Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Cell ; 184(19): 4919-4938.e22, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34506722

ABSTRACT

Replacing or editing disease-causing mutations holds great promise for treating many human diseases. Yet, delivering therapeutic genetic modifiers to specific cells in vivo has been challenging, particularly in large, anatomically distributed tissues such as skeletal muscle. Here, we establish an in vivo strategy to evolve and stringently select capsid variants of adeno-associated viruses (AAVs) that enable potent delivery to desired tissues. Using this method, we identify a class of RGD motif-containing capsids that transduces muscle with superior efficiency and selectivity after intravenous injection in mice and non-human primates. We demonstrate substantially enhanced potency and therapeutic efficacy of these engineered vectors compared to naturally occurring AAV capsids in two mouse models of genetic muscle disease. The top capsid variants from our selection approach show conserved potency for delivery across a variety of inbred mouse strains, and in cynomolgus macaques and human primary myotubes, with transduction dependent on target cell expressed integrin heterodimers.


Subject(s)
Capsid/metabolism , Dependovirus/metabolism , Directed Molecular Evolution , Gene Transfer Techniques , Muscle, Skeletal/metabolism , Amino Acid Sequence , Animals , Capsid/chemistry , Cells, Cultured , Disease Models, Animal , HEK293 Cells , Humans , Integrins/metabolism , Macaca fascicularis , Mice, Inbred BALB C , Mice, Inbred C57BL , Muscle Fibers, Skeletal/metabolism , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/therapy , Myopathies, Structural, Congenital/pathology , Myopathies, Structural, Congenital/therapy , Protein Multimerization , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/therapeutic use , RNA, Guide, Kinetoplastida/metabolism , Recombination, Genetic/genetics , Species Specificity , Transgenes
2.
Life Sci Alliance ; 6(3)2023 03.
Article in English | MEDLINE | ID: mdl-36631218

ABSTRACT

Growth differentiation factor 11 (GDF11) and GDF8 (MSTN) are closely related TGF-ß family proteins that interact with nearly identical signaling receptors and antagonists. However, GDF11 appears to activate SMAD2/3 more potently than GDF8 in vitro and in vivo. The ligands possess divergent structural properties, whereby substituting unique GDF11 amino acids into GDF8 enhanced the activity of the resulting chimeric GDF8. We investigated potentially distinct endogenous activities of GDF11 and GDF8 in vivo by genetically modifying their mature signaling domains. Full recoding of GDF8 to that of GDF11 yielded mice lacking GDF8, with GDF11 levels ∼50-fold higher than normal, and exhibiting modestly decreased muscle mass, with no apparent negative impacts on health or survival. Substitution of two specific amino acids in the fingertip region of GDF11 with the corresponding GDF8 residues resulted in prenatal axial skeletal transformations, consistent with Gdf11-deficient mice, without apparent perturbation of skeletal or cardiac muscle development or homeostasis. These experiments uncover distinctive features between the GDF11 and GDF8 mature domains in vivo and identify a specific requirement for GDF11 in early-stage skeletal development.


Subject(s)
Bone Development , Growth Differentiation Factors , Muscle, Skeletal , Myostatin , Animals , Female , Mice , Pregnancy , Amino Acids/chemistry , Amino Acids/genetics , Bone Development/genetics , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Growth Differentiation Factors/genetics , Growth Differentiation Factors/chemistry , Muscle, Skeletal/growth & development , Muscle, Skeletal/metabolism , Myostatin/genetics , Myostatin/chemistry , Transforming Growth Factor beta/metabolism
3.
Elife ; 92020 05 05.
Article in English | MEDLINE | ID: mdl-32369015

ABSTRACT

The intermediate filament protein keratin 14 (K14) provides vital structural support in basal keratinocytes of epidermis. Recent studies evidenced a role for K14-dependent disulfide bonding in the organization and dynamics of keratin IFs in skin keratinocytes. Here we report that knock-in mice harboring a cysteine-to-alanine substitution at Krt14's codon 373 (C373A) exhibit alterations in disulfide-bonded K14 species and a barrier defect secondary to enhanced proliferation, faster transit time and altered differentiation in epidermis. A proteomics screen identified 14-3-3 as K14 interacting proteins. Follow-up studies showed that YAP1, a transcriptional effector of Hippo signaling regulated by 14-3-3sigma in skin keratinocytes, shows aberrant subcellular partitioning and function in differentiating Krt14 C373A keratinocytes. Residue C373 in K14, which is conserved in a subset of keratins, is revealed as a novel regulator of keratin organization and YAP function in early differentiating keratinocytes, with an impact on cell mechanics, homeostasis and barrier function in epidermis.


Subject(s)
14-3-3 Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Epidermis/metabolism , Keratin-14/metabolism , 14-3-3 Proteins/physiology , Adaptor Proteins, Signal Transducing/physiology , Animals , Cell Cycle Proteins/physiology , Epidermis/physiology , Epidermis/ultrastructure , Female , Gene Knock-In Techniques , Homeostasis , Keratin-14/physiology , Keratinocytes/metabolism , Keratinocytes/physiology , Male , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL