Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Nature ; 518(7538): 187-196, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25673412

ABSTRACT

Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.


Subject(s)
Adipose Tissue/metabolism , Body Fat Distribution , Genome-Wide Association Study , Insulin/metabolism , Quantitative Trait Loci/genetics , Adipocytes/metabolism , Adipogenesis/genetics , Age Factors , Body Mass Index , Epigenesis, Genetic , Europe/ethnology , Female , Genome, Human/genetics , Humans , Insulin Resistance/genetics , Male , Models, Biological , Neovascularization, Physiologic/genetics , Obesity/genetics , Polymorphism, Single Nucleotide/genetics , Racial Groups/genetics , Sex Characteristics , Transcription, Genetic/genetics , Waist-Hip Ratio
2.
Trends Cardiovasc Med ; 28(6): 369-379, 2018 08.
Article in English | MEDLINE | ID: mdl-29519701

ABSTRACT

Many cytokines are currently under investigation as potential target to improve cardiac function and outcome in the setting of acute myocardial infarction (MI) or chronic heart failure (HF). Here we aim to provide a translational overview of cytokine inhibiting therapies tested in experimental models and clinical studies. In various experimental studies, inhibition of interleukin-1 (IL-1), -6 (IL-6), -8 (IL-8), monocyte chemoattractant protein-1 (MCP-1), CC- and CXC chemokines, and tumor necrosis factor-α (TNF-α) had beneficial effects on cardiac function and outcome. On the other hand, neutral or even detrimental results have been reported for some (IL-1, IL-6, IL-8, and MCP-1). Ambivalence of cytokine function, differences in study designs, treatment regimens and chosen endpoints hamper the translation of experimental research into clinical practice. Human studies are currently limited to IL-1ß inhibition, IL-1 receptor antagonists (IL-1RA), IL-6 receptor antagonists (IL-6RA) or TNF inhibition. Despite favorable effects on cardiovascular events observed in retrospective cohort studies of rheumatoid arthritis patients treated with TNF inhibition or IL-1RA, most prospective studies reported disappointing and inconsistent results. Smaller studies (n < 100) generally reported favorable results of anticytokine therapy on cardiac function, but only one of the larger studies (n > 100) evaluating IL-1ß inhibition presented positive results on outcome. In conclusion, of the 10 anticytokine therapies tested in animals models beneficial effects have been reported in at least one setting. In larger clinical studies, findings were unsatisfactory in all but one. Many anticytokine therapies with promising animal experimental data continue to require further evaluation in humans.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Cardiovascular Agents/therapeutic use , Cytokines/antagonists & inhibitors , Heart Failure/drug therapy , Inflammation Mediators/antagonists & inhibitors , Myocardial Infarction/drug therapy , Animals , Anti-Inflammatory Agents/adverse effects , Cardiovascular Agents/adverse effects , Cytokines/immunology , Heart Failure/immunology , Heart Failure/physiopathology , Humans , Inflammation Mediators/immunology , Myocardial Infarction/immunology , Myocardial Infarction/physiopathology , Signal Transduction/drug effects , Translational Research, Biomedical
3.
Nat Genet ; 47(11): 1282-1293, 2015 11.
Article in English | MEDLINE | ID: mdl-26390057

ABSTRACT

We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10(-11) to 5.0 × 10(-21)). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10(-6)). Our results provide new evidence for the role of DNA methylation in blood pressure regulation.


Subject(s)
Blood Pressure/genetics , DNA Methylation , Genetic Loci/genetics , Genome-Wide Association Study/methods , Adult , Aged , Aged, 80 and over , Asian People/genetics , Cardiovascular Diseases/blood , Cardiovascular Diseases/ethnology , Cardiovascular Diseases/genetics , Female , Genetic Predisposition to Disease/ethnology , Genetic Predisposition to Disease/genetics , Genetic Variation , Genotype , Humans , Male , Middle Aged , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Polymorphism, Single Nucleotide , Regression Analysis , Risk Factors , White People/genetics
SELECTION OF CITATIONS
SEARCH DETAIL