Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 169
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 184(12): 3222-3241.e26, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34004146

ABSTRACT

The isocortex and hippocampal formation (HPF) in the mammalian brain play critical roles in perception, cognition, emotion, and learning. We profiled ∼1.3 million cells covering the entire adult mouse isocortex and HPF and derived a transcriptomic cell-type taxonomy revealing a comprehensive repertoire of glutamatergic and GABAergic neuron types. Contrary to the traditional view of HPF as having a simpler cellular organization, we discover a complete set of glutamatergic types in HPF homologous to all major subclasses found in the six-layered isocortex, suggesting that HPF and the isocortex share a common circuit organization. We also identify large-scale continuous and graded variations of cell types along isocortical depth, across the isocortical sheet, and in multiple dimensions in hippocampus and subiculum. Overall, our study establishes a molecular architecture of the mammalian isocortex and hippocampal formation and begins to shed light on its underlying relationship with the development, evolution, connectivity, and function of these two brain structures.


Subject(s)
Hippocampus/cytology , Neocortex/cytology , Transcriptome/genetics , Animals , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Glutamic Acid/metabolism , Mice, Inbred C57BL , Mice, Transgenic
2.
Cell ; 183(4): 935-953.e19, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33186530

ABSTRACT

Neurons are frequently classified into distinct types on the basis of structural, physiological, or genetic attributes. To better constrain the definition of neuronal cell types, we characterized the transcriptomes and intrinsic physiological properties of over 4,200 mouse visual cortical GABAergic interneurons and reconstructed the local morphologies of 517 of those neurons. We find that most transcriptomic types (t-types) occupy specific laminar positions within visual cortex, and, for most types, the cells mapping to a t-type exhibit consistent electrophysiological and morphological properties. These properties display both discrete and continuous variation among t-types. Through multimodal integrated analysis, we define 28 met-types that have congruent morphological, electrophysiological, and transcriptomic properties and robust mutual predictability. We identify layer-specific axon innervation pattern as a defining feature distinguishing different met-types. These met-types represent a unified definition of cortical GABAergic interneuron types, providing a systematic framework to capture existing knowledge and bridge future analyses across different modalities.


Subject(s)
Cerebral Cortex/cytology , Electrophysiological Phenomena , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Transcriptome/genetics , Animals , Female , Gene Expression Profiling , Hippocampus/physiology , Ion Channels/metabolism , Male , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism
3.
Nature ; 624(7991): 403-414, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092914

ABSTRACT

The brain controls nearly all bodily functions via spinal projecting neurons (SPNs) that carry command signals from the brain to the spinal cord. However, a comprehensive molecular characterization of brain-wide SPNs is still lacking. Here we transcriptionally profiled a total of 65,002 SPNs, identified 76 region-specific SPN types, and mapped these types into a companion atlas of the whole mouse brain1. This taxonomy reveals a three-component organization of SPNs: (1) molecularly homogeneous excitatory SPNs from the cortex, red nucleus and cerebellum with somatotopic spinal terminations suitable for point-to-point communication; (2) heterogeneous populations in the reticular formation with broad spinal termination patterns, suitable for relaying commands related to the activities of the entire spinal cord; and (3) modulatory neurons expressing slow-acting neurotransmitters and/or neuropeptides in the hypothalamus, midbrain and reticular formation for 'gain setting' of brain-spinal signals. In addition, this atlas revealed a LIM homeobox transcription factor code that parcellates the reticulospinal neurons into five molecularly distinct and spatially segregated populations. Finally, we found transcriptional signatures of a subset of SPNs with large soma size and correlated these with fast-firing electrophysiological properties. Together, this study establishes a comprehensive taxonomy of brain-wide SPNs and provides insight into the functional organization of SPNs in mediating brain control of bodily functions.


Subject(s)
Brain , Gene Expression Profiling , Neural Pathways , Neurons , Spinal Cord , Animals , Mice , Hypothalamus , Neurons/metabolism , Neuropeptides , Spinal Cord/cytology , Spinal Cord/metabolism , Brain/cytology , Brain/metabolism , Neurotransmitter Agents , Mesencephalon/cytology , Reticular Formation/cytology , Electrophysiology , Cerebellum/cytology , Cerebral Cortex/cytology
4.
Nature ; 624(7991): 317-332, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092916

ABSTRACT

The mammalian brain consists of millions to billions of cells that are organized into many cell types with specific spatial distribution patterns and structural and functional properties1-3. Here we report a comprehensive and high-resolution transcriptomic and spatial cell-type atlas for the whole adult mouse brain. The cell-type atlas was created by combining a single-cell RNA-sequencing (scRNA-seq) dataset of around 7 million cells profiled (approximately 4.0 million cells passing quality control), and a spatial transcriptomic dataset of approximately 4.3 million cells using multiplexed error-robust fluorescence in situ hybridization (MERFISH). The atlas is hierarchically organized into 4 nested levels of classification: 34 classes, 338 subclasses, 1,201 supertypes and 5,322 clusters. We present an online platform, Allen Brain Cell Atlas, to visualize the mouse whole-brain cell-type atlas along with the single-cell RNA-sequencing and MERFISH datasets. We systematically analysed the neuronal and non-neuronal cell types across the brain and identified a high degree of correspondence between transcriptomic identity and spatial specificity for each cell type. The results reveal unique features of cell-type organization in different brain regions-in particular, a dichotomy between the dorsal and ventral parts of the brain. The dorsal part contains relatively fewer yet highly divergent neuronal types, whereas the ventral part contains more numerous neuronal types that are more closely related to each other. Our study also uncovered extraordinary diversity and heterogeneity in neurotransmitter and neuropeptide expression and co-expression patterns in different cell types. Finally, we found that transcription factors are major determinants of cell-type classification and identified a combinatorial transcription factor code that defines cell types across all parts of the brain. The whole mouse brain transcriptomic and spatial cell-type atlas establishes a benchmark reference atlas and a foundational resource for integrative investigations of cellular and circuit function, development and evolution of the mammalian brain.


Subject(s)
Brain , Gene Expression Profiling , Transcriptome , Animals , Mice , Brain/anatomy & histology , Brain/cytology , Brain/metabolism , Datasets as Topic , In Situ Hybridization, Fluorescence , Neural Pathways , Neurons/classification , Neurons/metabolism , Neuropeptides/metabolism , Neurotransmitter Agents/metabolism , RNA/analysis , Single-Cell Gene Expression Analysis , Transcription Factors/metabolism , Transcriptome/genetics
5.
Nature ; 598(7879): 151-158, 2021 10.
Article in English | MEDLINE | ID: mdl-34616067

ABSTRACT

The neocortex is disproportionately expanded in human compared with mouse1,2, both in its total volume relative to subcortical structures and in the proportion occupied by supragranular layers composed of neurons that selectively make connections within the neocortex and with other telencephalic structures. Single-cell transcriptomic analyses of human and mouse neocortex show an increased diversity of glutamatergic neuron types in supragranular layers in human neocortex and pronounced gradients as a function of cortical depth3. Here, to probe the functional and anatomical correlates of this transcriptomic diversity, we developed a robust platform combining patch clamp recording, biocytin staining and single-cell RNA-sequencing (Patch-seq) to examine neurosurgically resected human tissues. We demonstrate a strong correspondence between morphological, physiological and transcriptomic phenotypes of five human glutamatergic supragranular neuron types. These were enriched in but not restricted to layers, with one type varying continuously in all phenotypes across layers 2 and 3. The deep portion of layer 3 contained highly distinctive cell types, two of which express a neurofilament protein that labels long-range projection neurons in primates that are selectively depleted in Alzheimer's disease4,5. Together, these results demonstrate the explanatory power of transcriptomic cell-type classification, provide a structural underpinning for increased complexity of cortical function in humans, and implicate discrete transcriptomic neuron types as selectively vulnerable in disease.


Subject(s)
Glutamic Acid/metabolism , Neocortex/cytology , Neocortex/growth & development , Neurons/cytology , Neurons/metabolism , Alzheimer Disease , Animals , Cell Shape , Collagen/metabolism , Electrophysiology , Extracellular Matrix Proteins/metabolism , Female , Humans , Lysine/analogs & derivatives , Male , Mice , Neocortex/anatomy & histology , Neurons/classification , Patch-Clamp Techniques , Transcriptome
7.
Int J Mol Sci ; 24(16)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37628993

ABSTRACT

Inotodiol, a lanostane-type triterpenoid, and many phytochemicals from Chaga mushrooms have been investigated for various allergic diseases. However, the anti-aging and anti-inflammatory activities of inotodiol under different types of oxidative stress and the impact of inotodiol on collagen and hyaluronan synthesis have not been sufficiently studied. Lanostane triterpenoids-rich concentrate, which contained 10% inotodiol as major (inotodiol concentrate), was prepared from Chaga and compared with pure inotodiol in terms of anti-inflammatory activities on a human keratinocyte cell line, HaCaT cells, under various stimulations such as stimulation with ultraviolet (UV) B or tumor necrosis factor (TNF)-α. In stimulation with TNF-α, interleukin (IL)-1ß, IL-6, and IL-8 genes were significantly repressed by 0.44~4.0 µg/mL of pure inotodiol. UVB irradiation induced the overexpression of pro-inflammatory cytokines, but those genes were significantly suppressed by pure inotodiol or inotodiol concentrate. Moreover, pure inotodiol/inotodiol concentrate could also modulate the synthesis of collagen and hyaluronic acid by controlling COL1A2 and HAS2/3 expression, which implies a crucial role for pure inotodiol/inotodiol concentrate in the prevention of skin aging. These results illuminate the anti-inflammatory and anti-aging effects of pure inotodiol/inotodiol concentrate, and it is highly conceivable that pure inotodiol and inotodiol concentrate could be promising natural bioactive substances to be incorporated in therapeutic and beautifying applications.


Subject(s)
HaCaT Cells , Triterpenes , Humans , Triterpenes/pharmacology , Keratinocytes , Oxidative Stress , Steroids
8.
Nature ; 535(7612): 367-75, 2016 07 21.
Article in English | MEDLINE | ID: mdl-27409810

ABSTRACT

The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high-resolution transcriptional atlas of rhesus monkey (Macaca mulatta) brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical division of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons. Cortical layers and areas acquire adult-like molecular profiles surprisingly late in postnatal development. Disparate cell populations exhibit distinct developmental timing of gene expression, but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, although approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny compared to monkey.


Subject(s)
Brain/growth & development , Brain/metabolism , Macaca mulatta/genetics , Transcriptome , Aging/genetics , Animals , Autism Spectrum Disorder/genetics , Brain/cytology , Brain/embryology , Cell Adhesion , Conserved Sequence , Female , Humans , Intellectual Disability/genetics , Male , Microcephaly/genetics , Neocortex/embryology , Neocortex/growth & development , Neocortex/metabolism , Neurodevelopmental Disorders/genetics , Neurogenesis/genetics , Risk Factors , Schizophrenia/genetics , Spatio-Temporal Analysis , Species Specificity , Transcription, Genetic/genetics
9.
Cereb Cortex ; 31(1): 356-378, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32901251

ABSTRACT

The posterior parietal cortex (PPC) is a major multimodal association cortex implicated in a variety of higher order cognitive functions, such as visuospatial perception, spatial attention, categorization, and decision-making. The PPC is known to receive inputs from a collection of sensory cortices as well as various subcortical areas and integrate those inputs to facilitate the execution of functions that require diverse information. Although many recent works have been performed with the mouse as a model system, a comprehensive understanding of long-range connectivity of the mouse PPC is scarce, preventing integrative interpretation of the rapidly accumulating functional data. In this study, we conducted a detailed neuroanatomic and bioinformatic analysis of the Allen Mouse Brain Connectivity Atlas data to summarize afferent and efferent connections to/from the PPC. Then, we analyzed variability between subregions of the PPC, functional/anatomical modalities, and species, and summarized the organizational principle of the mouse PPC. Finally, we confirmed key results by using additional neurotracers. A comprehensive survey of the connectivity will provide an important future reference to comprehend the function of the PPC and allow effective paths forward to various studies using mice as a model system.


Subject(s)
Attention/physiology , Cognition/physiology , Nerve Net/pathology , Parietal Lobe/physiology , Animals , Brain Mapping/methods , Mice , Nerve Net/physiology
10.
Molecules ; 27(15)2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35897881

ABSTRACT

Chaga mushroom (Inonotus obliquus) comprises polyphenolic compounds, triterpenoids, polysaccharides, and sterols. Among the triterpenoid components, inotodiol has been broadly examined because of its various biological activities. The purpose of this study is to examine inotodiol from a safety point of view and to present the potential possibilities of inotodiol for medical usage. From chaga mushroom extract, crude inotodiol (INO20) and pure inotodiol (INO95) were produced. Mice were treated with either INO20 or INO95 once daily using oral administration for repeated dose toxicity evaluation. Serum biochemistry parameters were analyzed, and the level of pro-inflammatory cytokines in the serum was quantified. In parallel, the effect of inotodiol on food allergic symptoms was investigated. Repeated administration of inotodiol did not show any mortality or abnormalities in organs. In food allergy studies, the symptoms of diarrhea were ameliorated by administration with INO95 and INO20. Furthermore, the level of MCPT-1 decreased by treatment with inotodiol. In this study, we demonstrated for the first time that inotodiol does not cause any detrimental effect by showing anti-allergic activities in vivo by inhibiting mast cell function. Our data highlight the potential to use inotodiol as an immune modulator for diseases related to inflammation.


Subject(s)
Lanosterol , Triterpenes , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Disease Models, Animal , Inonotus , Lanosterol/analogs & derivatives , Lanosterol/pharmacology , Mice
11.
Biomacromolecules ; 22(6): 2649-2658, 2021 06 14.
Article in English | MEDLINE | ID: mdl-34060808

ABSTRACT

The successful development of targeted nanoparticle (NP)-based therapeutics depends on the effective conjugation of targeting ligands to the NP. However, conventional methods based on chemical reactive groups such as N-hydroxysuccinimide, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, and maleimide have several limitations, including low binding efficiency, complex reaction methods, long reaction times, and reduced activity of the targeting ligand. In this study, we developed a novel method for conjugating targeting ligands to albumin NPs using the recently developed bacterial superglue the SpyTag/SpyCatcher (ST/SC) ligation system. This method involves a rapid one-step conjugation process with almost 100% efficiency. Albumin NPs conjugated to human epidermal growth factor receptor 2 (HER2) affibody molecules using the ST/SC system showed strong binding to HER2-overexpressing cells. In addition, NPs encapsulated with indocyanine green accumulated in cells overexpressing HER2 and exhibited superior photothermal treatment effects. Thus, surface functionalization of NPs using the ST/SC reaction may be used to develop new nanosystems that exhibit improved therapeutic benefits.


Subject(s)
Nanoparticles , Photothermal Therapy , Albumins , Cell Line, Tumor , Humans , Ligands , Receptor, ErbB-2
12.
Compr Rev Food Sci Food Saf ; 20(1): 429-457, 2021 01.
Article in English | MEDLINE | ID: mdl-33443788

ABSTRACT

Cultured muscle tissue-based protein products, also known as cultured meat, are produced through in vitro myogenesis involving muscle stem cell culture and differentiation, and mature muscle cell processing for flavor and texture. This review focuses on the in vitro myogenesis for cultured meat production. The muscle stem cell-based in vitro muscle tissue production consists of a sequential process: (1) muscle sampling for stem cell collection, (2) muscle tissue dissociation and muscle stem cell isolation, (3) primary cell culture, (4) upscaled cell culture, (5) muscle differentiation and maturation, and (6) muscle tissue harvest. Although muscle stem cell research is a well-established field, the majority of these steps remain to be underoptimized to enable the in vitro creation of edible muscle-derived meat products. The profound understanding of the process would help not only cultured meat production but also business sectors that have been seeking new biomaterials for the food industry. In this review, we discuss comprehensively and in detail each step of cutting-edge methods for cultured meat production. This would be meaningful for both academia and industry to prepare for the new era of cellular agriculture.


Subject(s)
Meat , Myoblasts , Cell Culture Techniques , Cell Separation , Meat/analysis , Muscle, Skeletal
13.
Nature ; 508(7495): 199-206, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24695229

ABSTRACT

The anatomical and functional architecture of the human brain is mainly determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of the mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high-resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser-microdissected brain regions. In developing cerebral cortex, transcriptional differences are found between different proliferative and post-mitotic layers, wherein laminar signatures reflect cellular composition and developmental processes. Cytoarchitectural differences between human and mouse have molecular correlates, including species differences in gene expression in subplate, although surprisingly we find minimal differences between the inner and outer subventricular zones even though the outer zone is expanded in humans. Both germinal and post-mitotic cortical layers exhibit fronto-temporal gradients, with particular enrichment in the frontal lobe. Finally, many neurodevelopmental disorder and human-evolution-related genes show patterned expression, potentially underlying unique features of human cortical formation. These data provide a rich, freely-accessible resource for understanding human brain development.


Subject(s)
Brain/metabolism , Fetus/metabolism , Gene Expression Regulation, Developmental/genetics , Transcriptome , Anatomy, Artistic , Animals , Atlases as Topic , Brain/embryology , Conserved Sequence/genetics , Fetus/cytology , Fetus/embryology , Gene Regulatory Networks/genetics , Humans , Mice , Neocortex/embryology , Neocortex/metabolism , Species Specificity
14.
Int J Mol Sci ; 21(19)2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33019677

ABSTRACT

Specification of embryonic lineages is an important question in the field of early development. Numerous studies analyzed the expression patterns of the candidate transcripts and proteins in humans and mice and clearly determined the markers of each lineage. To overcome the limitations of human and mouse embryos, the expression of the marker transcripts in each cell has been investigated using in vivo embryos in pigs. In vitro produced embryos are more accessible, can be rapidly processed with low cost. Therefore, we analyzed the characteristics of lineage markers and the effects of the DAB2 gene (trophectoderm marker) in in vitro fertilized porcine embryos. We investigated the expression levels of the marker genes during embryonic stages and distribution of the marker proteins was assayed in day 7 blastocysts. Then, the shRNA vectors were injected into the fertilized embryos and the differences in the marker transcripts were analyzed. Marker transcripts showed diverse patterns of expression, and each embryonic lineage could be identified with localization of marker proteins. In DAB2-shRNA vectors injected embryos, HNF4A and PDGFRA were upregulated. DAB2 protein level was lower in shRNA-injected embryos without significant differences. Our results will contribute to understanding of the mechanisms of embryonic lineage specification in pigs.


Subject(s)
Adaptor Proteins, Vesicular Transport/genetics , Blastocyst/metabolism , Cell Lineage/genetics , Ectoderm/metabolism , Gene Expression Regulation, Developmental , Adaptor Proteins, Vesicular Transport/antagonists & inhibitors , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Biomarkers/metabolism , Blastocyst/cytology , Ectoderm/cytology , Ectoderm/growth & development , Embryonic Development , Female , Fertilization in Vitro , Gene Expression Profiling , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Male , Oocytes/cytology , Oocytes/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Spermatozoa/cytology , Spermatozoa/metabolism , Swine , Transcription, Genetic
15.
Reproduction ; 157(3): 235-243, 2019 03.
Article in English | MEDLINE | ID: mdl-30576288

ABSTRACT

Lipid droplets (LD) provide a source of energy, and their importance during embryogenesis has been increasingly recognized. In particular, pig embryos have larger amounts of intercellular lipid bilayers than other mammalian species, suggesting that porcine embryos are more dependent on lipid metabolic pathways. The objective of the present study was to detect the effect of stearoyl-coenzyme A desaturase 1 (SCD1) on LD formation and to associate these effects with the mRNA abundance of LD formation-related genes (SREBP, ARF1, COPG2, PLD1 and ERK2) in in vitro-produced porcine embryos. To determine the effect of SCD1 on LD formation and related genes, we examined the effects of SCD1 inhibition using CAY10566 (an SCD1 inhibitor, 50 µM) on parthenogenetic embryos. SCD1 inhibition downregulated the mRNA levels of LD formation-related genes and embryo development. Our results revealed that SCD1 functions in the regulation of LD formation via phospholipid formation and embryo development. In addition, we treated parthenogenetic embryos with oleic acid (100 µM), which led to a significant increase in the blastocyst formation rate, LD size and number compared to controls. Remarkably, the adverse effects of the SCD1 inhibitor could be counteracted by oleic acid. These data suggest that porcine embryos can use exogenous oleic acid as a metabolic energy source.


Subject(s)
Embryo, Mammalian/physiology , Gene Expression Regulation, Developmental , Lipid Droplets/physiology , Lipids/chemistry , Lipogenesis/genetics , Stearoyl-CoA Desaturase/metabolism , Animals , Embryo, Mammalian/cytology , Embryo, Mammalian/enzymology , Female , Lipid Droplets/enzymology , Stearoyl-CoA Desaturase/genetics , Swine
16.
Environ Res ; 170: 374-382, 2019 03.
Article in English | MEDLINE | ID: mdl-30623884

ABSTRACT

The goal of this study was to prepare a robust anti-wetting and anti-fouling polyethersulfone (PES) membrane for the rejection of a highly saline (NaCl and CaCl2·2H2O) feed solution containing humic acid (HA) in direct contact membrane distillation (DCMD). Response surface methodology (RSM) was used to determine the optimum formulation of the used materials. The variable factors selected were polydimethyl siloxane (PDMS) and silica (SiO2); liquid entry pressure (LEP) and contact angle (CA) were selected as responses. Scanning electron microscopy (SEM) analysis confirmed the SiO2 deposition and Fourier-transform infrared spectroscopy (FTIR) test evidenced the new functional groups i.e., Si-OH, siloxane, and C-F bond vibrations at 3446, 1099 cm-1, and 1150-1240 cm-1 respectively on the membrane surface. The average roughness (Ra) was increased four times for the coated membranes (0.202-0.242 µm) as compared to that for pristine PES membrane (0.053 µm). The optimum PES-13 membrane exhibited consistent flux of 12 LMH and salt rejection (> 99%) with anti-fouling characteristic in DCMD using the feed solution of 3.5 wt% NaCl + 10 mM CaCl2·2H2O + 10 mg L-1 HA. The PES-13 membrane may therefore be a key membrane for application in DCMD against CaCl2·2H2O-containing salty solutions with HA.


Subject(s)
Distillation , Silicon Dioxide/metabolism , Water Purification , Calcium , Humic Substances , Membranes , Membranes, Artificial
17.
J Environ Manage ; 243: 45-66, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31078929

ABSTRACT

Investigations on membrane materials for membrane distillation (MD) and its applications have been ongoing since the 1990s. However, a lack of materials that produce robustly stable and up-to-the-mark membranes for MD for different industrial applications remains an ongoing problem. This paper provides an overview of materials developed for MD applications. Although key aspects of published articles reviewed in this paper pertain to MD membranes synthesized for desalination, future MD can also be applied to organic wastewater containing surfactants with inorganic compounds, either with the help of hybrid treatment processes or with customized membrane materials. Many industrial discharges produce effluents at a very high temperature, which is an available driving force for MD. However, there remains a lack of cost-effective membrane materials. Amphiphobic and omniphobic membranes have recently been developed for treating emulsified and shale gas produced water, but the problem of organic fouling and pore wetting remains a major challenge, especially when NaCl and other inorganic impurities are present, which further deteriorate separation performance. Therefore, further advancements in materials are required for the treatment of emulsified industrial wastewater containing surfactants, salts, and for oil or shale gas wastewater for its commercialized reuse. Integrated MD systems, however, may represent a major change in shale gas wastewater and emulsified wastewater that are difficult to treat.


Subject(s)
Wastewater , Water Purification , Distillation , Membranes, Artificial , Natural Gas
18.
Cell Physiol Biochem ; 46(5): 1749-1767, 2018.
Article in English | MEDLINE | ID: mdl-29705809

ABSTRACT

BACKGROUND/AIMS: Glucose plays an important role in stem cell fate determination and behaviors. However, it is still not known how glucose contributes to the precise molecular mechanisms responsible for stem cell migration. Thus, we investigate the effect of glucose on the regulation of the human umbilical cord blood-derived mesenchymal stem cell (hUCB-MSC) migration, and analyze the mechanism accompanied by this effect. METHODS: Western blot analysis, wound healing migration assays, immunoprecipitation, and chromatin immunoprecipitation assay were performed to investigate the effect of high glucose on hUCB-MSC migration. Additionally, hUCB-MSC transplantation was performed in the mouse excisional wound splinting model. RESULTS: High concentration glucose (25 mM) elicits hUCB-MSC migration compared to normal glucose and high glucose-pretreated hUCB-MSC transplantation into the wound sites in mice also accelerates skin wound repair. We therefore elucidated the detailed mechanisms how high glucose induces hUCB-MSC migration. We showed that high glucose regulates E-cadherin repression through increased Snail and EZH2 expressions. And, we found high glucose-induced reactive oxygen species (ROS) promotes two signaling; JNK which regulates γ-secretase leading to the cleavage of Notch proteins and PI3K/Akt signaling which enhances GSK-3ß phosphorylation. High glucose-mediated JNK/Notch pathway regulates the expression of EZH2, and PI3K/Akt/GSK-3ß pathway stimulates Snail stabilization, respectively. High glucose enhances the formation of EZH2/Snail/HDAC1 complex in the nucleus, which in turn causes E-cadherin repression. CONCLUSION: This study reveals that high glucose-induced ROS stimulates the migration of hUCB-MSC through E-cadherin repression via Snail and EZH2 signaling pathways.


Subject(s)
Cadherins/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Glucose/metabolism , Mesenchymal Stem Cells/cytology , Reactive Oxygen Species/metabolism , Snail Family Transcription Factors/metabolism , Animals , Cell Movement , Cells, Cultured , Humans , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Mice , Umbilical Cord/cytology , Wound Healing
19.
Nature ; 489(7416): 391-399, 2012 Sep 20.
Article in English | MEDLINE | ID: mdl-22996553

ABSTRACT

Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of ∼900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography-the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function.


Subject(s)
Anatomy, Artistic , Atlases as Topic , Brain/anatomy & histology , Brain/metabolism , Gene Expression Profiling , Transcriptome/genetics , Adult , Animals , Brain/cytology , Calbindins , Databases, Genetic , Dopamine/metabolism , Health , Hippocampus/cytology , Hippocampus/metabolism , Humans , In Situ Hybridization , Internet , Macaca mulatta/anatomy & histology , Macaca mulatta/genetics , Male , Mice , Neocortex/anatomy & histology , Neocortex/cytology , Neocortex/metabolism , Oligonucleotide Array Sequence Analysis , Post-Synaptic Density/genetics , RNA, Messenger/analysis , RNA, Messenger/genetics , S100 Calcium Binding Protein G/genetics , Species Specificity
20.
Asian-Australas J Anim Sci ; 31(4): 489-498, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29268580

ABSTRACT

OBJECTIVE: Foot and mouth disease (FMD) and porcine reproductive and respiratory syndrome (PRRS) are major diseases that interrupt porcine production. Because they are viral diseases, vaccinations are of only limited effectiveness in preventing outbreaks. To establish an alternative multi-resistant strategy against FMD virus (FMDV) and PRRS virus (PRRSV), the present study introduced two genetic modification techniques to porcine cells. METHODS: First, cluster of differentiation 163 (CD163), the PRRSV viral receptor, was edited with the clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 technique. The CD163 gene sequences of edited cells and control cells differed. Second, short hairpin RNA (shRNAs) were integrated into the cells. The shRNAs, targeting the 3D gene of FMDV and the open reading frame 7 (ORF7) gene of PRRSV, were transferred into fibroblasts. We also developed an in vitro shRNA verification method with a target gene expression vector. RESULTS: shRNA activity was confirmed in vitro with vectors that expressed the 3D and ORF7 genes in the cells. Cells containing shRNAs showed lower transcript levels than cells with only the expression vectors. The shRNAs were integrated into CD163-edited cells to combine the two techniques, and the viral genes were suppressed in these cells. CONCLUSION: We established a multi-resistant strategy against viral diseases and an in vitro shRNA verification method.

SELECTION OF CITATIONS
SEARCH DETAIL