Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
Add more filters

Publication year range
1.
Cell ; 186(12): 2672-2689.e25, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37295404

ABSTRACT

Alphaviruses are RNA viruses that represent emerging public health threats. To identify protective antibodies, we immunized macaques with a mixture of western, eastern, and Venezuelan equine encephalitis virus-like particles (VLPs), a regimen that protects against aerosol challenge with all three viruses. Single- and triple-virus-specific antibodies were isolated, and we identified 21 unique binding groups. Cryo-EM structures revealed that broad VLP binding inversely correlated with sequence and conformational variability. One triple-specific antibody, SKT05, bound proximal to the fusion peptide and neutralized all three Env-pseudotyped encephalitic alphaviruses by using different symmetry elements for recognition across VLPs. Neutralization in other assays (e.g., chimeric Sindbis virus) yielded variable results. SKT05 bound backbone atoms of sequence-diverse residues, enabling broad recognition despite sequence variability; accordingly, SKT05 protected mice against Venezuelan equine encephalitis virus, chikungunya virus, and Ross River virus challenges. Thus, a single vaccine-elicited antibody can protect in vivo against a broad range of alphaviruses.


Subject(s)
Alphavirus , Encephalitis Virus, Venezuelan Equine , Viral Vaccines , Animals , Mice , Encephalitis Virus, Venezuelan Equine/genetics , Antibodies, Viral , Macaca
2.
Nat Immunol ; 20(3): 362-372, 2019 03.
Article in English | MEDLINE | ID: mdl-30742080

ABSTRACT

The present vaccine against influenza virus has the inevitable risk of antigenic discordance between the vaccine and the circulating strains, which diminishes vaccine efficacy. This necessitates new approaches that provide broader protection against influenza. Here we designed a vaccine using the hypervariable receptor-binding domain (RBD) of viral hemagglutinin displayed on a nanoparticle (np) able to elicit antibody responses that neutralize H1N1 influenza viruses spanning over 90 years. Co-display of RBDs from multiple strains across time, so that the adjacent RBDs are heterotypic, provides an avidity advantage to cross-reactive B cells. Immunization with the mosaic RBD-np elicited broader antibody responses than those induced by an admixture of nanoparticles encompassing the same set of RBDs as separate homotypic arrays. Furthermore, we identified a broadly neutralizing monoclonal antibody in a mouse immunized with mosaic RBD-np. The mosaic antigen array signifies a unique approach that subverts monotypic immunodominance and allows otherwise subdominant cross-reactive B cell responses to emerge.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Nanoparticles/chemistry , Orthomyxoviridae Infections/immunology , Animals , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/virology , Cross Reactions/drug effects , Cross Reactions/immunology , Female , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Immunization , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H1N1 Subtype/physiology , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza, Human/prevention & control , Influenza, Human/virology , Mice, Inbred BALB C , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology
4.
Cell ; 166(3): 609-623, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27453470

ABSTRACT

Antibodies capable of neutralizing divergent influenza A viruses could form the basis of a universal vaccine. Here, from subjects enrolled in an H5N1 DNA/MIV-prime-boost influenza vaccine trial, we sorted hemagglutinin cross-reactive memory B cells and identified three antibody classes, each capable of neutralizing diverse subtypes of group 1 and group 2 influenza A viruses. Co-crystal structures with hemagglutinin revealed that each class utilized characteristic germline genes and convergent sequence motifs to recognize overlapping epitopes in the hemagglutinin stem. All six analyzed subjects had sequences from at least one multidonor class, and-in half the subjects-multidonor-class sequences were recovered from >40% of cross-reactive B cells. By contrast, these multidonor-class sequences were rare in published antibody datasets. Vaccination with a divergent hemagglutinin can thus increase the frequency of B cells encoding broad influenza A-neutralizing antibodies. We propose the sequence signature-quantified prevalence of these B cells as a metric to guide universal influenza A immunization strategies.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Influenza A virus/immunology , Influenza Vaccines/immunology , Adult , Amino Acid Sequence , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , B-Lymphocytes/immunology , Epitopes, B-Lymphocyte , Female , Gene Rearrangement, B-Lymphocyte, Heavy Chain , Humans , Immunologic Memory , Influenza A Virus, H5N1 Subtype/immunology , Male , Middle Aged , Models, Molecular , Protein Structure, Tertiary , Structure-Activity Relationship , Young Adult
5.
Immunity ; 51(2): 398-410.e5, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31350180

ABSTRACT

Vaccine-induced memory B cell responses to evolving viruses like influenza A involve activation of pre-existing immunity and generation of new responses. To define the contribution of these two types of responses, we analyzed the response to H7N9 vaccination in H7N9-naive adults. We performed comprehensive comparisons at the single-cell level of the kinetics, Ig repertoire, and activation phenotype of established pre-existing memory B cells recognizing conserved epitopes and the newly generated memory B cells directed toward H7 strain-specific epitopes. The recall response to conserved epitopes on H7 HA involved a transient expansion of memory B cells with little observed adaptation. However, the B cell response to newly encountered epitopes was phenotypically distinct and generated a sustained memory population that evolved and affinity matured months after vaccination. These findings establish clear differences between newly generated and pre-existing memory B cells, highlighting the challenges in achieving long-lasting, broad protection against an ever-evolving virus.


Subject(s)
B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , Influenza A Virus, H7N9 Subtype/physiology , Influenza Vaccines/immunology , Influenza, Human/immunology , Adult , Antibodies, Viral/metabolism , Antibody Formation , Cells, Cultured , Epitopes/immunology , Female , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Immunologic Memory , Lymphocyte Activation , Male , Middle Aged , Phenotype , Receptors, Antigen, B-Cell/genetics , Single-Cell Analysis , Vaccination , Young Adult
6.
N Engl J Med ; 387(5): 397-407, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35921449

ABSTRACT

BACKGROUND: New approaches for the prevention and elimination of malaria, a leading cause of illness and death among infants and young children globally, are needed. METHODS: We conducted a phase 1 clinical trial to assess the safety and pharmacokinetics of L9LS, a next-generation antimalarial monoclonal antibody, and its protective efficacy against controlled human malaria infection in healthy adults who had never had malaria or received a vaccine for malaria. The participants received L9LS either intravenously or subcutaneously at a dose of 1 mg, 5 mg, or 20 mg per kilogram of body weight. Within 2 to 6 weeks after the administration of L9LS, both the participants who received L9LS and the control participants underwent controlled human malaria infection in which they were exposed to mosquitoes carrying Plasmodium falciparum (3D7 strain). RESULTS: No safety concerns were identified. L9LS had an estimated half-life of 56 days, and it had dose linearity, with the highest mean (±SD) maximum serum concentration (Cmax) of 914.2±146.5 µg per milliliter observed in participants who had received 20 mg per kilogram intravenously and the lowest mean Cmax of 41.5±4.7 µg per milliliter observed in those who had received 1 mg per kilogram intravenously; the mean Cmax was 164.8±31.1 in the participants who had received 5 mg per kilogram intravenously and 68.9±22.3 in those who had received 5 mg per kilogram subcutaneously. A total of 17 L9LS recipients and 6 control participants underwent controlled human malaria infection. Of the 17 participants who received a single dose of L9LS, 15 (88%) were protected after controlled human malaria infection. Parasitemia did not develop in any of the participants who received 5 or 20 mg per kilogram of intravenous L9LS. Parasitemia developed in 1 of 5 participants who received 1 mg per kilogram intravenously, 1 of 5 participants who received 5 mg per kilogram subcutaneously, and all 6 control participants through 21 days after the controlled human malaria infection. Protection conferred by L9LS was seen at serum concentrations as low as 9.2 µg per milliliter. CONCLUSIONS: In this small trial, L9LS administered intravenously or subcutaneously protected recipients against malaria after controlled infection, without evident safety concerns. (Funded by the National Institute of Allergy and Infectious Diseases; VRC 614 ClinicalTrials.gov number, NCT05019729.).


Subject(s)
Antibodies, Monoclonal , Malaria , Administration, Cutaneous , Administration, Intravenous , Adult , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/pharmacokinetics , Child , Child, Preschool , Humans , Malaria/prevention & control , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Parasitemia/parasitology , Plasmodium falciparum
7.
Lancet ; 401(10373): 294-302, 2023 01 28.
Article in English | MEDLINE | ID: mdl-36709074

ABSTRACT

BACKGROUND: WHO has identified Marburg virus as an emerging virus requiring urgent vaccine research and development, particularly due to its recent emergence in Ghana. We report results from a first-in-human clinical trial evaluating a replication-deficient recombinant chimpanzee adenovirus type 3 (cAd3)-vectored vaccine encoding a wild-type Marburg virus Angola glycoprotein (cAd3-Marburg) in healthy adults. METHODS: We did a first-in-human, phase 1, open-label, dose-escalation trial of the cAd3-Marburg vaccine at the Walter Reed Army Institute of Research Clinical Trials Center in the USA. Healthy adults aged 18-50 years were assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 or 1 × 1011 particle units (pu). Primary safety endpoints included reactogenicity assessed for the first 7 days and all adverse events assessed for 28 days after vaccination. Secondary immunogenicity endpoints were assessment of binding antibody responses and T-cell responses against the Marburg virus glycoprotein insert, and assessment of neutralising antibody responses against the cAd3 vector 4 weeks after vaccination. This study is registered with ClinicalTrials.gov, NCT03475056. FINDINGS: Between Oct 9, 2018, and Jan 31, 2019, 40 healthy adults were enrolled and assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 pu (n=20) or 1 × 1011 pu (n=20). The cAd3-Marburg vaccine was safe, well tolerated, and immunogenic. All enrolled participants received cAd3-Marburg vaccine, with 37 (93%) participants completing follow-up visits; two (5%) participants moved from the area and one (3%) was lost to follow-up. No serious adverse events related to vaccination occurred. Mild to moderate reactogenicity was observed after vaccination, with symptoms of injection site pain and tenderness (27 [68%] of 40 participants), malaise (18 [45%] of 40 participants), headache (17 [43%] of 40 participants), and myalgia (14 [35%] of 40 participants) most commonly reported. Glycoprotein-specific antibodies were induced in 38 (95%) of 40 participants 4 weeks after vaccination, with geometric mean titres of 421 [95% CI 209-846] in the 1 × 1010 pu group and 545 [276-1078] in the 1 × 1011 pu group, and remained significantly elevated at 48 weeks compared with baseline titres (39 [95% CI 13-119] in the 1 ×1010 pu group and 27 [95-156] in the 1 ×1011 pu group; both p<0·0001). T-cell responses to the glycoprotein insert and neutralising responses against the cAd3 vector were also increased at 4 weeks after vaccination. INTERPRETATION: This first-in-human trial of this cAd3-Marburg vaccine showed the agent is safe and immunogenic, with a safety profile similar to previously tested cAd3-vectored filovirus vaccines. 95% of participants produced a glycoprotein-specific antibody response at 4 weeks after a single vaccination, which remained in 70% of participants at 48 weeks. These findings represent a crucial step in the development of a vaccine for emergency deployment against a re-emerging pathogen that has recently expanded its reach to new regions. FUNDING: National Institutes of Health.


Subject(s)
Adenoviruses, Simian , Marburgvirus , Animals , Adult , Humans , Pan troglodytes , Antibodies, Viral , Vaccines, Synthetic/adverse effects , Adenoviridae , Glycoproteins , Double-Blind Method
8.
N Engl J Med ; 385(9): 803-814, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34379916

ABSTRACT

BACKGROUND: Additional interventions are needed to reduce the morbidity and mortality caused by malaria. METHODS: We conducted a two-part, phase 1 clinical trial to assess the safety and pharmacokinetics of CIS43LS, an antimalarial monoclonal antibody with an extended half-life, and its efficacy against infection with Plasmodium falciparum. Part A of the trial assessed the safety, initial side-effect profile, and pharmacokinetics of CIS43LS in healthy adults who had never had malaria. Participants received CIS43LS subcutaneously or intravenously at one of three escalating dose levels. A subgroup of participants from Part A continued to Part B, and some received a second CIS43LS infusion. Additional participants were enrolled in Part B and received CIS43LS intravenously. To assess the protective efficacy of CIS43LS, some participants underwent controlled human malaria infection in which they were exposed to mosquitoes carrying P. falciparum sporozoites 4 to 36 weeks after administration of CIS43LS. RESULTS: A total of 25 participants received CIS43LS at a dose of 5 mg per kilogram of body weight, 20 mg per kilogram, or 40 mg per kilogram, and 4 of the 25 participants received a second dose (20 mg per kilogram regardless of initial dose). No safety concerns were identified. We observed dose-dependent increases in CIS43LS serum concentrations, with a half-life of 56 days. None of the 9 participants who received CIS43LS, as compared with 5 of 6 control participants who did not receive CIS43LS, had parasitemia according to polymerase-chain-reaction testing through 21 days after controlled human malaria infection. Two participants who received 40 mg per kilogram of CIS43LS and underwent controlled human malaria infection approximately 36 weeks later had no parasitemia, with serum concentrations of CIS43LS of 46 and 57 µg per milliliter at the time of controlled human malaria infection. CONCLUSIONS: Among adults who had never had malaria infection or vaccination, administration of the long-acting monoclonal antibody CIS43LS prevented malaria after controlled infection. (Funded by the National Institute of Allergy and Infectious Diseases; VRC 612 ClinicalTrials.gov number, NCT04206332.).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal/therapeutic use , Antimalarials/therapeutic use , Malaria, Falciparum/prevention & control , Adult , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Protozoan/blood , Antimalarials/administration & dosage , Antimalarials/adverse effects , Antimalarials/pharmacokinetics , Dose-Response Relationship, Drug , Healthy Volunteers , Humans , Infusions, Intravenous/adverse effects , Injections, Subcutaneous/adverse effects , Middle Aged , Plasmodium falciparum/immunology , Plasmodium falciparum/isolation & purification
9.
N Engl J Med ; 385(19): 1774-1785, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34551225

ABSTRACT

BACKGROUND: At interim analysis in a phase 3, observer-blinded, placebo-controlled clinical trial, the mRNA-1273 vaccine showed 94.1% efficacy in preventing coronavirus disease 2019 (Covid-19). After emergency use of the vaccine was authorized, the protocol was amended to include an open-label phase. Final analyses of efficacy and safety data from the blinded phase of the trial are reported. METHODS: We enrolled volunteers who were at high risk for Covid-19 or its complications; participants were randomly assigned in a 1:1 ratio to receive two intramuscular injections of mRNA-1273 (100 µg) or placebo, 28 days apart, at 99 centers across the United States. The primary end point was prevention of Covid-19 illness with onset at least 14 days after the second injection in participants who had not previously been infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The data cutoff date was March 26, 2021. RESULTS: The trial enrolled 30,415 participants; 15,209 were assigned to receive the mRNA-1273 vaccine, and 15,206 to receive placebo. More than 96% of participants received both injections, 2.3% had evidence of SARS-CoV-2 infection at baseline, and the median follow-up was 5.3 months in the blinded phase. Vaccine efficacy in preventing Covid-19 illness was 93.2% (95% confidence interval [CI], 91.0 to 94.8), with 55 confirmed cases in the mRNA-1273 group (9.6 per 1000 person-years; 95% CI, 7.2 to 12.5) and 744 in the placebo group (136.6 per 1000 person-years; 95% CI, 127.0 to 146.8). The efficacy in preventing severe disease was 98.2% (95% CI, 92.8 to 99.6), with 2 cases in the mRNA-1273 group and 106 in the placebo group, and the efficacy in preventing asymptomatic infection starting 14 days after the second injection was 63.0% (95% CI, 56.6 to 68.5), with 214 cases in the mRNA-1273 group and 498 in the placebo group. Vaccine efficacy was consistent across ethnic and racial groups, age groups, and participants with coexisting conditions. No safety concerns were identified. CONCLUSIONS: The mRNA-1273 vaccine continued to be efficacious in preventing Covid-19 illness and severe disease at more than 5 months, with an acceptable safety profile, and protection against asymptomatic infection was observed. (Funded by the Biomedical Advanced Research and Development Authority and the National Institute of Allergy and Infectious Diseases; COVE ClinicalTrials.gov number, NCT04470427.).


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , 2019-nCoV Vaccine mRNA-1273 , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19 Vaccines/adverse effects , Follow-Up Studies , Humans , Immunization, Secondary , Incidence , Intention to Treat Analysis , Male , Middle Aged , Patient Acuity , Single-Blind Method , Treatment Outcome , Young Adult
10.
N Engl J Med ; 384(11): 1003-1014, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33730454

ABSTRACT

BACKGROUND: Whether a broadly neutralizing antibody (bnAb) can be used to prevent human immunodeficiency virus type 1 (HIV-1) acquisition is unclear. METHODS: We enrolled at-risk cisgender men and transgender persons in the Americas and Europe in the HVTN 704/HPTN 085 trial and at-risk women in sub-Saharan Africa in the HVTN 703/HPTN 081 trial. Participants were randomly assigned to receive, every 8 weeks, infusions of a bnAb (VRC01) at a dose of either 10 or 30 mg per kilogram (low-dose group and high-dose group, respectively) or placebo, for 10 infusions in total. HIV-1 testing was performed every 4 weeks. The VRC01 80% inhibitory concentration (IC80) of acquired isolates was measured with the TZM-bl assay. RESULTS: Adverse events were similar in number and severity among the treatment groups within each trial. Among the 2699 participants in HVTN 704/HPTN 085, HIV-1 infection occurred in 32 in the low-dose group, 28 in the high-dose group, and 38 in the placebo group. Among the 1924 participants in HVTN 703/HPTN 081, infection occurred in 28 in the low-dose group, 19 in the high-dose group, and 29 in the placebo group. The incidence of HIV-1 infection per 100 person-years in HVTN 704/HPTN 085 was 2.35 in the pooled VRC01 groups and 2.98 in the placebo group (estimated prevention efficacy, 26.6%; 95% confidence interval [CI], -11.7 to 51.8; P = 0.15), and the incidence per 100 person-years in HVTN 703/HPTN 081 was 2.49 in the pooled VRC01 groups and 3.10 in the placebo group (estimated prevention efficacy, 8.8%; 95% CI, -45.1 to 42.6; P = 0.70). In prespecified analyses pooling data across the trials, the incidence of infection with VRC01-sensitive isolates (IC80 <1 µg per milliliter) per 100 person-years was 0.20 among VRC01 recipients and 0.86 among placebo recipients (estimated prevention efficacy, 75.4%; 95% CI, 45.5 to 88.9). The prevention efficacy against sensitive isolates was similar for each VRC01 dose and trial; VRC01 did not prevent acquisition of other HIV-1 isolates. CONCLUSIONS: VRC01 did not prevent overall HIV-1 acquisition more effectively than placebo, but analyses of VRC01-sensitive HIV-1 isolates provided proof-of-concept that bnAb prophylaxis can be effective. (Supported by the National Institute of Allergy and Infectious Diseases; HVTN 704/HPTN 085 and HVTN 703/HPTN 081 ClinicalTrials.gov numbers, NCT02716675 and NCT02568215.).


Subject(s)
Antibodies, Monoclonal/therapeutic use , Broadly Neutralizing Antibodies/therapeutic use , HIV Antibodies/therapeutic use , HIV Infections/prevention & control , HIV-1 , Adolescent , Adult , Africa South of the Sahara/epidemiology , Americas/epidemiology , Antibodies, Monoclonal/adverse effects , Broadly Neutralizing Antibodies/adverse effects , Double-Blind Method , Europe/epidemiology , Female , HIV Antibodies/adverse effects , HIV Infections/epidemiology , HIV-1/drug effects , Humans , Incidence , Male , Proof of Concept Study , Young Adult
11.
N Engl J Med ; 383(20): 1920-1931, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32663912

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019 and spread globally, prompting an international effort to accelerate development of a vaccine. The candidate vaccine mRNA-1273 encodes the stabilized prefusion SARS-CoV-2 spike protein. METHODS: We conducted a phase 1, dose-escalation, open-label trial including 45 healthy adults, 18 to 55 years of age, who received two vaccinations, 28 days apart, with mRNA-1273 in a dose of 25 µg, 100 µg, or 250 µg. There were 15 participants in each dose group. RESULTS: After the first vaccination, antibody responses were higher with higher dose (day 29 enzyme-linked immunosorbent assay anti-S-2P antibody geometric mean titer [GMT], 40,227 in the 25-µg group, 109,209 in the 100-µg group, and 213,526 in the 250-µg group). After the second vaccination, the titers increased (day 57 GMT, 299,751, 782,719, and 1,192,154, respectively). After the second vaccination, serum-neutralizing activity was detected by two methods in all participants evaluated, with values generally similar to those in the upper half of the distribution of a panel of control convalescent serum specimens. Solicited adverse events that occurred in more than half the participants included fatigue, chills, headache, myalgia, and pain at the injection site. Systemic adverse events were more common after the second vaccination, particularly with the highest dose, and three participants (21%) in the 250-µg dose group reported one or more severe adverse events. CONCLUSIONS: The mRNA-1273 vaccine induced anti-SARS-CoV-2 immune responses in all participants, and no trial-limiting safety concerns were identified. These findings support further development of this vaccine. (Funded by the National Institute of Allergy and Infectious Diseases and others; mRNA-1273 ClinicalTrials.gov number, NCT04283461).


Subject(s)
Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , RNA, Messenger/immunology , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/therapeutic use , 2019-nCoV Vaccine mRNA-1273 , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibody Formation , Betacoronavirus , COVID-19 , COVID-19 Vaccines , Female , Humans , Immunization, Secondary , Male , SARS-CoV-2 , T-Lymphocytes/immunology , Viral Vaccines/adverse effects , Young Adult
12.
N Engl J Med ; 383(25): 2427-2438, 2020 12 17.
Article in English | MEDLINE | ID: mdl-32991794

ABSTRACT

BACKGROUND: Testing of vaccine candidates to prevent infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in an older population is important, since increased incidences of illness and death from coronavirus disease 2019 (Covid-19) have been associated with an older age. METHODS: We conducted a phase 1, dose-escalation, open-label trial of a messenger RNA vaccine, mRNA-1273, which encodes the stabilized prefusion SARS-CoV-2 spike protein (S-2P) in healthy adults. The trial was expanded to include 40 older adults, who were stratified according to age (56 to 70 years or ≥71 years). All the participants were assigned sequentially to receive two doses of either 25 µg or 100 µg of vaccine administered 28 days apart. RESULTS: Solicited adverse events were predominantly mild or moderate in severity and most frequently included fatigue, chills, headache, myalgia, and pain at the injection site. Such adverse events were dose-dependent and were more common after the second immunization. Binding-antibody responses increased rapidly after the first immunization. By day 57, among the participants who received the 25-µg dose, the anti-S-2P geometric mean titer (GMT) was 323,945 among those between the ages of 56 and 70 years and 1,128,391 among those who were 71 years of age or older; among the participants who received the 100-µg dose, the GMT in the two age subgroups was 1,183,066 and 3,638,522, respectively. After the second immunization, serum neutralizing activity was detected in all the participants by multiple methods. Binding- and neutralizing-antibody responses appeared to be similar to those previously reported among vaccine recipients between the ages of 18 and 55 years and were above the median of a panel of controls who had donated convalescent serum. The vaccine elicited a strong CD4 cytokine response involving type 1 helper T cells. CONCLUSIONS: In this small study involving older adults, adverse events associated with the mRNA-1273 vaccine were mainly mild or moderate. The 100-µg dose induced higher binding- and neutralizing-antibody titers than the 25-µg dose, which supports the use of the 100-µg dose in a phase 3 vaccine trial. (Funded by the National Institute of Allergy and Infectious Diseases and others; mRNA-1273 Study ClinicalTrials.gov number, NCT04283461.).


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , 2019-nCoV Vaccine mRNA-1273 , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , Dose-Response Relationship, Drug , Female , Humans , Male , Middle Aged , Neutralization Tests , Spike Glycoprotein, Coronavirus , T-Lymphocytes/physiology
13.
J Infect Dis ; 226(3): 510-520, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35134995

ABSTRACT

BACKGROUND: Effective, long-acting prevention approaches are needed to reduce human immunodeficiency virus (HIV) incidence. We evaluated the safety and pharmacokinetics of VRC07-523LS and PGT121 administered subcutaneously alone and in combination as passive immunization for young women in South Africa. METHODS: CAPRISA 012A was a randomized, double-blinded, placebo-controlled, dose-escalation phase 1 trial. We enrolled 45 HIV-negative women into 9 groups and assessed safety, tolerability, pharmacokinetics, neutralization activity, and antidrug antibody levels. Pharmacokinetic modeling was conducted to predict steady-state concentrations for 12- and 24-weekly dosing intervals. RESULTS: VRC07-523LS and PGT121, administered subcutaneously, were safe and well tolerated. Most common reactogenicity events were injection site tenderness and headaches. Nine product-related adverse events were mild and transient. Median VRC07-523LS concentrations after 20 mg/kg doses were 9.65 µg/mL and 3.86 µg/mL at 16 and 24 weeks. The median week 8 concentration after the 10 mg/kg PGT121 dose was 8.26 µg/mL. Modeling of PGT121 at 20 mg/kg showed median concentrations of 1.37 µg/mL and 0.22 µg/mL at 16 and 24 weeks. Half-lives of VRC07-523LS and PGT121 were 29 and 20 days. Both antibodies retained neutralizing activity postadministration and no antidrug antibodies were detected. CONCLUSIONS: Subcutaneous administration of VRC07-523LS in combination with optimized versions of PGT121 or other antibodies should be further assessed for HIV prevention.


Subject(s)
Antineoplastic Agents, Immunological , HIV Infections , Antibodies, Monoclonal , Antibodies, Neutralizing , Female , HIV , HIV Antibodies , Humans , Immunization, Passive
14.
J Infect Dis ; 224(9): 1550-1555, 2021 11 16.
Article in English | MEDLINE | ID: mdl-33961055

ABSTRACT

Zika virus (ZIKV) deoxyribonucleic acid vaccine VRC5283 encoding viral structural genes has been shown to be immunogenic in humans. Recognizing that antigenically related flaviviruses cocirculate in regions with ZIKV activity, we explored the degree of antibody cross-reactivity elicited by this vaccine candidate using genetically diverse flaviviruses. The antibody response of vaccinated individuals with no evidence of prior flavivirus infection or vaccine experience had a limited capacity to bind heterologous viruses. In contrast, vaccine-elicited antibodies from individuals with prior flavivirus experience had a greater capacity to bind, but not neutralize, distantly related flaviviruses. These findings suggest that prior flavivirus exposure shapes the humoral immune response to vaccination.


Subject(s)
Antibodies, Neutralizing , Flavivirus , Vaccines, DNA , Zika Virus Infection , Zika Virus , Antibodies, Viral , Antibody Formation , Cross Reactions , Flavivirus/genetics , Flavivirus/immunology , Humans , Neutralization Tests , Plasmids , Vaccines , Zika Virus/genetics , Zika Virus/immunology , Zika Virus Infection/prevention & control
15.
Annu Rev Med ; 70: 121-135, 2019 01 27.
Article in English | MEDLINE | ID: mdl-30388054

ABSTRACT

Zika virus (ZIKV) emerged at a global level when it spread to the Americas and began causing congenital malformations and microcephaly in 2015. A rapid response by academia, government, public health infrastructure, and industry has enabled the expedited development and testing of a suite of vaccine platforms aiming to control and eliminate ZIKV-induced disease. Analysis of key immunization and pathogenesis studies in multiple animal models, including during pregnancy, has begun to define immune correlates of protection. Nonetheless, the deployment of ZIKV vaccines, along with the confirmation of their safety and efficacy, still has major challenges, one of which is related to the waning of the epidemic. In this review, we discuss the measures that enabled rapid progress and highlight the path forward for successful deployment of ZIKV vaccines.


Subject(s)
Antibodies, Neutralizing/immunology , Communicable Diseases, Emerging/prevention & control , Viral Vaccines/immunology , Zika Virus Infection/epidemiology , Zika Virus Infection/prevention & control , Zika Virus/immunology , Animals , Disease Outbreaks , Drug Development , Female , Forecasting , Humans , Male , Viral Envelope Proteins/immunology , Zika Virus/pathogenicity , Zika Virus Infection/immunology
16.
Lancet ; 393(10174): 889-898, 2019 03 02.
Article in English | MEDLINE | ID: mdl-30686586

ABSTRACT

BACKGROUND: mAb114 is a single monoclonal antibody that targets the receptor-binding domain of Ebola virus glycoprotein, which prevents mortality in rhesus macaques treated after lethal challenge with Zaire ebolavirus. Here we present expedited data from VRC 608, a phase 1 study to evaluate mAb114 safety, tolerability, pharmacokinetics, and immunogenicity. METHODS: In this phase 1, dose-escalation study (VRC 608), conducted at the US National Institutes of Health (NIH) Clinical Center (Bethesda, MD, USA), healthy adults aged 18-60 years were sequentially enrolled into three mAb114 dose groups of 5 mg/kg, 25 mg/kg, and 50 mg/kg. The drug was given to participants intravenously over 30 min, and participants were followed for 24 weeks. Participants were only enrolled into increased dosing groups after interim safety assessments. Our primary endpoints were safety and tolerability, with pharmacokinetic and anti-drug antibody assessments as secondary endpoints. We assessed safety and tolerability in all participants who received study drug by monitoring clinical laboratory data and self-report and direct clinician assessment of prespecified infusion-site symptoms 3 days after infusion and systemic symptoms 7 days after infusion. Unsolicited adverse events were recorded for 28 days. Pharmacokinetic and anti-drug antibody assessments were completed in participants with at least 56 days of data. This trial is registered with ClinicalTrials.gov, number NCT03478891, and is active but no longer recruiting. FINDINGS: Between May 16, and Sept 27, 2018, 19 eligible individuals were enrolled. One (5%) participant was not infused because intravenous access was not adequate. Of 18 (95%) remaining participants, three (17%) were assigned to the 5 mg/kg group, five (28%) to the 25 mg/kg group, and ten (55%) to the 50 mg/kg group, each of whom received a single infusion of mAb114 at their assigned dose. All infusions were well tolerated and completed over 30-37 min with no infusion reactions or rate adjustments. All participants who received the study drug completed the safety assessment of local and systemic reactogenicity. No participants reported infusion-site symptoms. Systemic symptoms were all mild and present only in four (22%) of 18 participants across all dosing groups. No unsolicited adverse events occurred related to mAb114 and one serious adverse event occurred that was unrelated to mAb114. mAb114 has linear pharmacokinetics and a half-life of 24·2 days (standard error of measurement 0·2) with no evidence of anti-drug antibody development. INTERPRETATION: mAb114 was well tolerated, showed linear pharmacokinetics, and was easily and rapidly infused, making it an attractive and deployable option for treatment in outbreak settings. FUNDING: Vaccine Research Center, US National Institute of Allergy and Infectious Diseases, and NIH.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacokinetics , Ebola Vaccines/immunology , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , Immunologic Factors/immunology , Immunologic Factors/pharmacokinetics , Viral Proteins/immunology , Administration, Intravenous , Adult , Animals , Antibodies, Monoclonal/administration & dosage , Dose-Response Relationship, Drug , Ebola Vaccines/administration & dosage , Female , Hemorrhagic Fever, Ebola/prevention & control , Humans , Immunologic Factors/administration & dosage , Macaca mulatta , Male , Middle Aged , Young Adult
17.
N Engl J Med ; 376(10): 928-938, 2017 03 09.
Article in English | MEDLINE | ID: mdl-25426834

ABSTRACT

BACKGROUND: The unprecedented 2014 epidemic of Ebola virus disease (EVD) prompted an international response to accelerate the availability of a preventive vaccine. A replication-defective recombinant chimpanzee adenovirus type 3-vectored ebolavirus vaccine (cAd3-EBO), encoding the glycoprotein from Zaire and Sudan species, that offers protection in the nonhuman primate model, was rapidly advanced into phase 1 clinical evaluation. METHODS: We conducted a phase 1, dose-escalation, open-label trial of cAd3-EBO. Twenty healthy adults, in sequentially enrolled groups of 10 each, received vaccination intramuscularly in doses of 2×1010 particle units or 2×1011 particle units. Primary and secondary end points related to safety and immunogenicity were assessed throughout the first 8 weeks after vaccination; in addition, longer-term vaccine durability was assessed at 48 weeks after vaccination. RESULTS: In this small study, no safety concerns were identified; however, transient fever developed within 1 day after vaccination in two participants who had received the 2×1011 particle-unit dose. Glycoprotein-specific antibodies were induced in all 20 participants; the titers were of greater magnitude in the group that received the 2×1011 particle-unit dose than in the group that received the 2×1010 particle-unit dose (geometric mean titer against the Zaire antigen at week 4, 2037 vs. 331; P=0.001). Glycoprotein-specific T-cell responses were more frequent among those who received the 2×1011 particle-unit dose than among those who received the 2×1010 particle-unit dose, with a CD4 response in 10 of 10 participants versus 3 of 10 participants (P=0.004) and a CD8 response in 7 of 10 participants versus 2 of 10 participants (P=0.07) at week 4. Assessment of the durability of the antibody response showed that titers remained high at week 48, with the highest titers in those who received the 2×1011 particle-unit dose. CONCLUSIONS: Reactogenicity and immune responses to cAd3-EBO vaccine were dose-dependent. At the 2×1011 particle-unit dose, glycoprotein Zaire-specific antibody responses were in the range reported to be associated with vaccine-induced protective immunity in challenge studies involving nonhuman primates, and responses were sustained to week 48. Phase 2 studies and efficacy trials assessing cAd3-EBO are in progress. (Funded by the Intramural Research Program of the National Institutes of Health; VRC 207 ClinicalTrials.gov number, NCT02231866 .).


Subject(s)
Ebola Vaccines/immunology , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/prevention & control , Adenoviruses, Simian , Adult , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Ebola Vaccines/administration & dosage , Ebola Vaccines/adverse effects , Fever/etiology , Genetic Vectors , Glycoproteins/immunology , Humans , Male , Middle Aged , Pan troglodytes , T-Lymphocytes/physiology
18.
N Engl J Med ; 376(4): 330-341, 2017 01 26.
Article in English | MEDLINE | ID: mdl-25830322

ABSTRACT

BACKGROUND: The worst Ebola virus disease (EVD) outbreak in history has resulted in more than 28,000 cases and 11,000 deaths. We present the final results of two phase 1 trials of an attenuated, replication-competent, recombinant vesicular stomatitis virus (rVSV)-based vaccine candidate designed to prevent EVD. METHODS: We conducted two phase 1, placebo-controlled, double-blind, dose-escalation trials of an rVSV-based vaccine candidate expressing the glycoprotein of a Zaire strain of Ebola virus (ZEBOV). A total of 39 adults at each site (78 participants in all) were consecutively enrolled into groups of 13. At each site, volunteers received one of three doses of the rVSV-ZEBOV vaccine (3 million plaque-forming units [PFU], 20 million PFU, or 100 million PFU) or placebo. Volunteers at one of the sites received a second dose at day 28. Safety and immunogenicity were assessed. RESULTS: The most common adverse events were injection-site pain, fatigue, myalgia, and headache. Transient rVSV viremia was noted in all the vaccine recipients after dose 1. The rates of adverse events and viremia were lower after the second dose than after the first dose. By day 28, all the vaccine recipients had seroconversion as assessed by an enzyme-linked immunosorbent assay (ELISA) against the glycoprotein of the ZEBOV-Kikwit strain. At day 28, geometric mean titers of antibodies against ZEBOV glycoprotein were higher in the groups that received 20 million PFU or 100 million PFU than in the group that received 3 million PFU, as assessed by ELISA and by pseudovirion neutralization assay. A second dose at 28 days after dose 1 significantly increased antibody titers at day 56, but the effect was diminished at 6 months. CONCLUSIONS: This Ebola vaccine candidate elicited anti-Ebola antibody responses. After vaccination, rVSV viremia occurred frequently but was transient. These results support further evaluation of the vaccine dose of 20 million PFU for preexposure prophylaxis and suggest that a second dose may boost antibody responses. (Funded by the National Institutes of Health and others; rVSV∆G-ZEBOV-GP ClinicalTrials.gov numbers, NCT02269423 and NCT02280408 .).


Subject(s)
Ebola Vaccines/immunology , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/prevention & control , Adult , Antibodies, Viral/blood , Double-Blind Method , Ebola Vaccines/administration & dosage , Ebola Vaccines/adverse effects , Ebolavirus/genetics , Ebolavirus/isolation & purification , Enzyme-Linked Immunosorbent Assay , Female , Hemorrhagic Fever, Ebola/immunology , Humans , Male , Middle Aged , Recombinant Proteins , Seroconversion , Vaccines, Attenuated/immunology , Vesicular stomatitis Indiana virus , Viral Envelope Proteins/isolation & purification , Viremia
20.
J Immunol ; 201(12): 3804-3814, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30413671

ABSTRACT

Dengue virus (DENV) and Zika virus (ZIKV) are mosquito-borne pathogens that have a significant impact on human health. Immune sera, mAbs, and memory B cells (MBCs) isolated from patients infected with one DENV type can be cross-reactive with the other three DENV serotypes and even more distantly related flaviviruses such as ZIKV. Conventional ELISPOTs effectively measure Ab-secreting B cells but because they are limited to the assessment of a single Ag at a time, it is challenging to distinguish serotype-specific and cross-reactive MBCs in the same well. We developed a novel multifunction FluoroSpot assay using fluorescently labeled DENV and ZIKV (FLVs) that measures the cross-reactivity of Abs secreted by single B cells. Conjugation efficiency and recognition of FLVs by virus-specific Abs were confirmed by flow cytometry. Using a panel of DENV immune, ZIKV immune, and naive PBMC, FLVs were able to simultaneously detect DENV serotype-specific, ZIKV-specific, DENV serotype cross-reactive, and DENV/ZIKV cross-reactive Abs secreted by individual MBCs. Our findings indicate that the FLVs are sensitive and specific tools to detect specific and cross-reactive MBCs. These reagents will allow the assessment of the breadth as well as the durability of DENV/ZIKV B cell responses following vaccination or natural infection. This novel approach using FLVs in a FluoroSpot assay can be applied to other diseases such as influenza in which prior immunity with homosubtype- or heterosubtype-specific MBCs may influence subsequent infections.


Subject(s)
Antibody-Producing Cells/immunology , B-Lymphocytes/immunology , Cross Reactions , Dengue Virus/immunology , Dengue/immunology , Zika Virus Infection/immunology , Zika Virus/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cells, Cultured , Culicidae/virology , Dengue/diagnosis , Enzyme-Linked Immunospot Assay , Fluorescence , Humans , Immunologic Memory , Sensitivity and Specificity , Single-Cell Analysis , Zika Virus Infection/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL