Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
PLoS Genet ; 16(4): e1008662, 2020 04.
Article in English | MEDLINE | ID: mdl-32310939

ABSTRACT

African Americans (AAs) are disproportionately affected by metabolic diseases and adverse drug events, with limited publicly available genomic and transcriptomic data to advance the knowledge of the molecular underpinnings or genetic associations to these diseases or drug response phenotypes. To fill this gap, we obtained 60 primary hepatocyte cultures from AA liver donors for genome-wide mapping of expression quantitative trait loci (eQTL) using LAMatrix. We identified 277 eGenes and 19,770 eQTLs, of which 67 eGenes and 7,415 eQTLs are not observed in the Genotype-Tissue Expression Project (GTEx) liver eQTL analysis. Of the eGenes found in GTEx only 25 share the same lead eQTL. These AA-specific eQTLs are less correlated to GTEx eQTLs. in effect sizes and have larger Fst values compared to eQTLs found in both cohorts (overlapping eQTLs). We assessed the overlap between GWAS variants and their tagging variants with AA hepatocyte eQTLs and demonstrated that AA hepatocyte eQTLs can decrease the number of potential causal variants at GWAS loci. Additionally, we identified 75,002 exon QTLs of which 48.8% are not eQTLs in AA hepatocytes. Our analysis provides the first comprehensive characterization of AA hepatocyte eQTLs and highlights the unique discoveries that are made possible due to the increased genetic diversity within the African ancestry genome.


Subject(s)
Black or African American/genetics , Gene Expression/genetics , Hepatocytes/metabolism , Quantitative Trait Loci/genetics , Adaptor Proteins, Signal Transducing/genetics , Alternative Splicing/genetics , Cytochrome P-450 CYP3A/genetics , Exons/genetics , Female , Genetic Predisposition to Disease , Genetics, Medical , Genome, Human , Genome-Wide Association Study , Humans , Liver/cytology , Male , Nerve Tissue Proteins/genetics , Precision Medicine
2.
Pharmacogenet Genomics ; 32(1): 1-9, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34380996

ABSTRACT

OBJECTIVES: Primary nonresponse (PNR) to antitumor necrosis factor-α (TNFα) biologics is a serious concern in patients with inflammatory bowel disease (IBD). We aimed to identify the genetic variants associated with PNR. PATIENTS AND METHODS: Patients were recruited from outpatient GI clinics and PNR was determined using both clinical and endoscopic findings. A case-control genome-wide association study was performed in 589 IBD patients and associations were replicated in an independent cohort of 293 patients. Effect of the associated variant on gene expression and TNFα secretion was assessed by cell-based assays. Pleiotropic effects were investigated by Phenome-wide association study (PheWAS). RESULTS: We identified rs34767465 as associated with PNR to anti-TNFα therapy (odds ratio: 2.07, 95% CI, 1.46-2.94, P = 2.43 × 10-7, [replication odds ratio: 1.8, 95% CI, 1.04-3.16, P = 0.03]). rs34767465 is a multiple-tissue expression quantitative trait loci for FAM114A2. Using RNA-sequencing and protein quantification from HapMap lymphoblastoid cell lines (LCLs), we found a significant decrease in FAM114A2 mRNA and protein expression in both heterozygous and homozygous genotypes when compared to wild type LCLs. TNFα secretion was significantly higher in THP-1 cells [differentiated into macrophages] with FAM114A2 knockdown versus controls. Immunoblotting experiments showed that depletion of FAM114A2 impaired autophagy-related pathway genes suggesting autophagy-mediated TNFα secretion as a potential mechanism. PheWAS showed rs34767465 was associated with comorbid conditions found in IBD patients (derangement of joints [P = 3.7 × 10-4], pigmentary iris degeneration [P = 5.9 × 10-4], diverticulum of esophagus [P = 7 × 10-4]). CONCLUSIONS: We identified a variant rs34767465 associated with PNR to anti-TNFα biologics, which increases TNFα secretion through mechanism related to autophagy. rs34767465 may also explain the comorbidities associated with IBD.


Subject(s)
Genome-Wide Association Study , Inflammatory Bowel Diseases , Case-Control Studies , Cohort Studies , Humans , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/genetics , Tumor Necrosis Factor-alpha/genetics
3.
Angiogenesis ; 22(1): 197-209, 2019 02.
Article in English | MEDLINE | ID: mdl-30324336

ABSTRACT

Staphylococcus aureus infection is one of the leading causes of morbidity in hospitalized patients in the United States, an effect compounded by increasing antibiotic resistance. The secreted agent hemolysin alpha toxin (Hla) requires the receptor A Disintegrin And Metalloproteinase domain-containing protein 10 (ADAM10) to mediate its toxic effects. We hypothesized that these effects are in part regulated by Notch signaling, for which ADAM10 activation is essential. Notch proteins function in developmental and pathological angiogenesis via the modulation of key pathways in endothelial and perivascular cells. Thus, we hypothesized that Hla would activate Notch in vascular cells. Human umbilical vein endothelial cells were treated with recombinant Hla (rHla), Hla-H35L (genetically inactivated Hla), or Hank's solution (HBSS), and probed by different methods. Luciferase assays showed that Hla (0.01 µg/mL) increased Notch activation by 1.75 ± 0.5-fold as compared to HBSS controls (p < 0.05), whereas Hla-H35L had no effect. Immunocytochemistry and Western blotting confirmed these findings and revealed that ADAM10 and γ-secretase are required for Notch activation after inhibitor and siRNA assays. Retinal EC in mice engineered to express yellow fluorescent protein (YFP) upon Notch activation demonstrated significantly greater YFP intensity after Hla injection than controls. Aortic rings from Notch reporter mice embedded in matrix and incubated with rHla or Hla-H35L demonstrate increased Notch activation occurs at tip cells during sprouting. These mice also had higher skin YFP intensity and area of expression after subcutaneous inoculation of S. aureus expressing Hla than a strain lacking Hla in both EC and pericytes assessed by microscopy. Human liver displayed strikingly higher Notch expression in EC and pericytes during S. aureus infection by immunohistochemistry than tissues from uninfected patients. In sum, our results demonstrate that the S. aureus toxin Hla can potently activate Notch in vascular cells, an effect which may contribute to the pathobiology of infection with this microorganism.


Subject(s)
Bacterial Proteins/toxicity , Bacterial Toxins/toxicity , Hemolysin Proteins/toxicity , Human Umbilical Vein Endothelial Cells/metabolism , Receptors, Notch/metabolism , Signal Transduction/drug effects , Staphylococcus aureus/chemistry , ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Bacterial Proteins/chemistry , Bacterial Toxins/chemistry , Hemolysin Proteins/chemistry , Human Umbilical Vein Endothelial Cells/pathology , Humans , Membrane Proteins/metabolism , Staphylococcal Infections/metabolism , Staphylococcal Infections/pathology , Staphylococcus aureus/pathogenicity
4.
Mult Scler Relat Disord ; 79: 105040, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37783195

ABSTRACT

BACKGROUND: Hydrocephalus is an uncommon manifestation of neurosarcoidosis (7-14% of reported cohorts) that poses unique challenges to patient management. Despite being a recognized complication of neurosarcoidosis, very little is known about how hydrocephalus influences its clinical course, management, and prognosis. OBJECTIVES: To characterize hydrocephalus as a clinical manifestation of neurosarcoidosis, highlight which patients required cerebrospinal fluid (CSF) diversion, understand the mediating role of immunomodulatory treatments, and report outcomes in this cohort. METHODS: Patients with a diagnosis of neurosarcoidosis seen at Emory Healthcare [01/2011-8/2021] were included if hydrocephalus was one manifestation of their disease. Means and proportions were compared between shunted and non-shunted groups using the Wilcoxon rank-sum test for continuous variables and the Fisher's exact test for categorical variables. RESULTS: Twenty-two patients with neurosarcoidosis and hydrocephalus as one disease manifestation were included (22/214, 10.3%). Hydrocephalus was communicating in 13 (13/20, 65.0%) and obstructive in 6 patients (6/20, 30.0%), with features of both seen in 1 patient (1/20, 5.0%). Chronic presentations were typical (12/22, 54.5%) with altered sensorium, gait dysfunction, headache, and weakness being present in the majority of patients. There was a rostral-to-caudal gradient in ventriculomegaly, with the lateral ventricles most affected (20/20, 100%) and the fourth ventricle the least (12/20, 60%). Meningoventricular inflammation was the most common neuroinflammatory accompaniment (18/20, 90.0%), especially infratentorial leptomeningitis (16/20, 80.0%) and fourth ventriculitis (9/20, 45.0%). Thirteen patients (13/22, 59.1%) required ventriculoperitoneal shunts (VPS). Factors associated with shunt placement were younger age at neurosarcoidosis onset (p = 0.019) and hydrocephalus onset (p = 0.015), obstructive hydrocephalus (p = 0.043), and lateral ventriculitis (p = 0.043). In the 6 patients (6/13, 46.2%) with preceding extraventricular drain (EVD) placement, all failed to wean, including 5/6 patients who received high-dose steroids while the EVD was in place. Almost all (19/20, 95.0%) were treated with steroid-sparing agents, including nine (9/20, 45.0%) with tumor necrosis factor (TNF) inhibitors. Modified Rankin Scale score at last outcome was 3.04 (range 0-6). CONCLUSION: Patients with neurosarcoidosis and hydrocephalus experience unique challenges in the management of their disease, including the potential need for CSF diversion, in addition to traditional anti-inflammatory treatments. Younger patients, those with obstructive hydrocephalus, and those with lateral ventriculitis warrant particular consideration for VPS placement, but the decision to shunt likely remains a highly individualized one. The requirement for multiple lines of immunotherapy beyond steroids and moderate disability at last follow-up suggest hydrocephalus may reflect a more severe form of neurosarcoidosis.


Subject(s)
Hydrocephalus , Humans , Cerebral Ventriculitis , Disease Progression , Hydrocephalus/diagnostic imaging , Hydrocephalus/etiology , Retrospective Studies , Steroids
5.
Theranostics ; 10(18): 8143-8161, 2020.
Article in English | MEDLINE | ID: mdl-32724463

ABSTRACT

Neuroblastoma (NB) is the most common extracranial solid tumor in infants and children, and imposes significant morbidity and mortality in this population. The aggressive chemoradiotherapy required to treat high-risk NB results in survival of less than 50%, yet is associated with significant long-term adverse effects in survivors. Boosting efficacy and reducing morbidity are therefore key goals of treatment for affected children. We hypothesize that these may be achieved by developing strategies that both focus and limit toxic therapies to the region of the tumor. One such strategy is the use of targeted image-guided drug delivery (IGDD), which is growing in popularity in personalized therapy to simultaneously improve on-target drug deposition and assess drug pharmacodynamics in individual patients. IGDD strategies can utilize a variety of imaging modalities and methods of actively targeting pharmaceutical drugs, however in vivo imaging in combination with focused ultrasound is one of the most promising approaches already being deployed for clinical applications. Over the last two decades, IGDD using focused ultrasound with "microbubble" ultrasound contrast agents (UCAs) has been increasingly explored as a method of targeting a wide variety of diseases, including cancer. This technique, known as sonopermeation, mechanically augments vascular permeability, enabling increased penetration of drugs into target tissue. However, to date, methods of monitoring the vascular bioeffects of sonopermeation in vivo are lacking. UCAs are excellent vascular probes in contrast-enhanced ultrasound (CEUS) imaging, and are thus uniquely suited for monitoring the effects of sonopermeation in tumors. Methods: To monitor the therapeutic efficacy of sonopermeation in vivo, we developed a novel system using 2D and 3D quantitative contrast-enhanced ultrasound imaging (qCEUS). 3D tumor volume and contrast enhancement was used to evaluate changes in blood volume during sonopermeation. 2D qCEUS-derived time-intensity curves (TICs) were used to assess reperfusion rates following sonopermeation therapy. Intratumoral doxorubicin (and liposome) uptake in NB was evalauted ex vivo along with associated vascular changes. Results: In this study, we demonstrate that combining focused ultrasound therapy with UCAs can significantly enhance chemotherapeutic payload to NB in an orthotopic xenograft model, by improving delivery and tumoral uptake of long-circulating liposomal doxorubicin (L-DOX) nanoparticles. qCEUS imaging suggests that changes in flow rates are highly sensitive to sonopermeation and could be used to monitor the efficacy of treatment in vivo. Additionally, initial tumor perfusion may be a good predictor of drug uptake during sonopermeation. Following sonopermeation treatment, vascular biomarkers show increased permeability due to reduced pericyte coverage and rapid onset of doxorubicin-induced apoptosis of NB cells but without damage to blood vessels. Conclusion: Our results suggest that significant L-DOX uptake can occur by increasing tumor vascular permeability with microbubble sonopermeation without otherwise damaging the vasculature, as confirmed by in vivo qCEUS imaging and ex vivo analysis. The use of qCEUS imaging to monitor sonopermeation efficiency and predict drug uptake could potentially provide real-time feedback to clinicians for determining treatment efficacy in tumors, leading to better and more efficient personalized therapies. Finally, we demonstrate how the IGDD strategy outlined in this study could be implemented in human patients using a single case study.


Subject(s)
Doxorubicin/analogs & derivatives , Microbubbles , Neuroblastoma/drug therapy , Perfusion Imaging/methods , Ultrasonography, Interventional/methods , Animals , Apoptosis/drug effects , Blood Volume Determination/instrumentation , Blood Volume Determination/methods , Capillary Permeability/radiation effects , Cell Line, Tumor , Contrast Media/administration & dosage , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Drug Delivery Systems/methods , Feasibility Studies , Humans , Mice , Neuroblastoma/blood supply , Neuroblastoma/diagnostic imaging , Photoacoustic Techniques/instrumentation , Photoacoustic Techniques/methods , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/pharmacokinetics , Single-Case Studies as Topic , Ultrasonic Waves , Ultrasonography, Interventional/instrumentation , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL