Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 453
Filter
Add more filters

Publication year range
1.
Cell ; 160(1-2): 269-84, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25594183

ABSTRACT

The stem cells that maintain and repair the postnatal skeleton remain undefined. One model suggests that perisinusoidal mesenchymal stem cells (MSCs) give rise to osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, although the existence of these cells has not been proven through fate-mapping experiments. We demonstrate here that expression of the bone morphogenetic protein (BMP) antagonist gremlin 1 defines a population of osteochondroreticular (OCR) stem cells in the bone marrow. OCR stem cells self-renew and generate osteoblasts, chondrocytes, and reticular marrow stromal cells, but not adipocytes. OCR stem cells are concentrated within the metaphysis of long bones not in the perisinusoidal space and are needed for bone development, bone remodeling, and fracture repair. Grem1 expression also identifies intestinal reticular stem cells (iRSCs) that are cells of origin for the periepithelial intestinal mesenchymal sheath. Grem1 expression identifies distinct connective tissue stem cells in both the bone (OCR stem cells) and the intestine (iRSCs).


Subject(s)
Bone and Bones/cytology , Intercellular Signaling Peptides and Proteins/metabolism , Intestine, Small/cytology , Mesenchymal Stem Cells/cytology , Animals , Cartilage/metabolism , Intestine, Small/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL
2.
Nature ; 604(7906): 509-516, 2022 04.
Article in English | MEDLINE | ID: mdl-35396579

ABSTRACT

Rare coding variation has historically provided the most direct connections between gene function and disease pathogenesis. By meta-analysing the whole exomes of 24,248 schizophrenia cases and 97,322 controls, we implicate ultra-rare coding variants (URVs) in 10 genes as conferring substantial risk for schizophrenia (odds ratios of 3-50, P < 2.14 × 10-6) and 32 genes at a false discovery rate of <5%. These genes have the greatest expression in central nervous system neurons and have diverse molecular functions that include the formation, structure and function of the synapse. The associations of the NMDA (N-methyl-D-aspartate) receptor subunit GRIN2A and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptor subunit GRIA3 provide support for dysfunction of the glutamatergic system as a mechanistic hypothesis in the pathogenesis of schizophrenia. We observe an overlap of rare variant risk among schizophrenia, autism spectrum disorders1, epilepsy and severe neurodevelopmental disorders2, although different mutation types are implicated in some shared genes. Most genes described here, however, are not implicated in neurodevelopment. We demonstrate that genes prioritized from common variant analyses of schizophrenia are enriched in rare variant risk3, suggesting that common and rare genetic risk factors converge at least partially on the same underlying pathogenic biological processes. Even after excluding significantly associated genes, schizophrenia cases still carry a substantial excess of URVs, which indicates that more risk genes await discovery using this approach.


Subject(s)
Mutation , Neurodevelopmental Disorders , Schizophrenia , Case-Control Studies , Exome , Genetic Predisposition to Disease/genetics , Humans , Neurodevelopmental Disorders/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Schizophrenia/genetics
3.
Nature ; 574(7779): 543-548, 2019 10.
Article in English | MEDLINE | ID: mdl-31645720

ABSTRACT

Multicellular organisms have co-evolved with complex consortia of viruses, bacteria, fungi and parasites, collectively referred to as the microbiota1. In mammals, changes in the composition of the microbiota can influence many physiologic processes (including development, metabolism and immune cell function) and are associated with susceptibility to multiple diseases2. Alterations in the microbiota can also modulate host behaviours-such as social activity, stress, and anxiety-related responses-that are linked to diverse neuropsychiatric disorders3. However, the mechanisms by which the microbiota influence neuronal activity and host behaviour remain poorly defined. Here we show that manipulation of the microbiota in antibiotic-treated or germ-free adult mice results in significant deficits in fear extinction learning. Single-nucleus RNA sequencing of the medial prefrontal cortex of the brain revealed significant alterations in gene expression in excitatory neurons, glia and other cell types. Transcranial two-photon imaging showed that deficits in extinction learning after manipulation of the microbiota in adult mice were associated with defective learning-related remodelling of postsynaptic dendritic spines and reduced activity in cue-encoding neurons in the medial prefrontal cortex. In addition, selective re-establishment of the microbiota revealed a limited neonatal developmental window in which microbiota-derived signals can restore normal extinction learning in adulthood. Finally, unbiased metabolomic analysis identified four metabolites that were significantly downregulated in germ-free mice and have been reported to be related to neuropsychiatric disorders in humans and mouse models, suggesting that microbiota-derived compounds may directly affect brain function and behaviour. Together, these data indicate that fear extinction learning requires microbiota-derived signals both during early postnatal neurodevelopment and in adult mice, with implications for our understanding of how diet, infection, and lifestyle influence brain health and subsequent susceptibility to neuropsychiatric disorders.


Subject(s)
Extinction, Psychological/physiology , Fear/physiology , Metabolomics , Microbiota/physiology , Neurons/physiology , Animals , Anti-Bacterial Agents/pharmacology , Autistic Disorder/metabolism , Blood/metabolism , Calcium/metabolism , Cerebrospinal Fluid/chemistry , Cerebrospinal Fluid/metabolism , Cues , Dendritic Spines/drug effects , Dendritic Spines/pathology , Dendritic Spines/physiology , Extinction, Psychological/drug effects , Fear/drug effects , Feces/chemistry , Germ-Free Life , Indican/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microbiota/drug effects , Microbiota/immunology , Neural Inhibition , Neuroglia/pathology , Neuroglia/physiology , Neurons/drug effects , Neurons/immunology , Neurons/pathology , Phenylpropionates/metabolism , Prefrontal Cortex/cytology , Prefrontal Cortex/drug effects , Prefrontal Cortex/immunology , Prefrontal Cortex/physiology , Schizophrenia/metabolism , Transcriptome , Vagus Nerve/physiology
4.
Mol Psychiatry ; 28(8): 3171-3181, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37580524

ABSTRACT

Most mental disorders have a typical onset between 12 and 25 years of age, highlighting the importance of this period for the pathogenesis, diagnosis, and treatment of mental ill-health. This perspective addresses interactions between risk and protective factors and brain development as key pillars accounting for the emergence of psychopathology in youth. Moreover, we propose that novel approaches towards early diagnosis and interventions are required that reflect the evolution of emerging psychopathology, the importance of novel service models, and knowledge exchange between science and practitioners. Taken together, we propose a transformative early intervention paradigm for research and clinical care that could significantly enhance mental health in young people and initiate a shift towards the prevention of severe mental disorders.


Subject(s)
Mental Disorders , Mental Health , Humans , Adolescent , Mental Disorders/therapy , Mental Disorders/diagnosis , Psychopathology
5.
Am J Respir Cell Mol Biol ; 69(1): 22-33, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36450109

ABSTRACT

VISTA (V domain immunoglobulin suppressor of T cell activation, also called PD-1H [programmed death-1 homolog]), a novel immune regulator expressed on myeloid and T lymphocyte lineages, is upregulated in mouse and human idiopathic pulmonary fibrosis (IPF). However, the significance of VISTA and its therapeutic potential in regulating IPF has yet to be defined. To determine the role of VISTA and its therapeutic potential in IPF, the expression profile of VISTA was evaluated from human single-cell RNA sequencing data (IPF Cell Atlas). Inflammatory response and lung fibrosis were assessed in bleomycin-induced experimental pulmonary fibrosis models in VISTA-deficient mice compared with wild-type littermates. In addition, these outcomes were evaluated after VISTA agonistic antibody treatment in the wild-type pulmonary fibrosis mice. VISTA expression was increased in lung tissue-infiltrating monocytes of patients with IPF. VISTA was induced in the myeloid population, mainly circulating monocyte-derived macrophages, during bleomycin-induced pulmonary fibrosis. Genetic ablation of VISTA drastically promoted pulmonary fibrosis, and bleomycin-induced fibroblast activation was dependent on the interaction between VISTA-expressing myeloid cells and fibroblasts. Treatment with VISTA agonistic antibody reduced fibrotic phenotypes accompanied by the suppression of lung innate immune and fibrotic mediators. In conclusion, these results suggest that VISTA upregulation in pulmonary fibrosis may be a compensatory mechanism to limit inflammation and fibrosis, and stimulation of VISTA signaling using VISTA agonists effectively limits the fibrotic innate immune landscape and consequent tissue fibrosis. Further studies are warranted to test VISTA as a novel therapeutic target for the IPF treatment.


Subject(s)
Idiopathic Pulmonary Fibrosis , Humans , Mice , Animals , Idiopathic Pulmonary Fibrosis/metabolism , Lung/pathology , Fibrosis , Bleomycin/pharmacology , Inflammation/metabolism , Fibroblasts/metabolism
6.
Radiology ; 307(3): e221401, 2023 05.
Article in English | MEDLINE | ID: mdl-36916888

ABSTRACT

Background Osteolytic neoplasms to periacetabular bone frequently cause pain and fractures. Immediate recovery is integral to lifesaving ambulatory oncologic care and maintaining quality of life. Yet, open acetabular reconstructive surgeries are associated with numerous complications that delay cancer treatments. Purpose To determine the effectiveness for short- and long-term pain and ambulatory function following percutaneous ablation, osteoplasty, reinforcement, and internal fixation (AORIF) for periacetabular osteolytic neoplasm. Materials and Methods This retrospective observational study evaluated clinical data from 50 patients (mean age, 65 years ± 14 [SD]; 25 men, 25 women) with osteolytic periacetabular metastases or myeloma. The primary outcome of combined pain and ambulatory function index score (range, 1 [bedbound] through 10 [normal ambulation]) was assessed before and after AORIF at 2 weeks and then every 3 months up to 40 months (overall median follow-up, 11 months [IQR, 4-14 months]). Secondary outcomes included Eastern Cooperative Oncology Group (ECOG) score, infection, transfusion, 30-day readmission, mortality, and conversion hip arthroplasty. Serial radiographs and CT images were obtained to assess the hip joint integrity. The paired t test or Wilcoxon signed-rank test and Kaplan-Meier analysis were used to analyze data. Results Mean combined pain and ambulatory function index scores improved from 4.5 ± 2.4 to 7.8 ± 2.1 (P < .001) and median ECOG scores from 3 (IQR, 2-4) to 1 (IQR, 1-2) (P < .001) at the first 2 weeks after AORIF. Of 22 nonambulatory patients, 19 became ambulatory on their first post-AORIF visit. Pain and functional improvement were retained beyond 1 year, up to 40 months after AORIF in surviving patients. No hardware failures, surgical site infections, readmissions, or delays in care were identified following AORIF. Of 12 patients with protrusio acetabuli, one patient required a conversion hemiarthroplasty at 24 months. Conclusion The ablation, osteoplasty, reinforcement, and internal fixation, or AORIF, technique was effective for short- and long-term improvement of pain and ambulatory function in patients with periacetabular osteolytic neoplasm. © RSNA, 2023.


Subject(s)
Catheter Ablation , Neoplasms , Male , Humans , Female , Aged , Quality of Life , Treatment Outcome , Osteotomy/methods , Retrospective Studies
7.
Med Care ; 61(1): 12-19, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36477617

ABSTRACT

CONTEXT: Medicaid expansion has been nationally shown to improve engagement in the human immunodeficiency virus (HIV) treatment and prevention continua, which are vital steps to stopping the HIV epidemic. New HIV infections in the United States are disproportionately concentrated among young Black men who have sex with men (YBMSM). Houston, TX, is the most populous city in the Southern United States with a racially/ethnically diverse population that is located in 1 of 11 US states that have not yet expanded Medicaid coverage as of 2021. METHODS: An agent-based model that incorporated the sexual networks of YBMSM was used to simulate improved antiretroviral treatment and pre-exposure prophylaxis (PrEP) engagement through Medicaid expansion in Houston, TX. Analyses considered the HIV incidence (number of new infections and as a rate metric) among YBMSM over the next 10 years under Medicaid expansion as the primary outcome. Additional scenarios, involving viral suppression and PrEP uptake above the projected levels achieved under Medicaid expansion, were also simulated. RESULTS: The baseline model projected an HIV incidence rate of 4.96 per 100 person years (py) and about 368 new annual HIV infections in the 10th year. Improved HIV treatment and prevention continua engagement under Medicaid expansion resulted in a 14.9% decline in the number of annual new HIV infections in the 10th year. Increasing viral suppression by an additional 15% and PrEP uptake by 30% resulted in a 44.0% decline in new HIV infections in the 10th year, and a 27.1% decline in cumulative infections across the 10 years of the simulated intervention. FINDINGS: Simulation results indicate that Medicaid expansion has the potential to reduce HIV incidence among YBMSM in Houston. Achieving HIV elimination objectives, however, might require additional effective measures to increase antiretroviral treatment and PrEP uptake beyond the projected improvements under expanded Medicaid.


Subject(s)
HIV Infections , Sexual and Gender Minorities , Humans , Male , HIV , HIV Infections/drug therapy , HIV Infections/epidemiology , HIV Infections/prevention & control , Homosexuality, Male , Texas/epidemiology
8.
Proc Natl Acad Sci U S A ; 117(48): 30710-30721, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33208539

ABSTRACT

Although ubiquitous in biological studies, the enhanced green and yellow fluorescent proteins (EGFP and EYFP) were not specifically optimized for neuroscience, and their underwhelming brightness and slow expression in brain tissue limits the fidelity of dendritic spine analysis and other indispensable techniques for studying neurodevelopment and plasticity. We hypothesized that EGFP's low solubility in mammalian systems must limit the total fluorescence output of whole cells, and that improving folding efficiency could therefore translate into greater brightness of expressing neurons. By introducing rationally selected combinations of folding-enhancing mutations into GFP templates and screening for brightness and expression rate in human cells, we developed mGreenLantern, a fluorescent protein having up to sixfold greater brightness in cells than EGFP. mGreenLantern illuminates neurons in the mouse brain within 72 h, dramatically reducing lag time between viral transduction and imaging, while its high brightness improves detection of neuronal morphology using widefield, confocal, and two-photon microscopy. When virally expressed to projection neurons in vivo, mGreenLantern fluorescence developed four times faster than EYFP and highlighted long-range processes that were poorly detectable in EYFP-labeled cells. Additionally, mGreenLantern retains strong fluorescence after tissue clearing and expansion microscopy, thereby facilitating superresolution and whole-brain imaging without immunohistochemistry. mGreenLantern can directly replace EGFP/EYFP in diverse systems due to its compatibility with GFP filter sets, recognition by EGFP antibodies, and excellent performance in mouse, human, and bacterial cells. Our screening and rational engineering approach is broadly applicable and suggests that greater potential of fluorescent proteins, including biosensors, could be unlocked using a similar strategy.


Subject(s)
Gene Expression , Green Fluorescent Proteins/genetics , Molecular Imaging , Neurons/metabolism , Animals , Brain/metabolism , Fluorescent Antibody Technique , Genes, Reporter , Green Fluorescent Proteins/chemistry , Mice , Microscopy, Fluorescence , Molecular Imaging/methods , Mutation , Protein Stability , Proteolysis , Solubility , Spectrum Analysis
9.
Dev Psychobiol ; 65(6): e22409, 2023 09.
Article in English | MEDLINE | ID: mdl-37607892

ABSTRACT

Anxiety disorders are more prevalent in females than in males, yet a majority of basic neuroscience studies are performed in males. Furthermore, anxiety disorders peak in prevalence during adolescence, yet little is known about neurodevelopmental trajectories of fear expression, particularly in females. To examine these factors, we fear conditioned juvenile, adolescent, and adult female mice and exposed them to fear extinction and a long-term recall test. For this, we used knock-in mice containing a common human mutation in the gene for fatty acid amide hydrolase (FAAH), the primary catabolic enzyme for the endocannabinoid anandamide (FAAH-IN). This mutation has been shown to impart a low-anxiety phenotype in humans, and in rodents relative to their wild-type littermates. We find an impact of the FAAH polymorphism on developmental changes in fear behavior. Specifically, the FAAH polymorphism appears to induce a state of hypervigilance (increased fear) during adolescence. We also used markerless pose estimation software to classify alternative behaviors outside of freezing. These analyses revealed age differences in vigilance to indicators of threat and in the propensity of mice to explore an aversive environment, though genotypic differences were minimal. These findings address a gap in the literature regarding developmental patterns of fear learning and memory as well as the mechanistic contributions of the endocannabinoid system in females.


Subject(s)
Endocannabinoids , Fear , Animals , Female , Humans , Male , Mice , Extinction, Psychological , Polymorphism, Genetic
10.
Radiol Med ; 128(7): 828-838, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37300736

ABSTRACT

PURPOSE: This study aimed to discover intra-tumor heterogeneity signature and validate its predictive value for adjuvant chemotherapy (ACT) following concurrent chemoradiotherapy (CCRT) in locoregionally advanced nasopharyngeal carcinoma (LA-NPC). MATERIALS AND METHODS: 397 LA-NPC patients were retrospectively enrolled. Pre-treatment contrast-enhanced T1-weighted (CET1-w) MR images, clinical variables, and follow-up were retrospectively collected. We identified single predictive radiomic feature from primary gross tumor volume (GTVnp) and defined predicted subvolume by calculating voxel-wised feature mapping and within GTVnp. We independently validate predictive value of identified feature and associated predicted subvolume. RESULTS: Only one radiomic feature, gldm_DependenceVariance in 3 mm-sigma LoG-filtered image, was discovered as a signature. In the high-risk group determined by the signature, patients received CCRT + ACT achieved 3-year disease free survival (DFS) rate of 90% versus 57% (HR, 0.20; 95%CI, 0.05-0.94; P = 0.007) for CCRT alone. The multivariate analysis showed patients receiving CCRT + ACT had a HR of 0.21 (95%CI: 0.06-0.68, P = 0.009) for DFS compared to those receiving CCRT alone. The predictive value can also be generalized to the subvolume with multivariate HR of 0.27 (P = 0.017) for DFS. CONCLUSION: The signature with its heterogeneity mapping could be a reliable and explainable ACT decision-making tool in clinical practice.


Subject(s)
Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/diagnostic imaging , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Neoplasms/diagnostic imaging , Nasopharyngeal Neoplasms/drug therapy , Retrospective Studies , Cisplatin/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chemotherapy, Adjuvant/methods , Chemoradiotherapy/methods
11.
J Cell Physiol ; 237(10): 3834-3844, 2022 10.
Article in English | MEDLINE | ID: mdl-35908196

ABSTRACT

Stressful life events are considered major risk factors for the development of several psychiatric disorders, though people differentially cope with stress. The reasons for this are still largely unknown but could be accounted for by individual genetic variants, previous life events, or the kind of stressors. The human brain-derived neurotrophic factor (BDNF) Val66Met variant, which was found to impair intracellular trafficking and activity-dependent secretion of BDNF, has been associated with increased susceptibility to develop several neuropsychiatric disorders, although there is still some controversial evidence. On the other hand, acute stress has been consistently demonstrated to promote the release of glutamate in cortico-limbic regions and altered glutamatergic transmission has been reported in psychiatric disorders. However, it is not known if the BDNF Val66Met single-nucleotide polymorphism (SNP) affects the stress-induced presynaptic glutamate release. In this study, we exposed adult male BDNFVal/Val and BDNFVal/Met knock-in mice to 30 min of acute restraint stress. Plasma corticosterone levels, glutamate release, protein, and gene expression in the hippocampus were analyzed immediately after the end of the stress session. Acute restraint stress similarly increased plasma corticosterone levels and nuclear glucocorticoid receptor levels and phosphorylation in both BDNFVal/Val and BDNFVal/Met mice. However, acute restraint stress induced higher increases in hippocampal presynaptic release of glutamate, phosphorylation of cAMP-response element binding protein (CREB), and levels of the immediate early gene c-fos of BDNFVal/Met compared to BFNFVal/Val mice. Moreover, acute restraint stress selectively increased phosphorylation levels of synapsin I at Ser9 and at Ser603 in BDNFVal/Val and BDNFVal/Met mice, respectively. In conclusion, we report here that the BDNF Val66Met SNP knock-in mice display an altered response to acute restraint stress in terms of hippocampal glutamate release, CREB phosphorylation, and neuronal activation, compared to wild-type animals. Taken together, these results could partially explain the enhanced vulnerability to stressful events of Met carriers reported in both preclinical and clinical studies.


Subject(s)
Brain-Derived Neurotrophic Factor , Glutamic Acid , Animals , Male , Mice , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Corticosterone , Genotype , Glutamic Acid/metabolism , Hippocampus/metabolism , Polymorphism, Single Nucleotide , Receptors, Glucocorticoid/genetics , Stress, Physiological , Synapsins/genetics , Synapsins/metabolism
12.
J Cell Sci ; 133(24)2020 12 23.
Article in English | MEDLINE | ID: mdl-33288548

ABSTRACT

Ubiquitylation of receptor tyrosine kinases (RTKs) regulates both the levels and functions of these receptors. The neurotrophin receptor TrkB (also known as NTRK2), a RTK, is ubiquitylated upon activation by brain-derived neurotrophic factor (BDNF) binding. Although TrkB ubiquitylation has been demonstrated, there is a lack of knowledge regarding the precise repertoire of proteins that regulates TrkB ubiquitylation. Here, we provide mechanistic evidence indicating that ubiquitin carboxyl-terminal hydrolase 8 (USP8) modulates BDNF- and TrkB-dependent neuronal differentiation. USP8 binds to the C-terminus of TrkB using its microtubule-interacting domain (MIT). Immunopurified USP8 deubiquitylates TrkB in vitro, whereas knockdown of USP8 results in enhanced ubiquitylation of TrkB upon BDNF treatment in neurons. As a consequence of USP8 depletion, TrkB levels and its activation are reduced. Moreover, USP8 protein regulates the differentiation and correct BDNF-dependent dendritic formation of hippocampal neurons in vitro and in vivo We conclude that USP8 positively regulates the levels and activation of TrkB, modulating BDNF-dependent neuronal differentiation.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Brain-Derived Neurotrophic Factor , Receptor, trkB , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cells, Cultured , Endopeptidases , Endosomal Sorting Complexes Required for Transport , Hippocampus/metabolism , Humans , Membrane Glycoproteins , Neurons/metabolism , Receptor, trkB/genetics , Receptor, trkB/metabolism , Signal Transduction , Ubiquitin Thiolesterase/genetics
13.
Mol Psychiatry ; 26(3): 927-940, 2021 03.
Article in English | MEDLINE | ID: mdl-31988435

ABSTRACT

Social memory processing requires functional CA2 neurons, however the specific mechanisms that regulate their activity are poorly understood. Here, we document that SorCS2, a member of the family of the Vps10 family of sorting receptors, is highly expressed in pyramidal neurons of CA2, as well as ventral CA1, a circuit implicated in social memory. SorCS2 specifically localizes to the postsynaptic density and endosomes within dendritic spines of CA2 neurons. We have discovered that SorCS2 is a selective regulator of NMDA receptor surface trafficking in hippocampal neurons, without altering AMPA receptor trafficking. In addition, SorCS2 regulates dendritic spine density in CA2 neurons where SorCS2 expression is enriched, but not in dorsal CA1 neurons, which normally express very low levels of this protein. To specifically test the role of SorCS2 in behavior, we generated a novel SorCS2-deficient mouse, and identify a significant social memory deficit, with no change in sociability, olfaction, anxiety, or several hippocampal-dependent behaviors. Mutations in sorCS2 have been associated with bipolar disease, schizophrenia, and attention deficient-hyperactivity disorder, and abnormalities in social memory are core components of these neuropsychiatric conditions. Thus, our findings provide a new mechanism for social memory formation, through regulating synaptic receptor trafficking in pyramidal neurons by SorCS2.


Subject(s)
Memory , Nerve Tissue Proteins , Pyramidal Cells , Receptors, Cell Surface , Receptors, N-Methyl-D-Aspartate , Animals , Dendritic Spines/metabolism , Hippocampus/metabolism , Mice , Neurons/metabolism , Pyramidal Cells/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism
14.
Mol Psychiatry ; 26(9): 5140-5149, 2021 09.
Article in English | MEDLINE | ID: mdl-32536688

ABSTRACT

Insulin signaling is critical for neuroplasticity, cerebral metabolism as well as for systemic energy metabolism. In rodent studies, impaired brain insulin signaling with resultant insulin resistance (IR) modulates synaptic plasticity and the corresponding behavioral functions. Despite discoveries of central actions of insulin, in vivo molecular mechanisms of brain IR until recently have proven difficult to study in the human brain. In the current study, we leveraged recent technological advances in molecular biology and herein report an increased number of exosomes enriched for L1CAM, a marker predominantly expressed in the brain, in subjects with major depressive disorder (MDD) as compared with age- and sex-matched healthy controls (HC). We also report increased concentration of the insulin receptor substrate-1 (IRS-1) in L1CAM+ exosomes in subjects with MDD as compared with age- and sex-matched HC. We found a relationship between expression of IRS-1 in L1CAM+ exosomes and systemic IR as assessed by homeostatic model assessment of IR in HC, but not in subjects with MDD. The increased IRS-1 levels in L1CAM+ exosomes were greater in subjects with MDD and were associated with suicidality and anhedonia. Finally, our data suggested sex differences in serine-312 phosphorylation of IRS-1 in L1CAM+ exosomes in subjects with MDD. These findings provide a starting point for creating mechanistic framework of brain IR in further development of personalized medicine strategies to effectively treat MDD.


Subject(s)
Depressive Disorder, Major , Exosomes , Insulin Resistance , Brain/metabolism , Depression , Depressive Disorder, Major/metabolism , Exosomes/metabolism , Female , Humans , Insulin/metabolism , Male , Phosphoproteins/metabolism , Phosphorylation , Receptor, Insulin/metabolism
15.
Mol Psychiatry ; 26(3): 955-973, 2021 03.
Article in English | MEDLINE | ID: mdl-30992540

ABSTRACT

Social deficits are common in many psychiatric disorders. However, due to inadequate tools for manipulating circuit activity in humans and unspecific paradigms for modeling social behaviors in rodents, our understanding of the molecular and circuit mechanisms mediating social behaviors remains relatively limited. Using human functional neuroimaging and rodent fiber photometry, we identified a mOFC-BLA projection that modulates social approach behavior and influences susceptibility to social anxiety. In humans and knock-in mice with a loss of function BDNF SNP (Val66Met), the functionality of this circuit was altered, resulting in social behavioral changes in human and mice. We further showed that the development of this circuit is disrupted in BDNF Met carriers due to insufficient BDNF bioavailability, specifically during a peri-adolescent timeframe. These findings define one mechanism by which social anxiety may stem from altered maturation of orbitofronto-amygdala projections and identify a developmental window in which BDNF-based interventions may have therapeutic potential.


Subject(s)
Brain-Derived Neurotrophic Factor , Polymorphism, Single Nucleotide , Adolescent , Amygdala , Animals , Brain-Derived Neurotrophic Factor/genetics , Fear , Humans , Mice
16.
J Natl Compr Canc Netw ; 20(10): 1125-1133.e10, 2022 10.
Article in English | MEDLINE | ID: mdl-36240841

ABSTRACT

BACKGROUND: The incidence and survival of colorectal cancer (CRC) are increasing. There is an increasing number of long-term survivors, many of whom are elderly and have comorbidities. We conducted a population-based study in Hong Kong to assess the long-term cardiovascular disease (CVD) incidence associated with adjuvant fluoropyrimidine-based chemotherapy among CRC survivors. PATIENTS AND METHODS: Using the population-based electronic medical database of Hong Kong, we identified adults who were diagnosed with high-risk stage II-III CRC and treated with radical surgery followed by adjuvant fluoropyrimidine-based chemotherapy between 2010 and 2019. We evaluated the cause-specific cumulative incidence of CVD (including ischemic heart disease, heart failure, cardiomyopathy, and stroke) using the flexible parametric competing risk modeling framework. The control group without a history of CVD was selected from among a noncancer random sample from primary care clinics in the same geographic area. RESULTS: We analyzed 1,037 treated patients with CRC and 5,078 noncancer controls. The adjusted cause-specific hazard ratio (HR) for CVD in the cancer cohort compared with the control group was 2.11 (95% CI, 1.39-3.20). The 1-, 5-, and 10-year cause-specific cumulative incidences were 2.0%, 4.5%, and 5.4% in the cancer cohort versus 1.2%, 3.0%, and 3.8% in the control group, respectively. Age at cancer diagnosis (HR per 5-year increase, 1.16; 95% CI, 1.08-1.24), male sex (HR, 1.40; 95% CI, 1.06-1.86), comorbidity (HR, 1.88; 95% CI, 1.36-2.61 for 1 comorbidity vs none, and HR, 6.61; 95% CI, 4.55-9.60 for ≥2 comorbidities vs none), diabetes (HR, 1.38; 95% CI, 1.04-1.84), hypertension (HR, 3.27; 95% CI, 2.39-4.50), and dyslipidemia/hyperlipidemia (HR, 2.53; 95% CI, 1.68-3.81) were associated with incident CVD. CONCLUSIONS: Exposure to adjuvant fluoropyrimidine-based chemotherapy was associated with an increased risk of CVD among survivors of high-risk stage II-III CRC. Cardiovascular risk monitoring of this group throughout cancer survivorship is advisable.


Subject(s)
Cardiovascular Diseases , Colorectal Neoplasms , Adult , Aged , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cohort Studies , Colorectal Neoplasms/complications , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/therapy , Humans , Incidence , Male , Risk Factors , Survivors
17.
Soc Psychiatry Psychiatr Epidemiol ; 57(10): 1999-2011, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35460059

ABSTRACT

PURPOSE: To examine associations between COVID-19-related stressors and symptoms of depression and anxiety in Black cisgender sexual minority men (SMM) and transgender women during the initial peak of the COVID-19 pandemic. METHODS: Participants from the N2 Cohort Study comprised Black cisgender SMM and Black transgender women in Chicago, IL, completed a face-to-face video or phone interview between April 20 and July 31, 2020. The survey included 18 measures of individual, network, and structural COVID-19 stressors such as income loss, network COVID-19 diagnoses, and housing loss, as well as 5 outcome measures: anxiety, depression, loneliness, worry and hope. RESULTS: Of 226 participants, 56.6% experienced anxiety on at least 1 of the last 14 days, 48.7% experienced depression, 48.7% experienced loneliness, 42.0% experienced worry, and 51.8% did not experience hope. Completing the study during a later phase of reopening was associated with hopefulness, RR = 1.37 95% CI [1.02, 1.85]. Fifteen of the 18 multi-level COVID-19 stressors were associated with 1 or more symptoms of depression and anxiety, for example, physical stress reactions, income loss, food loss, medication loss, network COVID-19 diagnoses, partner violence, housing loss, and neighborhood pandemic concerns (aRRs = 0.61-2.78, ps < 0.05). CONCLUSION: COVID-19-related stressors were associated with depression and anxiety symptoms in Black cisgender SMM and transgender women. Mitigation strategies to reduce virus transmission should be supplemented with measures to prevent depression and anxiety among marginalized populations, such as targeted economic relief and eHealth/mHealth interventions.


Subject(s)
COVID-19 , Sexual and Gender Minorities , Transgender Persons , Anxiety/epidemiology , COVID-19/epidemiology , Cohort Studies , Depression/epidemiology , Female , Humans , Male , Pandemics
18.
Proc Natl Acad Sci U S A ; 116(52): 26970-26979, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31822612

ABSTRACT

Heightened fear and inefficient safety learning are key features of fear and anxiety disorders. Evidence-based interventions for anxiety disorders, such as cognitive behavioral therapy, primarily rely on mechanisms of fear extinction. However, up to 50% of clinically anxious individuals do not respond to current evidence-based treatment, suggesting a critical need for new interventions based on alternative neurobiological pathways. Using parallel human and rodent conditioned inhibition paradigms alongside brain imaging methodologies, we investigated neural activity patterns in the ventral hippocampus in response to stimuli predictive of threat or safety and compound cues to test inhibition via safety in the presence of threat. Distinct hippocampal responses to threat, safety, and compound cues suggest that the ventral hippocampus is involved in conditioned inhibition in both mice and humans. Moreover, unique response patterns within target-differentiated subpopulations of ventral hippocampal neurons identify a circuit by which fear may be inhibited via safety. Specifically, ventral hippocampal neurons projecting to the prelimbic cortex, but not to the infralimbic cortex or basolateral amygdala, were more active to safety and compound cues than threat cues, and activity correlated with freezing behavior in rodents. A corresponding distinction was observed in humans: hippocampal-dorsal anterior cingulate cortex functional connectivity-but not hippocampal-anterior ventromedial prefrontal cortex or hippocampal-basolateral amygdala connectivity-differentiated between threat, safety, and compound conditions. These findings highlight the potential to enhance treatment for anxiety disorders by targeting an alternative neural mechanism through safety signal learning.

19.
Instr Course Lect ; 71: 213-220, 2022.
Article in English | MEDLINE | ID: mdl-35254784

ABSTRACT

Many orthopaedic procedures for osteolytic metastases are performed using surgical techniques and implants that are used in arthroplasties or trauma surgeries. There is a need for development of skeletal metastasis-specific procedures. Massive osteolytic metastases in periacetabular regions are managed with open surgical procedures when radiation and antiresorptive agents fail to prevent development and progression of the lesion. An ideal procedure for osteolytic metastases would decrease cancer burden and stabilize weakened bones for continued ambulatory oncologic care without delay. Therefore, ablation, osteoplasty, reinforcement, and internal fixation (AORIF) is a new alternative percutaneous procedure for osteolytic metastases in pelvis and other periarticular osteolytic metastases. Percutaneously inserted cannulated screws provide a universal portal for catheters for ablation, balloon osteoplasty, and zoledronate-loaded bone cement. AORIF reduces local cancer burden by radiofrequency ablation and improves bone strength immediately with polymethyl methacrylate bone cement for enhanced ambulatory oncologic care. Similar to other reported series of percutaneous reinforcement procedures, AORIF improves ambulatory status for localized bone defects in patients who seek anticancer drug therapies. AORIF does not provide anatomic restoration of established comminuted acetabular fractures or protrusio acetabuli but improves pain and ambulatory status for continued oncologic care. AORIF is a new alternative first-line minimally-invasive procedure for patients with advanced cancers and osteolytic pelvic metastases.


Subject(s)
Bone Neoplasms , Bone Cements/therapeutic use , Bone Neoplasms/surgery , Fracture Fixation, Internal/adverse effects , Humans , Pelvis , Treatment Outcome
20.
Instr Course Lect ; 71: 185-201, 2022.
Article in English | MEDLINE | ID: mdl-35254782

ABSTRACT

The surgical management of acetabular and pelvic lesions due to metastatic bone disease is complex in nature. These patients are typically in a frail state, having severe pain, limited mobility, and impaired wound healing. This causes a potential for complications, a high concern for the surgeon. Compounding these issues is limited life span for these patients given the advancement of the disease. Considerations for patients undergoing surgical treatment are achievement of significant pain relief and restoration of ambulation, all while having minimal complications during the postoperative period. Management may also include nonsurgical and interventional methods. A multidisciplinary approach is required for the successful treatment of these patients. Although there have been various surgical methods described, there is still no standardized modality that has been noted. These lesions often require complex decision making, imaging, and surgical reconstruction.


Subject(s)
Bone Neoplasms , Plastic Surgery Procedures , Acetabulum/surgery , Bone Neoplasms/surgery , Humans , Pain , Pelvis/surgery
SELECTION OF CITATIONS
SEARCH DETAIL