Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
RNA ; 29(10): 1481-1499, 2023 10.
Article in English | MEDLINE | ID: mdl-37369528

ABSTRACT

Noncoding 6S RNAs regulate transcription by binding to the active site of bacterial RNA polymerase holoenzymes. Processing and decay of 6S-1 and 6S-2 RNA were investigated in Bacillus subtilis by northern blot and RNA-seq analyses using different RNase knockout strains, as well as by in vitro processing assays. For both 6S RNA paralogs, we identified a key-but mechanistically different-role of RNase J1. RNase J1 catalyzes 5'-end maturation of 6S-1 RNA, yet relatively inefficient and possibly via the enzyme's "sliding endonuclease" activity. 5'-end maturation has no detectable effect on 6S-1 RNA function, but rather regulates its decay: The generated 5'-monophosphate on matured 6S-1 RNA propels endonucleolytic cleavage in its apical loop region. The major 6S-2 RNA degradation pathway is initiated by endonucleolytic cleavage in the 5'-central bubble to trigger 5'-to-3'-exoribonucleolytic degradation of the downstream fragment by RNase J1. The four 3'-exonucleases of B. subtilis-RNase R, PNPase, YhaM, and particularly RNase PH-are involved in 3'-end trimming of both 6S RNAs, degradation of 6S-1 RNA fragments, and decay of abortive transcripts (so-called product RNAs, ∼14 nt in length) synthesized on 6S-1 RNA during outgrowth from stationary phase. In the case of the growth-retarded RNase Y deletion strain, we were unable to infer a specific role of RNase Y in 6S RNA decay. Yet, a participation of RNase Y in 6S RNA decay still remains possible, as evidence for such a function may have been obscured by overlapping substrate specificities of RNase Y, RNase J1, and RNase J2.


Subject(s)
Bacillus subtilis , RNA, Bacterial , RNA, Bacterial/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , RNA, Untranslated/metabolism , Ribonuclease, Pancreatic/metabolism , RNA Stability/genetics
2.
PLoS Pathog ; 17(10): e1010002, 2021 10.
Article in English | MEDLINE | ID: mdl-34699554

ABSTRACT

Transcription of non-segmented negative sense (NNS) RNA viruses follows a stop-start mechanism and is thought to be initiated at the genome's very 3'-end. The synthesis of short abortive leader transcripts (leaderRNAs) has been linked to transcription initiation for some NNS viruses. Here, we identified the synthesis of abortive leaderRNAs (as well as trailer RNAs) that are specifically initiated opposite to (anti)genome nt 2; leaderRNAs are predominantly terminated in the region of nt ~ 60-80. LeaderRNA synthesis requires hexamer phasing in the 3'-leader promoter. We determined a steady-state NP mRNA:leaderRNA ratio of ~10 to 30-fold at 48 h after Ebola virus (EBOV) infection, and this ratio was higher (70 to 190-fold) for minigenome-transfected cells. LeaderRNA initiation at nt 2 and the range of termination sites were not affected by structure and length variation between promoter elements 1 and 2, nor the presence or absence of VP30. Synthesis of leaderRNA is suppressed in the presence of VP30 and termination of leaderRNA is not mediated by cryptic gene end (GE) signals in the 3'-leader promoter. We further found different genomic 3'-end nucleotide requirements for transcription versus replication, suggesting that promoter recognition is different in the replication and transcription mode of the EBOV polymerase. We further provide evidence arguing against a potential role of EBOV leaderRNAs as effector molecules in innate immunity. Taken together, our findings are consistent with a model according to which leaderRNAs are abortive replicative RNAs whose synthesis is not linked to transcription initiation. Rather, replication and transcription complexes are proposed to independently initiate RNA synthesis at separate sites in the 3'-leader promoter, i.e., at the second nucleotide of the genome 3'-end and at the more internally positioned transcription start site preceding the first gene, respectively, as reported for Vesicular stomatitis virus.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , Ebolavirus/genetics , RNA, Viral/genetics , Transcription, Genetic/genetics , Ebolavirus/enzymology
3.
Proc Natl Acad Sci U S A ; 117(16): 9042-9053, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32241891

ABSTRACT

RNA has been proposed as an important scaffolding factor in the nucleus, aiding protein complex assembly in the dense intracellular milieu. Architectural contributions of RNA to cytosolic signaling pathways, however, remain largely unknown. Here, we devised a multidimensional gradient approach, which systematically locates RNA components within cellular protein networks. Among a subset of noncoding RNAs (ncRNAs) cosedimenting with the ubiquitin-proteasome system, our approach unveiled ncRNA MaIL1 as a critical structural component of the Toll-like receptor 4 (TLR4) immune signal transduction pathway. RNA affinity antisense purification-mass spectrometry (RAP-MS) revealed MaIL1 binding to optineurin (OPTN), a ubiquitin-adapter platforming TBK1 kinase. MaIL1 binding stabilized OPTN, and consequently, loss of MaIL1 blunted OPTN aggregation, TBK1-dependent IRF3 phosphorylation, and type I interferon (IFN) gene transcription downstream of TLR4. MaIL1 expression was elevated in patients with active pulmonary infection and was highly correlated with IFN levels in bronchoalveolar lavage fluid. Our study uncovers MaIL1 as an integral RNA component of the TLR4-TRIF pathway and predicts further RNAs to be required for assembly and progression of cytosolic signaling networks in mammalian cells.


Subject(s)
Cell Cycle Proteins/metabolism , Interferon Type I/genetics , Membrane Transport Proteins/metabolism , RNA, Untranslated/metabolism , Respiratory Tract Infections/immunology , Toll-Like Receptor 4/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Adult , Aged , Blood Buffy Coat/cytology , Bronchoalveolar Lavage Fluid/immunology , Female , Gene Expression Regulation/immunology , Gene Knockdown Techniques , Humans , Interferon Regulatory Factor-3/metabolism , Interferon Type I/blood , Interferon Type I/immunology , Macrophages , Male , Middle Aged , Phosphorylation/genetics , Primary Cell Culture , Protein Serine-Threonine Kinases/metabolism , Protein Stability , RNA, Untranslated/blood , RNA, Untranslated/genetics , RNA-Seq , Respiratory Tract Infections/blood , Respiratory Tract Infections/microbiology , Signal Transduction/genetics , Signal Transduction/immunology , Young Adult
4.
Mol Microbiol ; 115(6): 1339-1356, 2021 06.
Article in English | MEDLINE | ID: mdl-33448498

ABSTRACT

The guanosine nucleotide-based second messengers ppGpp and pppGpp (collectively: (p)ppGpp) enable adaptation of microorganisms to environmental changes and stress conditions. In contrast, the closely related adenosine nucleotides (p)ppApp are involved in type VI secretion system (T6SS)-mediated killing during bacterial competition. Long RelA-SpoT Homolog (RSH) enzymes regulate synthesis and degradation of (p)ppGpp (and potentially also (p)ppApp) through their synthetase and hydrolase domains, respectively. Small alarmone hydrolases (SAH) that consist of only a hydrolase domain are found in a variety of bacterial species, including the opportunistic human pathogen Pseudomonas aeruginosa. Here, we present the structure and mechanism of P. aeruginosa SAH showing that the enzyme promiscuously hydrolyses (p)ppGpp and (p)ppApp in a strictly manganese-dependent manner. While being dispensable for P. aeruginosa growth or swimming, swarming, and twitching motilities, its enzymatic activity is required for biofilm formation. Moreover, (p)ppApp-degradation by SAH provides protection against the T6SS (p)ppApp synthetase effector Tas1, suggesting that SAH enzymes can also serve as defense proteins during interbacterial competition.


Subject(s)
Adenine Nucleotides/metabolism , Antibiosis/physiology , Guanosine Pentaphosphate/metabolism , N-Glycosyl Hydrolases/metabolism , Pseudomonas aeruginosa/metabolism , Type VI Secretion Systems/metabolism , Biofilms/growth & development , Gene Expression Regulation, Bacterial/genetics , Pseudomonas aeruginosa/growth & development
5.
J Biol Chem ; 295(23): 7816-7825, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32350112

ABSTRACT

Many plant-pathogenic bacteria and fungi deploy effector proteins that down-regulate plant defense responses and reprogram plant metabolism for colonization and survival in planta Kiwellin (KWL) proteins are a widespread family of plant-defense proteins that target these microbial effectors. The KWL1 protein from maize (corn, Zea mays) specifically inhibits the enzymatic activity of the secreted chorismate mutase Cmu1, a virulence-promoting effector of the smut fungus Ustilago maydis. In addition to KWL1, 19 additional KWL paralogs have been identified in maize. Here, we investigated the structure and mechanism of the closest KWL1 homolog, KWL1-b (ZEAMA_GRMZM2G305329). We solved the Cmu1-KWL1-b complex to 2.75 Å resolution, revealing a highly symmetric Cmu1-KWL1-b heterotetramer in which each KWL1-b monomer interacts with a monomer of the Cmu1 homodimer. The structure also revealed that the overall architecture of the heterotetramer is highly similar to that of the previously reported Cmu1-KWL1 complex. We found that upon U. maydis infection of Z. mays, KWL1-b is expressed at significantly lower levels than KWL1 and exhibits differential tissue-specific expression patterns. We also show that KWL1-b inhibits Cmu1 activity similarly to KWL1. We conclude that KWL1 and KWL1-b are part of a redundant defense system that tissue-specifically targets Cmu1. This notion was supported by the observation that both KWL proteins are carbohydrate-binding proteins with distinct and likely tissue-related specificities. Moreover, binding by Cmu1 modulated the carbohydrate-binding properties of both KWLs. These findings indicate that KWL proteins are part of a spatiotemporally coordinated, plant-wide defense response comprising proteins with overlapping activities.


Subject(s)
Plant Proteins/metabolism , Zea mays/chemistry , Models, Molecular , Plant Diseases/microbiology , Plant Proteins/chemistry , Plant Proteins/genetics , Protein Conformation , Sequence Analysis, RNA , Ustilago/isolation & purification , Zea mays/metabolism
6.
RNA Biol ; 18(1): 79-92, 2021 01.
Article in English | MEDLINE | ID: mdl-32862759

ABSTRACT

Bacterial 6S RNA regulates transcription via binding to the active site of RNA polymerase holoenzymes. 6S RNA has been identified in the majority of bacteria, in most cases encoded by a single gene. Firmicutes including Bacillus subtilis encode two 6S RNA paralogs, 6S-1 and 6S-2 RNA. Hypothesizing that the regulatory role of 6S RNAs may be particularly important under natural, constantly changing environmental conditions, we constructed 6S RNA deletion mutants of the undomesticated B. subtilis wild-type strain NCIB 3610. We observed a strong phenotype for the ∆6S-2 RNA strain that showed increased biofilm formation on solid media and the ability to form surface-attached biofilms in liquid culture. This phenotype remained undetected in derived laboratory strains (168, PY79) that are defective in biofilm formation. Quantitative RT-PCR data revealed transcriptional upregulation of biofilm marker genes such as tasA, epsA and bslA in the ∆6S-2 RNA strain, particularly during transition from exponential to stationary growth phase. Salt stress, which blocks sporulation at a very early stage, was found to override the derepressed biofilm phenotype of the ∆6S-2 RNA strain. Furthermore, the ∆6S-2 RNA strain showed retarded swarming activity and earlier spore formation. Finally, the ∆6S-1&2 RNA double deletion strain showed a prolonged lag phase of growth under oxidative, high salt and alkaline stress conditions, suggesting that the interplay of both 6S RNAs in B. subtilis optimizes and fine-tunes transcriptomic adaptations, thereby contributing to the fitness of B. subtilis under the unsteady and temporarily harsh conditions encountered in natural habitats.


Subject(s)
Bacillus subtilis/growth & development , Bacillus subtilis/genetics , Biofilms/growth & development , Gene Deletion , Phenotype , RNA, Bacterial/genetics , RNA, Untranslated/genetics , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Genetic Association Studies , Genotype , RNA, Messenger , Spores, Bacterial
7.
BMC Genomics ; 21(1): 797, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33198623

ABSTRACT

BACKGROUND: The archaeal exosome is an exoribonucleolytic multiprotein complex, which degrades single-stranded RNA in 3' to 5' direction phosphorolytically. In a reverse reaction, it can add A-rich tails to the 3'-end of RNA. The catalytic center of the exosome is in the aRrp41 subunit of its hexameric core. Its RNA-binding subunits aRrp4 and aDnaG confer poly(A) preference to the complex. The archaeal exosome was intensely characterized in vitro, but still little is known about its interaction with natural substrates in the cell, particularly because analysis of the transcriptome-wide interaction of an exoribonuclease with RNA is challenging. RESULTS: To determine binding sites of the exosome to RNA on a global scale, we performed individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) analysis with antibodies directed against aRrp4 and aRrp41 of the chrenarchaeon Sulfolobus solfataricus. A relatively high proportion (17-19%) of the obtained cDNA reads could not be mapped to the genome. Instead, they corresponded to adenine-rich RNA tails, which are post-transcriptionally synthesized by the exosome, and to circular RNAs (circRNAs). We identified novel circRNAs corresponding to 5' parts of two homologous, transposase-related mRNAs. To detect preferred substrates of the exosome, the iCLIP reads were compared to the transcript abundance using RNA-Seq data. Among the strongly enriched exosome substrates were RNAs antisense to tRNAs, overlapping 3'-UTRs and RNAs containing poly(A) stretches. The majority of the read counts and crosslink sites mapped in mRNAs. Furthermore, unexpected crosslink sites clustering at 5'-ends of RNAs was detected. CONCLUSIONS: In this study, RNA targets of an exoribonuclease were analyzed by iCLIP. The data documents the role of the archaeal exosome as an exoribonuclease and RNA-tailing enzyme interacting with all RNA classes, and underlines its role in mRNA turnover, which is important for adaptation of prokaryotic cells to changing environmental conditions. The clustering of crosslink sites near 5'-ends of genes suggests simultaneous binding of both RNA ends by the S. solfataricus exosome. This may serve to prevent translation of mRNAs dedicated to degradation in 3'-5' direction.


Subject(s)
Archaeal Proteins , Exosomes , Sulfolobus solfataricus , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Exosome Multienzyme Ribonuclease Complex/genetics , Exosome Multienzyme Ribonuclease Complex/metabolism , Exosomes/genetics , Exosomes/metabolism , RNA/genetics , RNA Stability , RNA, Archaeal/genetics , Sulfolobus solfataricus/genetics , Sulfolobus solfataricus/metabolism
8.
Proc Natl Acad Sci U S A ; 114(42): 11121-11126, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29073018

ABSTRACT

RNase P is an essential tRNA-processing enzyme in all domains of life. We identified an unknown type of protein-only RNase P in the hyperthermophilic bacterium Aquifex aeolicus: Without an RNA subunit and the smallest of its kind, the 23-kDa polypeptide comprises a metallonuclease domain only. The protein has RNase P activity in vitro and rescued the growth of Escherichia coli and Saccharomyces cerevisiae strains with inactivations of their more complex and larger endogenous ribonucleoprotein RNase P. Homologs of Aquifex RNase P (HARP) were identified in many Archaea and some Bacteria, of which all Archaea and most Bacteria also encode an RNA-based RNase P; activity of both RNase P forms from the same bacterium or archaeon could be verified in two selected cases. Bioinformatic analyses suggest that A. aeolicus and related Aquificaceae likely acquired HARP by horizontal gene transfer from an archaeon.


Subject(s)
Archaea/enzymology , Bacteria/enzymology , Ribonuclease P/metabolism , Archaea/genetics , Bacteria/genetics , Gene Transfer, Horizontal , Phylogeny , Ribonuclease P/genetics , Ribonuclease P/isolation & purification
9.
BMC Genomics ; 20(1): 88, 2019 Jan 25.
Article in English | MEDLINE | ID: mdl-30683059

ABSTRACT

BACKGROUND: The honeybee (Apis mellifera) represents a model organism for social insects displaying behavioral plasticity. This is reflected by an age-dependent task allocation. The most protruding tasks are performed by young nurse bees and older forager bees that take care of the brood inside the hive and collect food from outside the hive, respectively. The molecular mechanism leading to the transition from nurse bees to foragers is currently under intense research. Circular RNAs, however, were not considered in this context so far. As of today, this group of non-coding RNAs was only known to exist in two other insects, Drosophila melanogaster and Bombyx mori. Here we complement the state of circular RNA research with the first characterization in a social insect. RESULTS: We identified numerous circular RNAs in the brain of A. mellifera nurse bees and forager bees using RNA-Seq with exonuclease enrichment. Presence and circularity were verified for the most abundant representatives. Back-splicing in honeybee occurs further towards the end of transcripts and in transcripts with a high number of exons. The occurrence of circularized exons is correlated with length and CpG-content of their flanking introns. The latter coincides with increased DNA-methylation in the respective loci. For two prominent circular RNAs the abundance in worker bee brains was quantified in TaqMan assays. In line with previous findings of circular RNAs in Drosophila, circAmrsmep2 accumulates with increasing age of the insect. In contrast, the levels of circAmrad appear age-independent and correlate with the bee's task. Its parental gene is related to amnesia-resistant memory. CONCLUSIONS: We provide the first characterization of circRNAs in a social insect. Many of the RNAs identified here show homologies to circular RNAs found in Drosophila and Bombyx, indicating that circular RNAs are a common feature among insects. We find that exon circularization is correlated to DNA-methylation at the flanking introns. The levels of circAmrad suggest a task-dependent abundance that is decoupled from age. Moreover, a GO term analysis shows an enrichment of task-related functions. We conclude that circular RNAs could be relevant for task allocation in honeybee and should be investigated further in this context.


Subject(s)
Bees/genetics , RNA/chemistry , Animals , Base Sequence , Bees/metabolism , Bombyx/genetics , Brain/metabolism , DNA Methylation , Drosophila/genetics , Exons , Introns , MicroRNAs/metabolism , RNA/metabolism , RNA, Circular
10.
Nucleic Acids Res ; 45(12): 7441-7454, 2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28499021

ABSTRACT

The RNase P family comprises structurally diverse endoribonucleases ranging from complex ribonucleoproteins to single polypeptides. We show that the organellar (AtPRORP1) and the two nuclear (AtPRORP2,3) single-polypeptide RNase P isoenzymes from Arabidopsis thaliana confer viability to Escherichia coli cells with a lethal knockdown of its endogenous RNA-based RNase P. RNA-Seq revealed that AtPRORP1, compared with bacterial RNase P or AtPRORP3, cleaves several precursor tRNAs (pre-tRNAs) aberrantly in E. coli. Aberrant cleavage by AtPRORP1 was mainly observed for pre-tRNAs that can form short acceptor-stem extensions involving G:C base pairs, including tRNAAsp(GUC), tRNASer(CGA) and tRNAHis. However, both AtPRORP1 and 3 were defective in processing of E. coli pre-tRNASec carrying an acceptor stem expanded by three G:C base pairs. Instead, pre-tRNASec was degraded, suggesting that tRNASec is dispensable for E. coli under laboratory conditions. AtPRORP1, 2 and 3 are also essentially unable to process the primary transcript of 4.5S RNA, a hairpin-like non-tRNA substrate processed by E. coli RNase P, indicating that PRORP enzymes have a narrower, more tRNA-centric substrate spectrum than bacterial RNA-based RNase P enzymes. The cells' viability also suggests that the essential function of the signal recognition particle can be maintained with a 5΄-extended 4.5S RNA.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , RNA Precursors/genetics , Ribonuclease P/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Base Pairing , Base Sequence , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Genetic Complementation Test , Microbial Viability , Nucleic Acid Conformation , RNA Precursors/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Transfer, Asp/genetics , RNA, Transfer, Asp/metabolism , RNA, Transfer, His/genetics , RNA, Transfer, His/metabolism , RNA, Transfer, Ser/genetics , RNA, Transfer, Ser/metabolism , Ribonuclease P/deficiency , Ribonuclease P/metabolism , Transgenes
11.
RNA ; 22(4): 614-22, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26873600

ABSTRACT

The global transcriptional regulator 6S RNA is abundant in a broad range of bacteria. The RNA competes with DNA promoters for binding to the housekeeping RNA polymerase (RNAP) holoenzyme. When bound to RNAP, 6S RNA serves as a transcription template for RNAP in an RNA-dependent RNA polymerization reaction. The resulting short RNA transcripts (so-called product RNAs = pRNAs) can induce a stable structural rearrangement of 6S RNA when reaching a certain length. This rearrangement leads to the release of RNAP and thus the recovery of transcription at DNA promoters. While most bacteria express a single 6S RNA, some harbor a second 6S RNA homolog (termed 6S-2 RNA in Bacillus subtilis). Bacillus subtilis 6S-2 RNA was recently shown to exhibit essentially all hallmark features of a bona fide 6S RNA in vitro, but evidence for the synthesis of 6S-2 RNA-derived pRNAs in vivo has been lacking so far. This raised the question of whether the block of RNAP by 6S-2 RNA might be lifted by a mechanism other than pRNA synthesis. However, here we demonstrate that 6S-2 RNA is able to serve as a template for pRNA synthesis in vivo. We verify this finding by using three independent approaches including a novel primer extension assay. Thus, we demonstrate the first example of an organism that expresses two distinct 6S RNAs that both exhibit all mechanistic features defined for this type of regulatory RNA.


Subject(s)
Bacillus subtilis/genetics , RNA, Bacterial/genetics , RNA, Messenger/genetics , RNA, Untranslated/genetics , Base Sequence , Gene Expression Regulation, Bacterial , Molecular Sequence Data , Sequence Analysis, RNA
12.
Proc Natl Acad Sci U S A ; 112(7): 2058-63, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25646426

ABSTRACT

Phylogenomics heavily relies on well-curated sequence data sets that comprise, for each gene, exclusively 1:1 orthologos. Paralogs are treated as a dangerous nuisance that has to be detected and removed. We show here that this severe restriction of the data sets is not necessary. Building upon recent advances in mathematical phylogenetics, we demonstrate that gene duplications convey meaningful phylogenetic information and allow the inference of plausible phylogenetic trees, provided orthologs and paralogs can be distinguished with a degree of certainty. Starting from tree-free estimates of orthology, cograph editing can sufficiently reduce the noise to find correct event-annotated gene trees. The information of gene trees can then directly be translated into constraints on the species trees. Although the resolution is very poor for individual gene families, we show that genome-wide data sets are sufficient to generate fully resolved phylogenetic trees, even in the presence of horizontal gene transfer.


Subject(s)
Genomics , Phylogeny
13.
RNA Biol ; 14(11): 1627-1637, 2017 11 02.
Article in English | MEDLINE | ID: mdl-28692405

ABSTRACT

The function of 6S RNA, a global regulator of transcription, was studied in the photosynthetic α-proteobacterium Rhodobacter sphaeroides. The cellular levels of R. sphaeroides 6S RNA peak toward the transition to stationary phase and strongly decrease during extended stationary phase. The synthesis of so-called product RNA transcripts (mainly 12-16-mers) on 6S RNA as template by RNA polymerase was found to be highest in late exponential phase. Product RNA ≥ 13-mers are expected to trigger the dissociation of 6S RNA:RNA polymerase complexes. A 6S RNA deletion in R. sphaeroides had no impact on growth under various metabolic and oxidative stress conditions (with the possible exception of tert-butyl hydroperoxide stress). However, the 6S RNA knockout resulted in a robust growth defect under high salt stress (0.25 M NaCl). Remarkably, the sspA gene encoding the putative salt stress-induced membrane protein SspA and located immediately downstream of the 6S RNA (ssrS) gene on the antisense strand was expressed at elevated levels in the ΔssrS strain when grown in the presence of 250 mM NaCl.


Subject(s)
Adhesins, Bacterial/genetics , Gene Expression Regulation, Bacterial , RNA, Bacterial/genetics , RNA, Messenger/genetics , RNA, Untranslated/genetics , Rhodobacter sphaeroides/genetics , Adhesins, Bacterial/metabolism , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Gene Deletion , Phenotype , RNA, Bacterial/metabolism , RNA, Messenger/metabolism , RNA, Untranslated/metabolism , Rhodobacter sphaeroides/drug effects , Rhodobacter sphaeroides/growth & development , Rhodobacter sphaeroides/metabolism , Sodium Chloride/pharmacology , Stress, Physiological , Transcription, Genetic
14.
Mol Biol Evol ; 32(12): 3186-93, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26341299

ABSTRACT

RNase P is the endonuclease that removes 5' leader sequences from tRNA precursors. In Eukarya, separate RNase P activities exist in the nucleus and mitochondria/plastids. Although all RNase P enzymes catalyze the same reaction, the different architectures found in Eukarya range from ribonucleoprotein (RNP) enzymes with a catalytic RNA and up to 10 protein subunits to single-subunit protein-only RNase P (PRORP) enzymes. Here, analysis of the phylogenetic distribution of RNP and PRORP enzymes in Eukarya revealed 1) a wealth of novel P RNAs in previously unexplored phylogenetic branches and 2) that PRORP enzymes are more widespread than previously appreciated, found in four of the five eukaryal supergroups, in the nuclei and/or organelles. Intriguingly, the occurrence of RNP RNase P and PRORP seems mutually exclusive in genetic compartments of modern Eukarya. Our comparative analysis provides a global picture of the evolution and diversification of RNase P throughout Eukarya.


Subject(s)
Eukaryota/metabolism , Ribonuclease P/metabolism , Ribonucleoproteins/metabolism , Amino Acid Sequence , Base Sequence , Conserved Sequence , Eukaryota/enzymology , Eukaryota/genetics , Molecular Sequence Data , Phylogeny , Protein Structure, Secondary , RNA/genetics , RNA/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , RNA, Catalytic/genetics , RNA, Catalytic/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Ribonuclease P/genetics , Ribonucleoproteins/genetics , Sequence Alignment
15.
J Gen Virol ; 97(9): 2135-2148, 2016 09.
Article in English | MEDLINE | ID: mdl-27405649

ABSTRACT

Reassortment of their segmented genomes allows influenza A viruses (IAV) to gain new characteristics, which potentially enable them to cross the species barrier and infect new hosts. Improved replication was observed for reassortants of the strictly avian IAV A/FPV/Rostock/34 (FPV, H7N1) containing the NS segment from A/Goose/Guangdong/1/1996 (GD, H5N1), but not for reassortants containing the NS segment of A/Mallard/NL/12/2000 (MA, H7N3). The NS1 of GD and MA differ only in 8 aa positions. Here, we show that efficient replication of FPV-NSMA-derived mutants was linked to the presence of a single substitution (D74N) and more prominently to a triple substitution (P3S+R41K+D74N) in the NS1MA protein. The substitution(s) led to (i) increased virus titres, (ii) larger plaque sizes and (iii) increased levels and faster kinetics of viral mRNA and protein accumulation in mammalian cells. Interestingly, the NS1 substitutions did not affect viral growth characteristics in avian cells. Furthermore, we show that an FPV mutant with N74 in the NS1 (already possessing S3+K41) is able to replicate and cause disease in mice, demonstrating a key role of NS1 in the adaptation of avian IAV to mammalian hosts. Our data suggest that (i) adaptation to mammalian hosts does not necessarily compromise replication in the natural (avian) host and (ii) very few genetic changes may pave the way for zoonotic transmission. The study reinforces the need for close surveillance and characterization of circulating avian IAV to identify genetic signatures that indicate a potential risk for efficient transmission of avian strains to mammalian hosts.


Subject(s)
Influenza A virus/physiology , Mutant Proteins/genetics , Mutation, Missense , Viral Nonstructural Proteins/genetics , Virus Replication , Amino Acid Substitution , Animals , Cell Line , Disease Models, Animal , Humans , Influenza A virus/genetics , Mice, Inbred C57BL , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology
16.
RNA ; 20(3): 348-59, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24464747

ABSTRACT

Bacterial 6S RNAs bind to the housekeeping RNA polymerase (σ(A)-RNAP in Bacillus subtilis) to regulate transcription in a growth phase-dependent manner. B. subtilis expresses two 6S RNAs, 6S-1 and 6S-2 RNA, with different expression profiles. We show in vitro that 6S-2 RNA shares hallmark features with 6S-1 RNA: Both (1) are able to serve as templates for pRNA transcription; (2) bind with comparable affinity to σ(A)-RNAP; (3) are able to specifically inhibit transcription from DNA promoters, and (4) can form stable 6S RNA:pRNA hybrid structures that (5) abolish binding to σ(A)-RNAP. However, pRNAs of equal length dissociate faster from 6S-2 than 6S-1 RNA, owing to the higher A,U-content of 6S-2 pRNAs. This could have two mechanistic implications: (1) Short 6S-2 pRNAs (<10 nt) dissociate faster instead of being elongated to longer pRNAs, which could make it more difficult for 6S-2 RNA-stalled RNAP molecules to escape from the sequestration; and (2) relative to 6S-1 RNA, 6S-2 pRNAs of equal length will dissociate more rapidly from 6S-2 RNA after RNAP release, which could affect pRNA turnover or the kinetics of 6S-2 RNA binding to a new RNAP molecule. As 6S-2 pRNAs have not yet been detected in vivo, we considered that cellular RNAP release from 6S-2 RNA might occur via 6S-1 RNA displacing 6S-2 RNA from the enzyme, either in the absence of pRNA transcription or upon synthesis of very short 6S-2 pRNAs (∼ 5-mers, which would escape detection by deep sequencing). However, binding competition experiments argued against these possibilities.


Subject(s)
Bacillus subtilis/genetics , RNA, Bacterial/genetics , Transcription, Genetic , Bacillus subtilis/metabolism , DNA-Directed RNA Polymerases/metabolism , Electrophoretic Mobility Shift Assay , Nucleic Acid Conformation , Polymerase Chain Reaction , Promoter Regions, Genetic/genetics , RNA, Bacterial/chemistry , RNA, Bacterial/metabolism , RNA, Untranslated , Viral Proteins/metabolism
17.
BMC Genomics ; 15: 522, 2014 Jun 25.
Article in English | MEDLINE | ID: mdl-24965762

ABSTRACT

BACKGROUND: The Aquificales are a diverse group of thermophilic bacteria that thrive in terrestrial and marine hydrothermal environments. They can be divided into the families Aquificaceae, Desulfurobacteriaceae and Hydrogenothermaceae. Although eleven fully sequenced and assembled genomes are available, only little is known about this taxonomic order in terms of RNA metabolism. RESULTS: In this work, we compare the available genomes, extend their protein annotation, identify regulatory sequences, annotate non-coding RNAs (ncRNAs) of known function, predict novel ncRNA candidates, show idiosyncrasies of the genetic decoding machinery, present two different types of transfer-messenger RNAs and variations of the CRISPR systems. Furthermore, we performed a phylogenetic analysis of the Aquificales based on entire genome sequences, and extended this by a classification among all bacteria using 16S rRNA sequences and a set of orthologous proteins.Combining several in silico features (e.g. conserved and stable secondary structures, GC-content, comparison based on multiple genome alignments) with an in vivo dRNA-seq transcriptome analysis of Aquifex aeolicus, we predict roughly 100 novel ncRNA candidates in this bacterium. CONCLUSIONS: We have here re-analyzed the Aquificales, a group of bacteria thriving in extreme environments, sharing the feature of a small, compact genome with a reduced number of protein and ncRNA genes. We present several classical ncRNAs and riboswitch candidates. By combining in silico analysis with dRNA-seq data of A. aeolicus we predict nearly 100 novel ncRNA candidates.


Subject(s)
Genome, Bacterial , Gram-Positive Bacteria/genetics , RNA, Untranslated/genetics , Base Sequence , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Databases, Genetic , Digoxigenin/chemistry , Gram-Positive Bacteria/classification , Nucleic Acid Conformation , Oligonucleotides/chemistry , Oligonucleotides/metabolism , Phylogeny , RNA, Bacterial/chemistry , RNA, Bacterial/metabolism , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , RNA, Transfer/metabolism , RNA, Untranslated/chemistry , RNA, Untranslated/metabolism , Ribonuclease P/metabolism , Sequence Analysis, RNA
18.
Biodes Res ; 6: 0025, 2024.
Article in English | MEDLINE | ID: mdl-38384496

ABSTRACT

The construction of complex synthetic gene circuits with predetermined and reliable output depends on orthogonal regulatory parts that do not inadvertently interfere with the host machinery or with other circuit components. Previously, extracytoplasmic function sigma factors (ECFs), a diverse group of alternative sigma factors with distinct promoter specificities, were shown to have great potential as context-independent regulators, but so far, they have only been used in a few model species. Here, we show that the alphaproteobacterium Sinorhizobium meliloti, which has been proposed as a plant-associated bacterial chassis for synthetic biology, has a similar phylogenetic ECF acceptance range as the gammaproteobacterium Escherichia coli. A common set of orthogonal ECF-based regulators that can be used in both bacterial hosts was identified and used to create 2-step delay circuits. The genetic circuits were implemented in single copy in E. coli by chromosomal integration using an established method that utilizes bacteriophage integrases. In S. meliloti, we demonstrated the usability of single-copy pABC plasmids as equivalent carriers of the synthetic circuits. The circuits were either implemented on a single pABC or modularly distributed on 3 such plasmids. In addition, we provide a toolbox containing pABC plasmids compatible with the Golden Gate (MoClo) cloning standard and a library of basic parts that enable the construction of ECF-based circuits in S. meliloti and in E. coli. This work contributes to building a context-independent and species-overarching ECF-based toolbox for synthetic biology applications.

19.
Nat Commun ; 15(1): 1229, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336876

ABSTRACT

Endogenous retroviruses (ERVs) are an integral part of the mammalian genome. The role of immune control of ERVs in general is poorly defined as is their function as anti-cancer immune targets or drivers of autoimmune disease. Here, we generate mouse-strains where Moloney-Murine Leukemia Virus tagged with GFP (ERV-GFP) infected the mouse germline. This enables us to analyze the role of genetic, epigenetic and cell intrinsic restriction factors in ERV activation and control. We identify an autoreactive B cell response against the neo-self/ERV antigen GFP as a key mechanism of ERV control. Hallmarks of this response are spontaneous ERV-GFP+ germinal center formation, elevated serum IFN-γ levels and a dependency on Age-associated B cells (ABCs) a subclass of T-bet+ memory B cells. Impairment of IgM B cell receptor-signal in nucleic-acid sensing TLR-deficient mice contributes to defective ERV control. Although ERVs are a part of the genome they break immune tolerance, induce immune surveillance against ERV-derived self-antigens and shape the host immune response.


Subject(s)
B-Lymphocytes , Endogenous Retroviruses , Animals , Mice , Autoimmune Diseases/genetics , B-Lymphocytes/immunology , Endogenous Retroviruses/genetics , Mammals/genetics
20.
Front Bioinform ; 3: 1322477, 2023.
Article in English | MEDLINE | ID: mdl-38152702

ABSTRACT

Proteinortho is a widely used tool to predict (co)-orthologous groups of genes for any set of species. It finds application in comparative and functional genomics, phylogenomics, and evolutionary reconstructions. With a rapidly increasing number of available genomes, the demand for large-scale predictions is also growing. In this contribution, we evaluate and implement major algorithmic improvements that significantly enhance the speed of the analysis without reducing precision. Graph-based detection of (co-)orthologs is typically based on a reciprocal best alignment heuristic that requires an all vs. all comparison of proteins from all species under study. The initial identification of similar proteins is accelerated by introducing an alternative search tool along with a revised search strategy-the pseudo-reciprocal best alignment heuristic-that reduces the number of required sequence comparisons by one-half. The clustering algorithm was reworked to efficiently decompose very large clusters and accelerate processing. Proteinortho6 reduces the overall processing time by an order of magnitude compared to its predecessor while maintaining its small memory footprint and good predictive quality.

SELECTION OF CITATIONS
SEARCH DETAIL