Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 386
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 612(7940): 470-476, 2022 12.
Article in English | MEDLINE | ID: mdl-36517715

ABSTRACT

Quantitative determination and in situ monitoring of molecular chirality at extremely low concentrations is still challenging with simple optics because of the molecular-scale mismatch with the incident light wavelength. Advances in spectroscopy1-4 and nanophotonics have successfully lowered the detection limit in enantioselective sensing, as it can bring the microscopic chiral characteristics of molecules into the macroscopic scale5-7 or squeeze the chiral light into the subwavelength scale8-17. Conventional nanophotonic approaches depend mainly on the optical helicity density8,9 by localized resonances within an individual structure, such as localized surface plasmon resonances (LSPRs)10-16 or dielectric Mie resonances17. These approaches use the local chiral hotspots in the immediate vicinity of the structure, whereas the handedness of these hotspots varies spatially. As such, these localized resonance modes tend to be error-prone to the stochasticity of the target molecular orientations, vibrations and local concentrations18,19. Here we identified enantioselective characteristics of collective resonances (CRs)20 arising from assembled 2D crystals of isotropic, 432-symmetric chiral gold nanoparticles (helicoids)21,22. The CRs exhibit a strong and uniform chiral near field over a large volume above the 2D crystal plane, resulting from the collectively spinning, optically induced dipoles at each helicoid. Thus, energy redistribution by molecular back action on the chiral near field shifts the CRs in opposite directions, depending on the handedness of the analyte, maximizing the modulation of the collective circular dichroism (CD).

2.
Anal Chem ; 96(24): 9894-9900, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38834937

ABSTRACT

Surface-enhanced Raman optical activity (SEROA) is a promising method for analyzing chiral molecules' molecular chirality and structural changes. However, conventional SEROA measurements face challenges related to substrate stability, signal uniformity, and interference from electronic circular dichroism (ECD). Therefore, in this study, we present a uniform and stable substrate for SEROA measurements by utilizing Au nanoparticles on the Au nanofilm structure to confine hotspots to the film-particle junctions and minimize ECD interference. This method also uses the induction of chirality from chiral molecules to achiral molecules to overcome the limitation of chiral molecules in SEROA measurements, specifically their lower signal efficiency. Successful chirality transfer is demonstrated through distinguishable SEROA signals when the l/d-alanine mixture is present. Enantiomeric discrimination of different l/d-alanine ratios was achieved with linear responses in the circular intensity difference (CID). Altogether, the proposed chiral-induced SEROA on the AuNP_on_AuNF substrate shows promising potential for detecting and characterizing structural changes in biomolecules, thus making it a valuable tool for various research applications.

3.
Am J Pathol ; 193(7): 866-882, 2023 07.
Article in English | MEDLINE | ID: mdl-37024046

ABSTRACT

The disease severity of coronavirus disease 2019 (COVID-19) varies considerably from asymptomatic to serious, with fatal complications associated with dysregulation of innate and adaptive immunity. Lymphoid depletion in lymphoid tissues and lymphocytopenia have both been associated with poor disease outcomes in patients with COVID-19, but the mechanisms involved remain elusive. In this study, human angiotensin-converting enzyme 2 (hACE2) transgenic mouse models susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were used to investigate the characteristics and determinants of lethality associated with the lymphoid depletion observed in SARS-CoV-2 infection. The lethality of Wuhan SARS-CoV-2 infection in K18-hACE2 mice was characterized by severe lymphoid depletion and apoptosis in lymphoid tissues related to fatal neuroinvasion. The lymphoid depletion was associated with a decreased number of antigen-presenting cells (APCs) and their suppressed functionality below basal levels. Lymphoid depletion with reduced APC function was a specific feature observed in SARS-CoV-2 infection but not in influenza A infection and had the greatest prognostic value for disease severity in murine COVID-19. Comparison of transgenic mouse models resistant and susceptible to SARS-CoV-2 infection revealed that suppressed APC function could be determined by the hACE2 expression pattern and interferon-related signaling. Thus, we demonstrated that lymphoid depletion associated with suppressed APC function characterizes the lethality of COVID-19 mouse models. Our data also suggest a potential therapeutic approach to prevent the severe progression of COVID-19 by enhancing APC functionality.


Subject(s)
COVID-19 , Mice , Humans , Animals , SARS-CoV-2/metabolism , Peptidyl-Dipeptidase A/metabolism , Mice, Transgenic , Disease Susceptibility , Antigen-Presenting Cells , Disease Models, Animal , Lung/metabolism
4.
J Med Virol ; 96(3): e29506, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38445718

ABSTRACT

With the global pandemic and the continuous mutations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the need for effective and broadly neutralizing treatments has become increasingly urgent. This study introduces a novel strategy that targets two aspects simultaneously, using bifunctional antibodies to inhibit both the attachment of SARS-CoV-2 to host cell membranes and viral fusion. We developed pioneering IgG4-(HR2)4 bifunctional antibodies by creating immunoglobulin G4-based and phage display-derived human monoclonal antibodies (mAbs) that specifically bind to the SARS-CoV-2 receptor-binding domain, engineered with four heptad repeat 2 (HR2) peptides. Our in vitro experiments demonstrate the superior neutralization efficacy of these engineered antibodies against various SARS-CoV-2 variants, ranging from original SARS-CoV-2 strain to the recently emerged Omicron variants, as well as SARS-CoV, outperforming the parental mAb. Notably, intravenous monotherapy with the bifunctional antibody neutralizes a SARS-CoV-2 variant in a murine model without causing significant toxicity. In summary, this study unveils the significant potential of HR2 peptide-driven bifunctional antibodies as a potent and versatile strategy for mitigating SARS-CoV-2 infections. This approach offers a promising avenue for rapid development and management in the face of the continuously evolving SARS-CoV-2 variants, holding substantial promise for pandemic control.


Subject(s)
Antibodies, Bispecific , COVID-19 , Humans , Animals , Mice , SARS-CoV-2/genetics , Antibodies, Monoclonal/therapeutic use , Immunoglobulin G , Peptides/genetics , Power, Psychological
5.
Toxicol Appl Pharmacol ; 483: 116806, 2024 02.
Article in English | MEDLINE | ID: mdl-38195004

ABSTRACT

Cadmium (Cd) is a naturally occurring, toxic environmental metal found in foods. Humans do not have an efficient mechanism for Cd elimination; thus, Cd burden in humans increases with age. Cell and mouse studies show that Cd burden from low environmental levels of exposure impacts lung cell metabolism, proliferation signaling and cell growth as part of disease-promoting profibrotic responses in the lungs. Prior integrative analysis of metabolomics and transcriptomics identified the zDHHC11 transcript as a central functional hub in response to Cd dose. zDHHC11 encodes a protein S-palmitoyltransferase, but no evidence is available for effects of Cd on protein S-palmitoylation. In the present research, we studied palmitoylation changes in response to Cd and found increased protein S-palmitoylation in human lung fibroblasts that was inhibited by 2-bromopalmitate (2-BP), an irreversible palmitoyltransferase inhibitor. Mass spectrometry-based proteomics showed palmitoylation of proteins involved in divalent metal transport and in fibrotic signaling. Mechanistic studies showed that 2-BP inhibited palmitoylation of divalent metal ion transporter ZIP14 and also inhibited cellular Cd uptake. Transcription analyses showed that Cd stimulated transforming growth factor (TGF)-ß1 and ß3 expression within 8 h and lung fibrotic markers α-smooth muscle actin, matrix metalloproteinase-2, and collagen 1α1 gene expression and that these effects were blocked by 2-BP. Because 2-BP also blocked palmitoylation of proteins controlled by TGFß1, these results show that palmitoylation impacts Cd-dependent fibrotic signaling both by enhancing cellular Cd accumulation and by supporting post-translational processing of TGFß1-dependent proteins.


Subject(s)
Cadmium , Matrix Metalloproteinase 2 , Humans , Mice , Animals , Cadmium/toxicity , Cadmium/metabolism , Matrix Metalloproteinase 2/metabolism , Lipoylation , Lung , Signal Transduction , Fibrosis , Fibroblasts , Transforming Growth Factor beta1/metabolism
6.
Ecotoxicol Environ Saf ; 283: 116776, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39059344

ABSTRACT

Exposure to environmental heavy metals such as lead (Pb) and cadmium (Cd) is a global concern due to their widespread presence. However, the specific pulmonary effects of inhaled exposure, especially related to long-term effects, remain poorly understood. In this study, we developed a novel mouse model of Pb and Cd inhalation to mimic real-world conditions and investigate pulmonary effects. Mice were exposed to Pb and Cd inhalation for 6 months using a whole-body exposure system, resulting in decreased lung compliance and progression from emphysematous changes to fibrosis. In addition, the blood Pb/Cd levels of mice exposed to Pb/Cd for 6 months are like those of humans occupationally exposed to heavy metals. Histology revealed inflammation and collagen deposition. Transcriptomic analysis highlighted immune responses and macrophage activity in developing fibrosis. These results confirm an association between Pb/Cd exposure and emphysema and fibrosis, reflecting clinical findings. The study highlights the importance of long-term exposure assessment and time-course analysis for understanding Pb/Cd-induced lung disease. The relevance of the mouse model in replicating human exposure scenarios underscores its value in studying fibrosis and emphysema simultaneously. These findings provide a basis for targeted therapeutic interventions against heavy metal-induced lung injury.

7.
Environ Monit Assess ; 196(6): 506, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702588

ABSTRACT

Industrial cities are hotspots for many hazardous air pollutants (HAPs), which are detrimental to human health. We devised an identification method to determine priority HAP monitoring areas using a comprehensive approach involving monitoring, modeling, and demographics. The methodology to identify the priority HAP monitoring area consists of two parts: (1) mapping the spatial distribution of selected categories relevant to the target pollutant and (2) integrating the distribution maps of various categories and subsequent scoring. The identification method was applied in Ulsan, the largest industrial city in South Korea, to identify priority HAP monitoring areas. Four categories related to HAPs were used in the method: (1) concentrations of HAPs, (2) amount of HAP emissions, (3) the contribution of industrial activities, and (4) population density in the city. This method can be used to select priority HAP monitoring areas for intensive monitoring campaigns, cohort studies, and epidemiological studies.


Subject(s)
Air Pollutants , Air Pollution , Cities , Environmental Monitoring , Geographic Information Systems , Environmental Monitoring/methods , Air Pollutants/analysis , Republic of Korea , Air Pollution/statistics & numerical data , Industry , Humans , Hazardous Substances/analysis
8.
Virol J ; 20(1): 285, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38041113

ABSTRACT

BACKGROUND: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has challenged the effectiveness of current therapeutic regimens. Here, we aimed to develop a potent SARS-CoV-2 antibody with broad neutralizing effect by screening a scFv library with the spike protein receptor-binding domain (RBD) via phage display. METHODS: SKAI-DS84 was identified through phage display, and we performed pseudovirus neutralization assays, authentic virus neutralization assays, and in vivo neutralization efficacy evaluations. Furthermore, surface plasmon resonance (SPR) analysis was conducted to assess the physical characteristics of the antibody, including binding kinetics and measure its affinity for variant RBDs. RESULTS: The selected clones were converted to human IgG, and among them, SKAI-DS84 was selected for further analyses based on its binding affinity with the variant RBDs. Using pseudoviruses, we confirmed that SKAI-DS84 was strongly neutralizing against wild-type, B.1.617.2, B.1.1.529, and subvariants of SARS-CoV-2. We also tested the neutralizing effect of SKAI-DS84 on authentic viruses, in vivo and observed a reduction in viral replication and improved lung pathology. We performed binding and epitope mapping experiments to understand the mechanisms underlying neutralization and identified quaternary epitopes formed by the interaction between RBDs as the target of SKAI-DS84. CONCLUSIONS: We identified, produced, and tested the neutralizing effect of SKAI-DS84 antibody. Our results highlight that SKAI-DS84 could be a potential neutralizing antibody against SARS-CoV-2 and its variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Antibodies, Monoclonal , Neutralization Tests , Receptors, Virus/metabolism , Antibodies, Neutralizing , Antibodies, Viral , Spike Glycoprotein, Coronavirus/chemistry
9.
Pulm Pharmacol Ther ; 80: 102189, 2023 06.
Article in English | MEDLINE | ID: mdl-36634813

ABSTRACT

Throughout the recent COVID-19 pandemic, South Korea led national efforts to develop vaccines and therapeutics for SARS-CoV-2. The project proceeded as follows: 1) evaluation system setup (including Animal Biosafety Level 3 (ABSL3) facility alliance, standardized nonclinical evaluation protocol, and laboratory information management system), 2) application (including committee review and selection), and 3) evaluation (including expert judgment and reporting). After receiving 101 applications, the selection committee reviewed pharmacokinetics, toxicity, and efficacy data and selected 32 final candidates. In the nonclinical efficacy test, we used golden Syrian hamsters and human angiotensin-converting enzyme 2 transgenic mice under a cytokeratin 18 promoter to evaluate mortality, clinical signs, body weight, viral titer, neutralizing antibody presence, and histopathology. These data indicated eight new drugs and one repositioned drug having significant efficacy for COVID-19. Three vaccine and four antiviral drugs exerted significant protective activities against SARS-CoV-2 pathogenesis. Additionally, two anti-inflammatory drugs showed therapeutic effects on lung lesions and weight loss through their mechanism of action but did not affect viral replication. Along with systematic verification of COVID-19 animal models through large-scale studies, our findings suggest that ABSL3 multicenter alliance and nonclinical evaluation protocol standardization can promote reliable efficacy testing against COVID-19, thus expediting medical product development.


Subject(s)
COVID-19 , Animals , Cricetinae , Mice , Humans , SARS-CoV-2 , Pandemics , Antibodies, Neutralizing , Mesocricetus , Disease Models, Animal
10.
Bioorg Med Chem Lett ; 91: 129353, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37271378

ABSTRACT

The natural products neorautenol and shinpterocarpin and their structural analogs were investigated as novel anticancer agents. Twenty-four analogs, including analogs containing a polar chain and simplified analogs, were synthesized efficiently by a modified method from previous reports. The antitumor screening of synthesized compounds toward six cancer cell lines indicated that compounds 37, 42 and 43 with a dialkylaminoethyl-type side chain exhibited more promising activity than neorautenol and shinpterocarpin against lung and colon cancer lines with a range of 4-9 µM. They showed selective toxicity in normal cells.


Subject(s)
Antineoplastic Agents , Molecular Structure , Structure-Activity Relationship , Drug Screening Assays, Antitumor , Cell Proliferation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor
11.
Part Fibre Toxicol ; 20(1): 32, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37580758

ABSTRACT

BACKGROUND: Pulmonary exposure to multi-walled carbon nanotubes (MWCNTs) has been reported to exert strong pro-inflammatory and pro-fibrotic adjuvant effects in mouse models of allergic lung disease. However, the molecular mechanisms through which MWCNTs exacerbate allergen-induced lung disease remain to be elucidated. We hypothesized that protease-activated receptor 2 (PAR2), a G-protein coupled receptor previously implicated in the pathogenesis of various diseases including pulmonary fibrosis and asthma, may play an important role in the exacerbation of house dust mite (HDM) allergen-induced lung disease by MWCNTs. METHODS: Wildtype (WT) male C57BL6 mice and Par2 KO mice were exposed to vehicle, MWCNTs, HDM extract, or both via oropharyngeal aspiration 6 times over a period of 3 weeks and were sacrificed 3-days after the final exposure (day 22). Bronchoalveolar lavage fluid (BALF) was harvested to measure changes in inflammatory cells, total protein, and lactate dehydrogenase (LDH). Lung protein and RNA were assayed for pro-inflammatory or profibrotic mediators, and formalin-fixed lung sections were evaluated for histopathology. RESULTS: In both WT and Par2 KO mice, co-exposure to MWCNTs synergistically increased lung inflammation assessed by histopathology, and increased BALF cellularity, primarily eosinophils, as well as BALF total protein and LDH in the presence of relatively low doses of HDM extract that alone produced little, if any, lung inflammation. In addition, both WT and par2 KO mice displayed a similar increase in lung Cc1-11 mRNA, which encodes the eosinophil chemokine CCL-11, after co-exposure to MWCNTs and HDM extract. However, Par2 KO mice displayed significantly less airway fibrosis as determined by quantitative morphometry compared to WT mice after co-exposure to MWCNTs and HDM extract. Accordingly, at both protein and mRNA levels, the pro-fibrotic mediator arginase 1 (ARG-1), was downregulated in Par2 KO mice exposed to MWCNTs and HDM. In contrast, phosphorylation of the pro-inflammatory transcription factor NF-κB and the pro-inflammatory cytokine CXCL-1 was increased in Par2 KO mice exposed to MWCNTs and HDM. CONCLUSIONS: Our study indicates that PAR2 mediates airway fibrosis but not eosinophilic lung inflammation induced by co-exposure to MWCNTs and HDM allergens.


Subject(s)
Hypersensitivity , Nanotubes, Carbon , Pneumonia , Pulmonary Fibrosis , Receptor, PAR-2 , Animals , Male , Mice , Allergens/toxicity , Bronchoalveolar Lavage Fluid , Disease Models, Animal , Fibrosis , Hypersensitivity/metabolism , Lung/metabolism , Mice, Inbred C57BL , Nanotubes, Carbon/toxicity , Pneumonia/pathology , Pulmonary Fibrosis/metabolism , Pyroglyphidae , Receptor, PAR-2/genetics , Receptor, PAR-2/metabolism , RNA, Messenger/metabolism
12.
Acta Radiol ; 64(7): 2245-2252, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36575592

ABSTRACT

BACKGROUND: Computed tomography (CT)-guided percutaneous transthoracic needle biopsy (PTNB) is highly affected by respiratory motion; however, respiratory motion of target nodule during the PTNB and its effect on CT-guided lung biopsy have not been studied. PURPOSE: To investigate the effect of the respiratory motion of pulmonary nodules on CT-guided PTNB. MATERIAL AND METHODS: We retrospectively reviewed the procedural CT scans of 426 pulmonary nodules that underwent PTNB during quiet breathing. Maximal and average respiratory motions were measured using the difference of table position of the targeted nodule between multiple procedural scans. Diagnostic performance, complications, and technical factors of PTNB in nodules with large motion (maximal motion >1 cm) were compared with those in nodules with small motion (≤1 cm). RESULTS: The mean maximal and average respiratory motions between tidal volume breathing were 5.4 ± 4.4 and 2.7 ± 2.6 mm, respectively. Sensitivity and accuracy were 93.1% and 96.1% in nodules with large motion, compared with 94.7% and 95.9% in nodules with small motion, respectively. Respiratory targeting (P < 0.001), needle modulation (P < 0.001), motion artifact of target (P < 0.001), target disappearance from scans (P < 0.001), and number of performed CT scans (P < 0.001) were significantly higher in the large motion group, with no significant difference in radiation dose and complications between the groups. CONCLUSION: The respiratory motion of pulmonary nodules during CT-guided PTNB may cause technical difficulties but does not affect diagnostic performance nor complications associated with PTNB.


Subject(s)
Lung Neoplasms , Multiple Pulmonary Nodules , Humans , Lung Neoplasms/pathology , Retrospective Studies , Lung/diagnostic imaging , Lung/pathology , Multiple Pulmonary Nodules/diagnostic imaging , Tomography, X-Ray Computed/methods , Biopsy, Needle/methods , Image-Guided Biopsy/methods , Radiography, Interventional/methods
13.
World J Surg Oncol ; 21(1): 49, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36804879

ABSTRACT

BACKGROUND: Skin metastasis from papillary thyroid cancer (PTC) is a rare entity that can occur up to decades after treatment of the primary tumor. Here, we present a patient who developed skin metastasis 10 years after treatment of her primary tumor and describe the molecular findings of the metastatic lesion. CASE PRESENTATION: A 44-year-old female with a history of PTC who underwent a total thyroidectomy and radioactive iodine (RAI) treatment 10 years ago presented with a 1.3-cm skin lesion along the prior thyroidectomy scar. A biopsy revealed metastatic PTC, and the patient underwent surgical excision of the lesion. ThyroSeq molecular testing showed the copresence of BRAFV600E mutation and TERT promoter C228T mutation. The patient subsequently received one round of adjuvant RAI therapy. CONCLUSIONS: A high index of suspicion is warranted in patients with a history of PTC who develop a skin lesion, even several years after remission of the primary disease. In patients with high-risk mutations, such as BRAFV600E and TERT promoter C228T mutations, long-term surveillance of disease recurrence is particularly important.


Subject(s)
Skin Neoplasms , Telomerase , Thyroid Neoplasms , Humans , Female , Adult , Thyroid Cancer, Papillary/genetics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/surgery , Thyroid Neoplasms/pathology , Proto-Oncogene Proteins B-raf/genetics , Iodine Radioisotopes , Promoter Regions, Genetic/genetics , Neoplasm Recurrence, Local/genetics , Skin Neoplasms/genetics , Mutation , Telomerase/genetics
14.
BMC Med Ethics ; 24(1): 107, 2023 12 01.
Article in English | MEDLINE | ID: mdl-38041034

ABSTRACT

BACKGROUND: Conventional consent practices face ethical challenges in continuously evolving digital health environments due to their static, one-time nature. Dynamic consent offers a promising solution, providing adaptability and flexibility to address these ethical concerns. However, due to the immaturity of the concept and accompanying technology, dynamic consent has not yet been widely used in practice. This study aims to identify the facilitators of and barriers to adopting dynamic consent in real-world scenarios. METHODS: This scoping review, conducted in December 2022, adhered to the PRISMA Extension for Scoping Reviews guidelines, focusing on dynamic consent within the health domain. A comprehensive search across Web of Science, PubMed, and Scopus yielded 22 selected articles based on predefined inclusion and exclusion criteria. RESULTS: The facilitators for the adoption of dynamic consent in digital health ecosystems were the provision of multiple consent modalities, personalized alternatives, continuous communication, and the dissemination of up-to-date information. Nevertheless, several barriers, such as consent fatigue, the digital divide, complexities in system implementation, and privacy and security concerns, needed to be addressed. This study also investigated current technological advancements and suggested considerations for further research aimed at resolving the remaining challenges surrounding dynamic consent. CONCLUSIONS: Dynamic consent emerges as an ethically advantageous method for digital health ecosystems, driven by its adaptability and support for continuous, two-way communication between data subjects and consumers. Ethical implementation in real-world settings requires the development of a robust technical framework capable of accommodating the diverse needs of stakeholders, thereby ensuring ethical integrity and data privacy in the evolving digital health landscape.


Subject(s)
Communication , Ecosystem , Humans , Privacy , Technology , Informed Consent
15.
Br J Cancer ; 127(4): 661-674, 2022 09.
Article in English | MEDLINE | ID: mdl-35597872

ABSTRACT

BACKGROUND: Chemoresistance is a major obstacle to the successful treatment of triple-negative breast cancer (TNBC) and non-small-cell lung cancer (NSCLC). Therapeutic strategies to overcome chemoresistance are necessary to improve the prognosis of patients with these cancers. METHODS: Paclitaxel-resistant TNBC and NSCLC sublines were generated through continuous paclitaxel treatment over 6 months. The mechanistic investigation was conducted using MTT assay, LC/MS-based metabolite analysis, flow cytometry, western blot analysis, real-time PCR and tumour xenograft experiments. RESULTS: Glucose-6-phosphate dehydrogenase (G6PD) expression along with an increase in 3-phosphoglycerates and ribulose-5-phosphate production was upregulated in paclitaxel-resistant cells. Blockade of G6PD decreased viability of paclitaxel-resistant cells in vitro and the growth of paclitaxel-resistant MDA/R xenograft tumours in vivo. Mechanistically, activation of the epidermal growth factor receptor (EGFR)/Akt pathway mediates G6PD expression and G6PD-induced cell survival. Blockade of the EGFR pathway inhibited G6PD expression and sensitised those paclitaxel-resistant cells to paclitaxel treatment in vitro and in vivo. Analysis of publicly available datasets revealed an association between G6PD and unfavourable clinical outcomes in patients with breast or lung cancer. CONCLUSIONS: EGFR signaling-mediated G6PD expression plays a pivotal role in paclitaxel resistance, highlighting the potential of targeting EGFR to overcome paclitaxel resistance in TNBC and NSCLC cells overexpressing G6PD.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Triple Negative Breast Neoplasms , Apoptosis , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , ErbB Receptors/genetics , ErbB Receptors/metabolism , Glucosephosphate Dehydrogenase/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism
16.
Anal Chem ; 94(2): 1432-1440, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34958212

ABSTRACT

Advances in gene-editing technology enable efficient, targeted ex vivo engineering of different cell types, which offer a potential therapeutic platform for most challenging disease areas. CRISPR-Cas9 is a widely used gene-editing tool in therapeutic applications. The quality of gene-editing reagents (i.e., Cas9 nuclease, single guide (sg)RNA) is associated with the final cellular product quality as they can impact the gene-editing accuracy and efficiency. To assess the impact of the quality of Cas9 protein and sgRNA in the formation of a Cas9 ribonucleoprotein (RNP) complex, stability, and functional activities, we developed a size exclusion chromatography method that utilizes multiple detectors and an in vitro DNA cleavage assay using anion-exchange chromatography. Using these methods, we characterized the formation and stability of Cas9 RNP complexes associated with Cas9 and sgRNA characteristics as well as their functional activities. Multi-angle light scattering characterization showed different types and levels of aggregates in different source sgRNA materials, which contribute to form different Cas9 RNP complexes. The aggregations irreversibly dissociated at high temperatures. When the Cas9 RNP complexes derived from non-heated and heated sgRNAs were characterized, the data showed that specific RNP peaks were impacted. The Cas9 RNP complexes derived from the heated sgRNA retained their biological function and cleaved the double-strand target DNA at a higher rate. This work provides new tools to characterize the Cas9 RNP complex formation, stability, and functional activity and provides insights into sgRNA properties and handling procedures to better control the Cas9 RNP complex formation.


Subject(s)
CRISPR-Cas Systems , Ribonucleoproteins , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Gene Editing/methods , RNA, Guide, Kinetoplastida/genetics , Ribonucleoproteins/chemistry , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism
17.
Eur J Nucl Med Mol Imaging ; 49(10): 3547-3556, 2022 08.
Article in English | MEDLINE | ID: mdl-35362796

ABSTRACT

PURPOSE: Risk of second primary malignancy (SPM) after radioiodine (RAI) therapy has been continuously debated. The aim of this study is to identify the risk of SPM in thyroid cancer (TC) patients with RAI compared with TC patients without RAI from matched cohort. METHODS: Retrospective propensity-matched cohorts were constructed across 4 hospitals in South Korea via the Observational Health Data Science and Informatics (OHDSI), and electrical health records were converted to data of common data model. TC patients who received RAI therapy constituted the target group, whereas TC patients without RAI therapy constituted the comparative group with 1:1 propensity score matching. Hazard ratio (HR) by Cox proportional hazard model was used to estimate the risk of SPM, and meta-analysis was performed to pool the HRs. RESULTS: Among a total of 24,318 patients, 5,374 patients from each group were analyzed (mean age 48.9 and 49.2, women 79.4% and 79.5% for target and comparative group, respectively). All hazard ratios of SPM in TC patients with RAI therapy were ≤ 1 based on 95% confidence interval(CI) from full or subgroup analyses according to thyroid cancer stage, time-at-risk period, SPM subtype (hematologic or non-hematologic), and initial age (< 30 years or ≥ 30 years). The HR within the target group was not significantly higher (< 1) in patients who received over 3.7 GBq of I-131 compared with patients who received less than 3.7 GBq of I-131 based on 95% CI. CONCLUSION: There was no significant difference of the SPM risk between TC patients treated with I-131 and propensity-matched TC patients without I-131 therapy.


Subject(s)
Neoplasms, Second Primary , Thyroid Neoplasms , Adult , Data Science , Female , Humans , Informatics , Iodine Radioisotopes/adverse effects , Middle Aged , Neoplasms, Second Primary/epidemiology , Neoplasms, Second Primary/etiology , Retrospective Studies , Thyroid Neoplasms/radiotherapy
18.
Inhal Toxicol ; 34(9-10): 244-259, 2022.
Article in English | MEDLINE | ID: mdl-35704474

ABSTRACT

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) have been associated with respiratory diseases in humans, yet the mechanisms through which PFAS cause susceptibility to inhaled agents is unknown. Herein, we investigated the effects of ammonium perfluoro(2-methyl-3-oxahexanoate) (GenX), an emerging PFAS, on the pulmonary immune response of mice to carbon black nanoparticles (CBNP). We hypothesized that pulmonary exposure to GenX would increase susceptibility to CBNP through suppression of innate immunity. METHODS: Male C57BL/6 mice were exposed to vehicle, 4 mg/kg CBNP, 10 mg/kg GenX, or CBNP and GenX by oropharyngeal aspiration. Bronchoalveolar lavage fluid (BALF) was collected at 1 and 14 days postexposure for cytokines and total protein. Lung tissue was harvested for histopathology, immunohistochemistry (Ki67 and phosphorylated (p)-STAT3), western blotting (p-STAT3 and p-NF-κB), and qRT-PCR for cytokine mRNAs. RESULTS: CBNP increased CXCL-1 and neutrophils in BALF at both time points evaluated. However, GenX/CBNP co-exposure reduced CBNP-induced CXCL-1 and neutrophils in BALF. Moreover, CXCL-1, CXCL-2 and IL-1ß mRNAs were increased by CBNP in lung tissue but reduced by GenX. Western blotting showed that CBNP induced p-NF-κB in lung tissue, while the GenX/CBNP co-exposed group displayed decreased p-NF-κB. Furthermore, mice exposed to GenX or GenX/CBNP displayed increased numbers of BALF macrophages undergoing mitosis and increased Ki67 immunostaining. This was correlated with increased p-STAT3 by western blotting and immunohistochemistry in lung tissue from mice co-exposed to GenX/CBNP. CONCLUSIONS: Pulmonary exposure to GenX suppressed CBNP-induced innate immune response in the lungs of mice yet promoted the proliferation of macrophages and lung epithelial cells.


Subject(s)
Ammonium Compounds , Fluorocarbons , Immunity, Innate , Nanoparticles , Soot , Ammonium Compounds/toxicity , Animals , Bronchoalveolar Lavage Fluid/chemistry , Cell Proliferation , Cytokines/metabolism , Fluorocarbons/toxicity , Ki-67 Antigen/metabolism , Lung , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Nanoparticles/toxicity , Soot/toxicity
19.
BMC Med Inform Decis Mak ; 22(1): 210, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35941636

ABSTRACT

BACKGROUND: While various quantitative studies based on the Unified Theory of Acceptance and Use of Technology (UTAUT) and Technology Acceptance Models (TAM) exist in the general medical sectors, just a few have been conducted in the behavioral sector; they have all been qualitative interview-based studies. OBJECTIVE: The purpose of this study is to assess the adoption dimensions of a behavioral electronic health record (EHR) system for behavioral clinical professionals using a modified clinical adoption (CA) research model that incorporates a variety of micro, meso, and macro level factors. METHODS: A questionnaire survey with quantitative analysis approach was used via purposive sampling method. We modified the existing CA framework to be suitable for evaluating the adoption of an EHR system by behavioral clinical professionals. We designed and verified questionnaires that fit into the dimensions of the CA framework. The survey was performed in five US behavioral hospitals, and the adoption factors were analyzed using a structural equation analysis. RESULTS: We derived a total of seven dimensions, omitting those determined to be unsuitable for behavioral clinical specialists to respond to. We polled 409 behavioral clinical experts from five hospitals. As a result, the ease of use and organizational support had a substantial impact on the use of the behavioral EHR system. Although the findings were not statistically significant, information and service quality did appear to have an effect on the system's ease of use. The primary reported benefit of behavioral EHR system adoption was the capacity to swiftly locate information, work efficiently, and access patient information via a mobile app, which resulted in more time for better care. The primary downside, on the other hand, was an unhealthy reliance on the EHR system. CONCLUSIONS: We demonstrated in this study that the CA framework can be a useful tool for evaluating organizational and social elements in addition to the EHR system's system features. Not only the EHR system's simplicity of use, but also organizational support, should be considered for the effective implementation of the behavioral EHR system. TRIAL REGISTRATION: The study was approved by the Institutional Review Board of Seoul National University Bundang Hospital (IRB No.: B-1904-534-301).


Subject(s)
Electronic Health Records , Physicians , Attitude of Health Personnel , Health Personnel , Hospitals, University , Humans
20.
Korean J Physiol Pharmacol ; 26(3): 207-218, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35477548

ABSTRACT

Aging in mammals, including humans, is accompanied by loss of bone and muscular function and mass, characterized by osteoporosis and sarcopenia. Although resistance exercise training (RET) is considered an effective intervention, its effect is blunted in some elderly individuals. Fibroblast growth factor (FGF) and its receptor, FGFR, can modulate bone and muscle quality during aging and physical performance. To elucidate this possibility, the FGFR inhibitor NVP-BGJ398 was administrated to C57BL/6n mice for 8 weeks with or without RET. Treatment with NVP-BGJ398 decreased grip strength, muscular endurance, running capacity and bone quality in the mice. FGFR inhibition elevated bone resorption and relevant gene expression, indicating altered bone formation and resorption. RET attenuated tibial bone resorption, accompanied by changes in the expression of relevant genes. However, RET did not overcome the detrimental effect of NVP-BGJ398 on muscular function. Taken together, these findings provide evidence that FGFR signaling may have a potential role in the maintenance of physical performance and quality of bone and muscles.

SELECTION OF CITATIONS
SEARCH DETAIL