distinct groups of parasite-specific genes with coordinated expression profiles. Overall, our results are indicative of a strong association between the P. falciparum spatial genome organization and gene expression. Understanding the molecular processes involved in genome conformation dynamics could contribute to the discovery of novel antimalarial strategies.


Subject(s)
Chromatin Assembly and Disassembly , Chromosomes/genetics , Genome, Protozoan , Models, Genetic , Plasmodium falciparum/genetics , Gene Expression Regulation, Developmental , Plasmodium falciparum/growth & development , Schizonts/metabolism , Trophozoites/metabolism
18.
Bioessays ; 37(2): 182-94, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25394267

ABSTRACT

Plasmodium falciparum is the most deadly human malarial parasite, responsible for an estimated 207 million cases of disease and 627,000 deaths in 2012. Recent studies reveal that the parasite actively regulates a large fraction of its genes throughout its replicative cycle inside human red blood cells and that epigenetics plays an important role in this precise gene regulation. Here, we discuss recent advances in our understanding of three aspects of epigenetic regulation in P. falciparum: changes in histone modifications, nucleosome occupancy and the three-dimensional genome structure. We compare these three aspects of the P. falciparum epigenome to those of other eukaryotes, and show that large-scale compartmentalization is particularly important in determining histone decomposition and gene regulation in P. falciparum. We conclude by presenting a gene regulation model for P. falciparum that combines the described epigenetic factors, and by discussing the implications of this model for the future of malaria research.


Subject(s)
Histones/metabolism , Nucleosomes/metabolism , Plasmodium falciparum/pathogenicity , Epigenesis, Genetic/genetics , Epigenesis, Genetic/physiology , Malaria/parasitology , Virulence
19.
J Proteome Res ; 15(8): 2787-801, 2016 08 05.
Article in English | MEDLINE | ID: mdl-27291344

ABSTRACT

A major obstacle in understanding the complex biology of the malaria parasite remains to discover how gene transcription is controlled during its life cycle. Accumulating evidence indicates that the parasite's epigenetic state plays a fundamental role in gene expression and virulence. Using a comprehensive and quantitative mass spectrometry approach, we determined the global and dynamic abundance of histones and their covalent post-transcriptional modifications throughout the intraerythrocytic developmental cycle of Plasmodium falciparum. We detected a total of 232 distinct modifications, of which 160 had never been detected in Plasmodium and 88 had never been identified in any other species. We further validated over 10% of the detected modifications and their expression patterns by multiple reaction monitoring assays. In addition, we uncovered an unusual chromatin organization with parasite-specific histone modifications and combinatorial dynamics that may be directly related to transcriptional activity, DNA replication, and cell cycle progression. Overall, our data suggest that the malaria parasite has a unique histone modification signature that correlates with parasite virulence.


Subject(s)
Histone Code , Life Cycle Stages/genetics , Malaria/parasitology , Plasmodium falciparum/pathogenicity , Epigenesis, Genetic , Erythrocytes/parasitology , Histones/metabolism , Plasmodium falciparum/genetics , Protozoan Proteins/adverse effects , Protozoan Proteins/analysis , Transcription, Genetic , Transcriptional Activation
20.
Bioorg Med Chem Lett ; 26(3): 854-857, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26748697

ABSTRACT

The marine natural product (-)-8,15-diisocyano-11(20)-amphilectene (1), isolated from the Caribbean sponge Svenzea flava, was used as scaffold to synthetize five new products, all of which were tested against laboratory strains of Plasmodium falciparum and Mycobacterium tuberculosis H37Rv. The scaffold contains two isocyanide units that are amenable to chemical manipulation, enabling them to be elaborated into a small library of sulfur and selenium compounds. Although most of the analogs prepared were less potent than the parent compound, 5 was nearly equipotent showing IC50 values of 0.0066 µM and 0.0025 µM, respectively, against two strains (Dd2 and 3D7) of the malaria parasite. On the other hand, when assayed against the tuberculosis bacterium, analogs 5 and 6 were found to be more potent than 1.


Subject(s)
Anti-Infective Agents/chemical synthesis , Biological Products/chemistry , Cyanates/chemistry , Diterpenes/chemistry , Isothiocyanates/chemistry , Selenium Compounds/chemistry , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Diterpenes/chemical synthesis , Diterpenes/pharmacology , Inhibitory Concentration 50 , Mycobacterium tuberculosis/drug effects , Plasmodium falciparum/drug effects , Porifera/chemistry , Porifera/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL