Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
J Anat ; 244(2): 249-259, 2024 02.
Article in English | MEDLINE | ID: mdl-37891703

ABSTRACT

Although the primary function of the swim bladder is buoyancy, it is also involved in hearing, and it can be associated with sonic muscles for voluntary sound production. The use of the swim bladder and associated muscles in sound production could be an exaptation since this is not its first function. We however lack models showing that the same muscles can be used in both movement and sound production. In this study, we investigate the functions of the muscles associated with the swim bladder in different Pteroinae (lionfish) species. Our results indicate that Pterois volitans, P. radiata and Dendrochirus zebra are able to produce long low-frequency hums when disturbed. The deliberate movements of the fin spines during sound production suggest that these sounds may serve as aposematic signals. In P. volitans and P. radiata, hums can be punctuated by intermittent louder pulses called knocks. Analysis of sonic features, morphology, electromyography and histology strongly suggest that these sounds are most likely produced by muscles closely associated with the swim bladder. These muscles originate from the neurocranium and insert on the posterior part of the swim bladder. Additionally, cineradiography supports the hypothesis that these same muscles are involved in altering the swim bladder's length and angle, thereby influencing the pitch of the fish body and participating in manoeuvring and locomotion movements. Fast contraction of the muscle should be related to sound production whereas sustained contractions allows modifications in swim bladder shape and body pitch.


Subject(s)
Perciformes , Urinary Bladder , Animals , Muscles/anatomy & histology , Perciformes/anatomy & histology , Fishes/anatomy & histology , Sound
2.
Oecologia ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829404

ABSTRACT

Although mesophotic coral ecosystems account for approximately 80% of coral reefs, they remain largely unexplored due to their challenging accessibility. The acoustic richness within reefs has led scientists to consider passive acoustic monitoring as a reliable method for studying both altiphotic and mesophotic coral reefs. We investigated the relationship between benthic invertebrate sounds (1.5-22.5 kHz), depth, and benthic cover composition, key ecological factors that determine differences between altiphotic and mesophotic reefs. Diel patterns of snaps and peak frequencies were also explored at different depths to assess variations in biorhythms. Acoustic recorders were deployed at 20 m, 60 m, and 120 m depths across six islands in French Polynesia. The results indicated that depth is the primary driver of differences in broadband transient sound (BTS) soundscapes, with sound intensity decreasing as depth increases. At 20-60 m, sounds were louder at night. At 120 m depth, benthic activity rhythms exhibited low or highly variable levels of diel variation, likely a consequence of reduced solar irradiation. On three islands, a peculiar peak in the number of BTS was observed every day between 7 and 9 PM at 120 m, suggesting the presence of cyclic activities of a specific species. Our results support the existence of different invertebrate communities or distinct behaviors, particularly in deep mesophotic reefs. Overall, this study adds to the growing evidence supporting the use of passive acoustic monitoring to describe and understand ecological patterns in mesophotic reefs.

3.
Mol Ecol ; 32(1): 167-181, 2023 01.
Article in English | MEDLINE | ID: mdl-36261875

ABSTRACT

The visual capabilities of fish are optimized for their ecology and light environment over evolutionary time. Similarly, fish vision can adapt to regular changes in light conditions within their lifetime, e.g., ontogenetic or seasonal variation. However, we do not fully understand how vision responds to irregular short-term changes in the light environment, e.g., algal blooms and light pollution. In this study, we investigated the effect of short-term exposure to unnatural light conditions on opsin gene expression and retinal cell densities in juvenile and adult diurnal reef fish (convict surgeonfish; Acanthurus triostegus). Results revealed phenotypic plasticity in the retina across ontogeny, particularly during development. The most substantial differences at both molecular and cellular levels were found under constant dim light, while constant bright light and simulated artificial light at night had a lesser effect. Under dim light, juveniles and adults increased absolute expression of the cone opsin genes, sws2a, rh2c and lws, within a few days and juveniles also decreased densities of cones, inner nuclear layer cells and ganglion cells. These changes potentially enhanced vision under the altered light conditions. Thus, our study suggests that plasticity mainly comes into play when conditions are extremely different to the species' natural light environment, i.e., a diurnal fish in "constant night". Finally, in a rescue experiment on adults, shifts in opsin expression were reverted within 24 h. Overall, our study showed rapid, reversible light-induced changes in the retina of A. triostegus, demonstrating phenotypic plasticity in the visual system of a reef fish throughout life.


Subject(s)
Light , Perciformes , Animals , Fishes/genetics , Vision, Ocular/genetics , Retina/metabolism , Perciformes/genetics , Opsins/genetics , Opsins/metabolism , Rod Opsins/genetics
4.
J Acoust Soc Am ; 154(1): 270-278, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37450332

ABSTRACT

Many fishes use sounds to communicate in a wide range of behavioral contexts. In monitoring studies, these sounds can be used to detect and identify species. However, being able to confidently link a sound to the correct emitting species requires precise acoustical characterization of the signals in controlled conditions. For practical reasons, this characterization is often performed in small sized aquaria, which, however, may cause sound distortion, and prevents an accurate description of sound characteristics that will ultimately impede sound-based species identification in open-water environments. This study compared the sounds features of five specimens of the silverspot squirrelfish Sargocentron caudimaculatum recorded at sea and in aquaria of different sizes and materials. Our results point out that it is preferable to record fish sounds in an open-water environment rather than in small aquaria because acoustical features are affected (sound duration and dominant frequency) when sounds are recorded in closed environments as a result of reverberation and resonance. If not possible, it is recommended that (1) sound recordings be made in plastic or plexiglass aquaria with respect to glass aquaria and (2) aquaria with the largest dimensions and volumes be chosen.


Subject(s)
Sound , Water , Animals , Fishes , Acoustics , Vocalization, Animal
5.
J Fish Biol ; 102(2): 532-536, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36416762

ABSTRACT

Indo-Pacific lionfishes generally exhibit cryptic behaviours and so can be missed when conducting non-targeted surveys. Here, the authors report the results from targeted surveys of lionfish at Moorea, French Polynesia. Lionfish from three species (Pterois antennata, Pterois radiata, Dendrochirus biocellatus) were observed at a mean density of 267 individuals ha-1 . This is substantially higher than previous estimates from the same area (Moorea) and represents the highest reported density of lionfishes from their Pacific range. Overall, this study highlights the importance of targeted survey techniques for detecting cryptic species on coral reefs.


Subject(s)
Censuses , Perciformes , Animals , Introduced Species , Coral Reefs , Predatory Behavior
6.
Reg Environ Change ; 23(1): 16, 2023.
Article in English | MEDLINE | ID: mdl-36573171

ABSTRACT

During the first COVID-19 lockdown in 2020, levels of coastal activities such as subsistence fishing and marine tourism declined rapidly throughout French Polynesia. Here, we examined whether the reduction in coastal use led to changes in fish density around the island of Moorea. Two natural coastal marine habitats (bare sand and mangrove) and one type of man-made coastal structure (embankment) were monitored on the west coast of the island before and after the first COVID-19 lockdown. At the end of the lockdown (May 2020), significantly higher apparent densities of juvenile and adult fish, including many harvested species, were recorded compared to levels documented in 2019 at the same period (April 2019). Fish densities subsequently declined as coastal activities recovered; however, 2 months after the end of the lockdown (July 2020), densities were still higher than they were in July 2019 with significant family-specific variation across habitats. This study highlights that short-term reductions in human activity can have a positive impact on coastal fish communities and may encourage future management policy that minimizes human impacts on coastline habitats. Supplementary Information: The online version contains supplementary material available at 10.1007/s10113-022-02011-0.

7.
J Anat ; 241(3): 601-615, 2022 09.
Article in English | MEDLINE | ID: mdl-35506616

ABSTRACT

Parrotfish play important ecological roles in coral reef and seagrass communities across the globe. Their dentition is a fascinating object of study from an anatomical, functional and evolutionary point of view. Several species maintained non-interlocked dentition and browse on fleshy algae, while others evolved a characteristic beak-like structure made of a mass of coalesced teeth that they use to scrape or excavate food off hard limestone substrates. While parrotfish use their highly specialized marginal teeth to procure their food, they can also develop a series of large fangs that protrude from the upper jaw, and more rarely from the lower jaw. These peculiar fangs do not participate in the marginal dentition and their function remains unclear. Here we describe the morphology of these fangs and their developmental relationship to the rest of the oral dentition in the marbled parrotfish (Leptoscarus vaigiensis), the star-eye parrotfish (Calotomus carolinus), and the palenose parrotfish (Scarus psittacus). Through microtomographic and histological analyses, we show that some of these fangs display loosely folded plicidentine along their bases, a feature that has never been reported in parrotfish. Plicidentine is absent from the marginal teeth and is therefore exclusive to the fangs. Parrotfish fangs develop a particular type of simplexodont plicidentine with a pulpal infilling of alveolar bone at later stages of dental ontogeny. The occurrence of plicidentine and evidence of extensive tooth wear, and even breakage, lead us to conclude that the fangs undergo frequent mechanical stress, despite not being used to acquire food. This strong mechanical stress undergone by fangs could be linked either to forced contact with congeners or with the limestone substrate during feeding. Finally, we hypothesize that the presence of plicidentine in parrotfish is not derived from a labrid ancestor, but is probably a recently evolved trait in some parrotfish taxa, which may even have evolved convergently within this subfamily.


Subject(s)
Perciformes , Tooth , Animals , Biological Evolution , Calcium Carbonate , Perciformes/anatomy & histology , Tooth/anatomy & histology
8.
J Exp Biol ; 225(17)2022 09 01.
Article in English | MEDLINE | ID: mdl-35929495

ABSTRACT

Ontogenetic changes in the habitats and lifestyles of animals are often reflected in their visual systems. Coral reef fishes start life in the shallow open ocean but inhabit the reef as juveniles and adults. Alongside this change in habitat, some species also change lifestyles and become nocturnal. However, it is not fully understood how the visual systems of nocturnal reef fishes develop and adapt to these significant ecological shifts over their lives. Therefore, we used a histological approach to examine visual development in the nocturnal coral reef fish family, Holocentridae. We examined 7 representative species spanning both subfamilies, Holocentrinae (squirrelfishes) and Myripristinae (soldierfishes). Pre-settlement larvae showed strong adaptation for photopic vision with high cone densities and had also started to develop a multibank retina (i.e. multiple rod layers), with up to two rod banks present. At reef settlement, holocentrids showed greater adaptation for scotopic vision, with higher rod densities and higher summation of rods onto the ganglion cell layer. By adulthood, they had well-developed scotopic vision with a highly rod-dominated multibank retina comprising 5-17 rod banks and enhanced summation of rods onto the ganglion cell layer. Although the ecological demands of the two subfamilies were similar throughout their lives, their visual systems differed after settlement, with Myripristinae showing more pronounced adaptation for scotopic vision than Holocentrinae. Thus, it is likely that both ecology and phylogeny contribute to the development of the holocentrid visual system.


Subject(s)
Color Vision , Retina , Animals , Coral Reefs , Fishes/anatomy & histology , Retinal Cone Photoreceptor Cells
9.
J Exp Biol ; 225(17)2022 09 01.
Article in English | MEDLINE | ID: mdl-35929500

ABSTRACT

Developmental changes to the visual systems of animals are often associated with ecological shifts. Reef fishes experience a change in habitat between larval life in the shallow open ocean to juvenile and adult life on the reef. Some species also change their lifestyle over this period and become nocturnal. While these ecological transitions are well documented, little is known about the ontogeny of nocturnal reef fish vision. Here, we used transcriptomics to investigate visual development in 12 representative species from both subfamilies, Holocentrinae (squirrelfishes) and Myripristinae (soldierfishes), in the nocturnal coral reef fish family, Holocentridae. Results revealed that the visual systems of holocentrids are initially well adapted to photopic conditions with pre-settlement larvae having high levels of cone opsin gene expression and a broad cone opsin gene repertoire (8 genes). At reef settlement, holocentrids started to invest more in their scotopic visual system, and compared with adults, showed upregulation of genes involved in cell differentiation/proliferation. By adulthood, holocentrids had well developed scotopic vision with high levels of rod opsin gene expression, reduced cone opsin gene expression and repertoire (1-4 genes) and upregulated phototransduction genes. Finally, although the two subfamilies shared similar ecologies across development, their visual systems diverged after settlement, with Myripristinae investing more in scotopic vision than Holocentrinae. Hence, both ecology and phylogeny are likely to determine the development of the holocentrid visual system.


Subject(s)
Cone Opsins , Animals , Cone Opsins/metabolism , Coral Reefs , Fishes/physiology , Gene Expression , Larva/genetics , Larva/metabolism , Opsins/genetics , Opsins/metabolism , Phylogeny , Retina/physiology
10.
Dev Dyn ; 250(11): 1651-1667, 2021 11.
Article in English | MEDLINE | ID: mdl-33899313

ABSTRACT

BACKGROUND: Amphiprion ocellaris is one of the rare reef fish species that can be reared in aquaria. It is increasingly used as a model species for Eco-Evo-Devo. Therefore, it is important to have an embryonic development table based on high quality images that will allow for standardized sampling by the scientific community. RESULTS: Here we provide high-resolution time-lapse videos to accompany a detailed description of embryonic development in A ocellaris. We describe a series of developmental stages and we define six broad periods of embryogenesis: zygote, cleavage, blastula, gastrula, segmentation, and organogenesis that we further subdivide into 32 stages. These periods highlight the changing spectrum of major developmental processes that occur during embryonic development. CONCLUSIONS: We provide an easy system for the determination of embryonic stages, enabling the development of A ocellaris as a coral reef fish model species. This work will facilitate evolutionary development studies, in particular studies of the relationship between climate change and developmental trajectories in the context of coral reefs. Thanks to its lifestyle, complex behavior, and ecology, A ocellaris will undoubtedly become a very attractive model in a wide range of biological fields.


Subject(s)
Motion Pictures , Perciformes , Animals , Coral Reefs , Embryonic Development , Fishes
11.
J Struct Biol ; 213(4): 107810, 2021 12.
Article in English | MEDLINE | ID: mdl-34774752

ABSTRACT

Stomatopoda is a crustacean order including sophisticated predators called spearing and smashing mantis shrimps that are separated from the well-studied Eumalacotraca since the Devonian. The spearing mantis shrimp has developed a spiky dactyl capable of impaling fishes or crustaceans in a fraction of second. In this high velocity hunting technique, the spikes undergo an intense mechanical constraint to which their exoskeleton (or cuticle) has to be adapted. To better understand the spike cuticle internal architecture and composition, electron microscopy, X-ray microanalysis and Raman spectroscopy were used on the spikes of 7 individuals (collected in French Polynesia and Indonesia), but also on parts of the body cuticle that have less mechanical stress to bear. In the body cuticle, several specificities linked to the group were found, allowing to determine the basic structure from which the spike cuticle has evolved. Results also highlighted that the body cuticle of mantis shrimps could be a model close to the ancestral arthropod cuticle by the aspect of its biological layers (epi- and procuticle including exo- and endocuticle) as well as by the Ca-carbonate/phosphate mineral content of these layers. In contrast, the spike cuticle exhibits a deeply modified organization in four functional regions overprinted on the biological layers. Each of them has specific fibre arrangement or mineral content (fluorapatite, ACP or phosphate-rich Ca-carbonate) and is thought to assume specific mechanical roles, conferring appropriate properties on the entire spike. These results agree with an evolution of smashing mantis shrimps from primitive stabbing/spearing shrimps, and thus also allowed a better understanding of the structural modifications described in previous studies on the dactyl club of smashing mantis shrimps.


Subject(s)
Animal Structures/metabolism , Biomineralization/physiology , Crustacea/metabolism , Minerals/metabolism , Animal Structures/chemistry , Animal Structures/ultrastructure , Animals , Calcium Carbonate/metabolism , Calcium Phosphates/metabolism , Crustacea/chemistry , Crustacea/ultrastructure , Decapoda/chemistry , Decapoda/metabolism , Decapoda/ultrastructure , Electron Probe Microanalysis/methods , Microscopy, Electron, Scanning/methods , Microscopy, Electron, Transmission/methods , Predatory Behavior/physiology , Spectrometry, X-Ray Emission/methods , Spectrum Analysis, Raman/methods
12.
J Exp Zool B Mol Dev Evol ; 336(4): 376-385, 2021 06.
Article in English | MEDLINE | ID: mdl-33539680

ABSTRACT

As interest increases in ecological, evolutionary, and developmental biology (Eco-Evo-Devo), wild species are increasingly used as experimental models. However, we are still lacking a suitable model for marine fish species, as well as coral reef fishes that can be reared at laboratory scales. Extensive knowledge of the life cycle of anemonefishes, and the peculiarities of their biology, make them relevant marine fish models for developmental biology, ecology, and evolutionary sciences. Here, we present standard methods to maintain breeding pairs of the anemonefish Amphiprion ocellaris in captivity, obtain regular good quality spawning, and protocols to ensure larval survival throughout rearing. We provide a detailed description of the anemonefish husbandry system and life prey culturing protocols. Finally, a "low-volume" rearing protocol useful for the pharmacological treatment of larvae is presented. Such methods are important as strict requirements for large volumes in rearing tanks often inhibit continuous treatments with expensive or rare compounds.


Subject(s)
Animal Husbandry/methods , Fishes/physiology , Laboratory Animal Science , Animals , Larva/growth & development
13.
Environ Sci Technol ; 54(8): 4733-4745, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32202766

ABSTRACT

Environmental plastic pollution is a major ecological and societal concern today. Over the past decade, a broad range of laboratory and experimental studies have complemented field observations in the hope of achieving a better understanding of the fate and impact of micro- and/or nanoplastics (MP/NP) on diverse organisms (e.g., birds, fish, and mammals). However, plastic pollution remains challenging to monitor in the environment and to control under laboratory conditions, and plastic particles are often naturally or experimentally co-contaminated with diverse chemical pollutants. Therefore, our understanding of the effects of virgin MP/NP in freshwater and marine fish is still limited. Here, we performed a systematic review of the most up-to-date literature on the effects of virgin MP/NP on fish under laboratory conditions. A total of 782 biological endpoints investigated in 46 studies were extracted. Among these endpoints, 32% were significantly affected by exposure to virgin MP/NP. More effects were observed for smaller plastic particles (i.e., size ≤20 µm), affecting fish behavioral and neurological functions, intestinal permeability, metabolism, and intestinal microbiome diversity. In addition, we propose suggestions for new research directions to lead toward innovative, robust, and scientifically sound experiments in this field. This review of experimental studies reveals that the toxicity of virgin MP/NP on fish should be more systematically evaluated using rigorous laboratory-based methods and aims toward a better understanding of the underlying mechanisms of this toxicity to fish.


Subject(s)
Water Pollutants, Chemical/analysis , Animals , Fishes , Fresh Water , Plastics
14.
Oecologia ; 193(1): 125-134, 2020 May.
Article in English | MEDLINE | ID: mdl-32285197

ABSTRACT

How vocal organisms share acoustic space has primarily received attention in terrestrial environments. Comparable studies in marine environments, however, remain rare. By recording sounds on a coral reef in French Polynesia for 48 h and 24 h, this study provides first insights on how different sound types are distributed within the acoustic space and may create acoustic niches optimizing acoustic communication within a highly diverse community containing numerous soniferous fish species. Day-time was dominated by two to six sound types, while recordings performed at night revealed a more diverse vocal community made of up to nineteen sound types. Calling activity was distributed over time allowing each sound type to dominate the soundscape sequentially. Additionally, differences in the acoustic features of sounds occurring during the same period were observed. Such partitioning in time and acoustic spaces would reduce potential overlaps of sounds produced by vocal species living in sympatry in coral reefs.


Subject(s)
Coral Reefs , Fishes , Acoustics , Animals , Polynesia , Sound
15.
Dev Dyn ; 248(7): 545-568, 2019 07.
Article in English | MEDLINE | ID: mdl-31070818

ABSTRACT

BACKGROUND: The clownfish Amphiprion ocellaris is one of the rare coral reef fish species that can be reared in aquaria. With relatively short embryonic and larval development, it could be used as a model species to study the impact of global changes such as temperature rise or anthropogenic threats (eg, pollution) on the postembryonic development at molecular and endocrinological levels. Establishing a developmental table allows us to standardize sampling for the scientific community willing to conduct experiments on this species on different areas: ecology, evolution, and developmental biology. RESULTS: Here, we describe the postembryonic developmental stages for the clownfish A. ocellaris from hatching to juvenile stages (30 days posthatching). We quantitatively followed the postembryonic growth and described qualitative traits: head, paired and unpaired fins, notochord flexion, and pigmentation changes. The occurrence of these changes over time allowed us to define seven stages, for which we provide precise descriptions. CONCLUSIONS: Our work gives an easy system to determine A. ocellaris postembryonic stages allowing, thus, to develop this species as a model species for coral reef fishes. In light of global warming, the access to the full postembryonic development stages of coral reef fish is important to determine stressors that can affect such processes.


Subject(s)
Fishes/growth & development , Animals , Developmental Biology/methods , Ecology , Global Warming , Models, Animal , Perciformes
16.
Ecol Lett ; 22(2): 256-264, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30481409

ABSTRACT

Mutualisms are important ecological interactions that underpin much of the world's biodiversity. Predation risk has been shown to regulate mutualism dynamics in species-specific case studies; however, we lack studies which investigate whether predation can also explain broader patterns of mutualism evolution. We report that fish-anemone mutualisms have evolved on at least 55 occasions across 16 fish families over the past 60 million years and that adult body size is associated with the ontogenetic stage of anemone mutualisms: larger-bodied species partner with anemones as juveniles, while smaller-bodied species partner with anemones throughout their lives. Field and laboratory studies show that predators target smaller prey, that smaller fishes associate more with anemones, and that these relationships confer protection to small fishes. Our results indicate that predation is likely driving the recurrent convergent evolution of fish-anemone mutualisms and suggest that similar ecological processes may have selected convergence in interspecies interactions in other animal clades.


Subject(s)
Coral Reefs , Predatory Behavior , Symbiosis , Animals , Biodiversity , Fishes
17.
J Exp Biol ; 222(Pt 24)2019 12 20.
Article in English | MEDLINE | ID: mdl-31776185

ABSTRACT

Ontogenetic changes of the visual system are often correlated with shifts in habitat and feeding behaviour of animals. Coral reef fishes begin their lives in the pelagic zone and then migrate to the reef. This habitat transition frequently involves a change in diet and light environment as well as major morphological modifications. The spotted unicornfish, Naso brevirostris, is known to shift diet from zooplankton to algae and back to mainly zooplankton when transitioning from larval to juvenile and then to adult stages. Concurrently, N. brevirostris also moves from an open pelagic to a coral-associated habitat before migrating up in the water column when reaching adulthood. Using retinal mapping techniques, we discovered that the distribution and density of ganglion and photoreceptor cells in N. brevirostris changes primarily during the transition from the larval to the juvenile stage, with only minor modifications thereafter. Similarly, visual gene (opsin) expression based on RNA sequencing, although qualitatively similar between stages (all fish mainly expressed the same three cone opsins; SWS2B, RH2B, RH2A), also showed the biggest quantitative difference when transitioning from larvae to juveniles. The juvenile stage in particular seems mismatched with its reef-associated ecology, which may be due to this stage only lasting a fraction of the lifespan of these fish. Hence, the visual ontogeny found in N. brevirostris is very different from the progressive changes found in other reef fishes, calling for a thorough analysis of visual system development of the reef fish community.


Subject(s)
Ganglia/growth & development , Perciformes/growth & development , Photoreceptor Cells, Vertebrate/metabolism , Vision, Ocular/physiology , Visual Pathways/growth & development , Animals
18.
BMC Biol ; 16(1): 90, 2018 09 05.
Article in English | MEDLINE | ID: mdl-30180844

ABSTRACT

BACKGROUND: Biologists have long been fascinated by the striking diversity of complex color patterns in tropical reef fishes. However, the origins and evolution of this diversity are still poorly understood. Disentangling the evolution of simple color patterns offers the opportunity to dissect both ultimate and proximate causes underlying color diversity. RESULTS: Here, we study clownfishes, a tribe of 30 species within the Pomacentridae that displays a relatively simple color pattern made of zero to three vertical white stripes on a dark body background. Mapping the number of white stripes on the evolutionary tree of clownfishes reveals that their color pattern diversification results from successive caudal to rostral losses of stripes. Moreover, we demonstrate that stripes always appear with a rostral to caudal stereotyped sequence during larval to juvenile transition. Drug treatments (TAE 684) during this period leads to a dose-dependent loss of stripes, demonstrating that white stripes are made of iridophores and that these cells initiate the stripe formation. Surprisingly, juveniles of several species (e.g., Amphiprion frenatus) have supplementary stripes when compared to their respective adults. These stripes disappear caudo-rostrally during the juvenile phase leading to the definitive color pattern. Remarkably, the reduction of stripe number over ontogeny matches the sequences of stripe losses during evolution, showing that color pattern diversification among clownfish lineages results from changes in developmental processes. Finally, we reveal that the diversity of striped patterns plays a key role for species recognition. CONCLUSIONS: Overall, our findings illustrate how developmental, ecological, and social processes have shaped the diversification of color patterns during the radiation of an emblematic coral reef fish lineage.


Subject(s)
Biological Evolution , Color , Perciformes/physiology , Pigmentation , Animals , Perciformes/growth & development , Phylogeny , Pyrimidines/administration & dosage
19.
J Fish Biol ; 95(5): 1355-1358, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31568585

ABSTRACT

Our study highlights the effect of the macroalgae Asparagopsis taxiformis on the feeding behaviour of the tropical surgeonfish Acanthurus triostegus. The presence of A. taxiformis chemical cues reduced A. triostegus feeding, suggesting that the presence of this algae could affect not only the survival of fish in the post-larval stage, but also alter the grazing pressure on coral reefs.


Subject(s)
Behavior, Animal , Perciformes/physiology , Seaweed , Animals , Conservation of Natural Resources , Coral Reefs , Cues , Feeding Behavior , Larva/physiology , Perciformes/metabolism
20.
Bull Environ Contam Toxicol ; 102(4): 457-461, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30863970

ABSTRACT

Microplastics (MP) are ubiquitous in the marine environment and have been shown to alter the behaviour of some species due to potential neurotoxic effect. However, very little is known on the effect of this stressor on behavioural responses of early and more vulnerable life stages. This study explores the effects of polystyrene MP (90 µm diameter) on the foraging activity of newly settled surgeonfish Acanthurus triostegus and on their survival facing predators. Exposure to a high concentration of 5 MP particles per mL (5 MP mL-1) for 3, 5 and 8 days did not alter their foraging activity nor their susceptibility to predation. This suggests that short-term exposures to reportedly high MP concentrations have negligible effects on the behaviour of newly settled A. triostegus. Nevertheless, responses to MP can be highly variable, and further research is needed to determine potential ecological effects of MP on reef fish populations during early-life stages.


Subject(s)
Coral Reefs , Feeding Behavior/drug effects , Perciformes/physiology , Plastics/toxicity , Polystyrenes/toxicity , Water Pollutants, Chemical/toxicity , Animals , Dose-Response Relationship, Drug , Larva/drug effects , Polynesia , Predatory Behavior/drug effects , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL