Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Clin Immunol ; 259: 109892, 2024 02.
Article in English | MEDLINE | ID: mdl-38185269

ABSTRACT

Radioresistance and metastasis are critical issues in managing oral squamous cell carcinoma (OSCC). Although immune checkpoint inhibitors (ICIs) has been recommended to treat OSCC, lacking useful biomarkers limited their anti-cancer effectiveness. We found that guanylate binding protein 5 (GBP5) is upregulated in primary tumors and associates with radioresistance in OSCC. GBP5 expression causally associated with cellular radioresistance and migration ability in the OSCC cell variants. GBP5 upregulation was examined to be correlated with NF-κB activation and programmed cell death-ligand 1 (PD-L1) elevation in OSCC samples. GBP5 knockdown was mitigated, but overexpression enhanced, NF-κB activity and PD-L1 expression in the OSCC cells. NF-κB inhibition by SN50 dramatically suppressed the GBP5-forested irradiation resistance, cellular migration ability and PD-L1 expression in OSCC cells. Importantly, GBP5 upregulation predicted a favorable outcome in cancer patients received ICI treatment. Our findings provide GBP5 as a useful biomarker to predict the anti-OSCC effectiveness of irradiation and ICIs.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , B7-H1 Antigen , Biomarkers , Carcinoma, Squamous Cell/genetics , Mouth Neoplasms/genetics , NF-kappa B , Squamous Cell Carcinoma of Head and Neck/genetics
2.
J Transl Med ; 22(1): 13, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38166970

ABSTRACT

BACKGROUND: Radioresistance and lymph node metastasis are common phenotypes of refractory oral squamous cell carcinoma (OSCC). As a result, understanding the mechanism for radioresistance and metastatic progression is urgently needed for the precise management of refractory OSCC. Recently, immunotherapies, e.g. immune checkpoint inhibitors (ICIs), were employed to treat refractory OSCC; however, the lack of predictive biomarkers still limited their therapeutic effectiveness. METHODS: The Cancer Genome Atlas (TCGA)/Gene Expression Omnibus (GEO) databases and RT-PCR analysis were used to determine absent in melanoma 2 (AIM2) expression in OSCC samples. Colony-forming assay and trans-well cultivation was established for estimating AIM2 function in modulating the irradiation resistance and migration ability of OSCC cells, respectively. RT-PCR, Western blot and flow-cytometric analyses were performed to examine AIM2 effects on the expression of programmed death-ligand 1 (PD-L1) expression. Luciferase-based reporter assay and site-directed mutagenesis were employed to determine the transcriptional regulatory activity of Signal Transducer and Activator of Transcription 1 (STAT1) and NF-κB towards the AIM2-triggered PD-L1 expression. RESULTS: Here, we found that AIM2 is extensively upregulated in primary tumors compared to the normal adjacent tissues and acts as a poor prognostic marker in OSCC. AIM2 knockdown mitigated, but overexpression promoted, radioresistance, migration and PD-L1 expression via modulating the activity of STAT1/NF-κB in OSCC cell variants. AIM2 upregulation significantly predicted a favorable response in patients receiving ICI treatments. CONCLUSIONS: Our data unveil AIM2 as a critical factor for promoting radioresistance, metastasis and PD-L1 expression and as a potential biomarker for predicting ICI effectiveness on the refractory OSCC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Carcinoma, Squamous Cell/pathology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , NF-kappa B/metabolism , Squamous Cell Carcinoma of Head and Neck , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism
3.
Cancer Cell Int ; 23(1): 41, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36890567

ABSTRACT

BACKGROUND: Radiotherapy is the first-line regimen for treating oral squamous cell carcinoma (OSCC) in current clinics. However, the development of therapeutic resistance impacts the anticancer efficacy of irradiation in a subpopulation of OSCC patients. As a result, discovering a valuable biomarker to predict radiotherapeutic effectiveness and uncovering the molecular mechanism for radioresistance are clinical issues in OSCC. METHODS: Three OSCC cohorts from The Cancer Genome Atlas (TCGA), GSE42743 dataset and Taipei Medical University Biobank were enrolled to examine the transcriptional levels and prognostic significance of neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8). Gene set enrichment analysis (GSEA) was utilized to predict the critical pathways underlying radioresistance in OSCC. The colony-forming assay was used to estimate the consequences of irradiation sensitivity after the inhibition or activation of the NEDD8-autophagy axis in OSCC cells. RESULTS: NEDD8 upregulation was extensively found in primary tumors compared to normal adjacent tissues and potentially served as a predictive marker for the therapeutic effectiveness of irradiation in OSCC patients. NEDD8 knockdown enhanced radiosensitivity but NEDD8 overexpression reduced it in OSCC cell lines. The inclusion of MLN4924, a pharmaceutical inhibitor for NEDD8-activating enzyme, dose-dependently restored the cellular sensitivity to irradiation treatment in irradiation-insensitive OSCC cells. Computational simulation by GSEA software and cell-based analyses revealed that NEDD8 upregulation suppresses Akt/mTOR activity to initiate autophagy formation and ultimately confers radioresistance to OSCC cells. CONCLUSION: These findings not only identify NEDD8 as a valuable biomarker to predict the efficacy of irradiation but also offer a novel strategy to overcome radioresistance via targeting NEDD8-mediated protein neddylation in OSCC.

4.
Adv Exp Med Biol ; 1405: 421-455, 2023.
Article in English | MEDLINE | ID: mdl-37452948

ABSTRACT

Primary central nervous system germ cell tumors (CNS GCTs) are part of the GCTs in children and adults. This tumor entity presents with geographic variation, age, and sex predilection. There are two age peaks of incidence distribution at the first few months of life and in adolescence. CNS GCTs are heterogeneous in histopathological subtypes, locations, and tumor marker (AFP, ß-hCG) secretions. In the WHO CNS tumor classification, GCTS are classified as germinoma and nongerminomatous GCT (NGGCT) with different subtypes (including teratoma). Excluding mature teratoma, the remaining NGGCTs are malignant (NGMGCT). In teratoma, growing teratoma syndrome and teratoma with somatic-type malignancy should be highlighted. The common intracranial locations are pineal region, neurohypophysis (NH), bifocal pineal-NH, basal ganglia, and cerebral ventricle. Above 50% of intracranial GCTs (IGCTs) present obstructive hydrocephalus. Spinal tumors are rare. Age, locations, hydrocephalus, and serum/CSF titer of ß-hCG correlate with clinical manifestations. Delayed diagnosis is common in tumors arising in neurohypophysis, bifocal, and basal ganglia resulting in the increasing of physical dysfunction and hormonal deficits. Staging work-up includes CSF cytology for tumor cells and contrast-enhanced MRI of brain and spine for macroscopic metastasis before treatment commences. The therapeutic approach of CNS GCTs integrates locations, histopathology, staging, tumor marker level, and therapeutic classification. Treatment strategies include surgical biopsy/excision, chemotherapy, radiotherapy (single or combination). Secreting tumors with consistent imaging may not require histopathological diagnosis. Primary germinomas are highly radiosensitive and the therapeutic aim is to maintain high survival rate using optimal radiotherapy regimen with/without chemotherapy combination. Primary NGNGCTs are less radiosensitive. The therapeutic aim is to increase survival utilizing more intensive chemotherapy and radiotherapy. The negative prognostic factors are residue disease at the end of treatment and serum or CSF AFP level >1000 ng/mL at diagnosis. In refractory or recurrent NMGGCTs, besides high-dose chemotherapy, new therapy is necessary. Molecular profiling and analysis help for translational research. Survivors of pediatric brain tumors frequently experience cancer-related cognitive dysfunction, physical disability, pituitary hormone deficiency, and other CNS complications after cranial radiotherapy. Continuous surveillance and assessment may lead to improvements in treatment protocols, transdisciplinary interventions, after-treatment rehabilitation, and quality of life.


Subject(s)
Brain Neoplasms , Germinoma , Neoplasms, Germ Cell and Embryonal , Spinal Cord Neoplasms , Spinal Neoplasms , Teratoma , Child , Adult , Adolescent , Humans , alpha-Fetoproteins/metabolism , Quality of Life , Neoplasms, Germ Cell and Embryonal/diagnosis , Neoplasms, Germ Cell and Embryonal/therapy , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Germinoma/diagnosis , Germinoma/pathology , Germinoma/therapy , Teratoma/diagnosis , Teratoma/therapy , Brain/metabolism , Retrospective Studies
5.
Int J Mol Sci ; 24(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36835185

ABSTRACT

[99mTc]Tc TRODAT-1 is a widely used single photon emission tomography (SPECT) radiopharmaceutical in Asian practice for early detection of central dopaminergic disorders. However, its imaging quality remains sub-optimal. To overcome this problem, mannitol, an osmotic agent was used to observe its effect on improving striatal [99mTc]Tc TRODAT-1 uptake in rat brain by titrated human dosages to investigate a clinically feasible way to improve human imaging quality. [99mTc]Tc TRODAT-1 synthesis and quality control were performed as described. Sprague-Dawley rats were used for this study. The animal in vivo nanoSPECT/CT and ex vivo autoradiography were employed to observe and verify the striatal [99mTc]Tc TRODAT-1 uptake in rat brains using clinically equivalent doses (i.e., 0, 1 and 2 mL groups, each n = 5) of mannitol (20% w/v, equivalent to 200 mg/mL) by an intravenous administration. Specific binding ratios (SBRs) were calculated to express the central striatal uptake in different experimental groups. In the NanoSPECT/CT imaging, the highest SBRs of striatal [99mTc]Tc TRODAT-1 were reached at 75-90 min post-injection. The averaged striatal SBRs were 0.85 ± 0.13 (2 mL normal saline, the control group), 0.94 ± 0.26 (1 mL mannitol group) and 1.36 ± 0.12 (2 mL mannitol group, p < 0.01 which were significantly different than the control as well as 1 mL mannitol groups (p < 0.05). The SBRs from ex vivo autoradiography also showed a comparable trend of the striatal [99mTc]Tc TRODAT-1 uptake in the 2 mL, 1 mL mannitol and the control groups (1.76 ± 0.52, 0.91 ± 0.29, and 0.21 ± 0.03, respectively, p < 0.05). No remarkable changes of vital signs were found in the mannitol groups and the controls. Pre-treated mannitol revealed a significant increase of the central striatal [99mTc]Tc TRODAT-1 uptake in a rat model which not only enabled us to perform pre-clinical studies of dopaminergic related disorders but also provided a potential way to further optimize image quality in clinical practice.


Subject(s)
Dopamine Plasma Membrane Transport Proteins , Organotechnetium Compounds , Humans , Rats , Animals , Dopamine Plasma Membrane Transport Proteins/metabolism , Rats, Sprague-Dawley , Tropanes , Tomography, Emission-Computed, Single-Photon/methods , Dopamine/metabolism , Radiopharmaceuticals , Models, Animal
6.
J Neurooncol ; 160(1): 41-53, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36045266

ABSTRACT

PURPOSE: Non-germinomatous germ cell tumors (NGGCTs) are rare pediatric conditions. This multicenter study using Asian multinational patient data investigated treatment outcomes and prognostic factors for NGGCTs. METHODS: Medical records of 251 patients with NGGCTs treated from 1995 to 2015 were retrospectively analyzed from participating centers in Asian countries (Korea, Taiwan, Singapore, and Japan). RESULTS: The median follow up was 8.5 years (95% CI 7.8-9.9). In the total cohort, 5-year event-free survival (EFS) and overall survival (OS) rates were 78.2% and 85.4%, respectively. In 17.9% of the patients, diagnosis was determined by tumor markers alone (alpha-fetoprotein ≥ 10 ng/mL (Korea) or > 25 ng/mL (Taiwan and Singapore), and/or ß-human chorionic gonadotropin (ß-hCG) ≥ 50 mIU/mL). Patients with immature teratomas and mature teratomas comprised 12.0% and 8.4%, respectively. The 5-year EFS rate was higher in patients with histologically confirmed germinoma with elevated ß-hCG (n = 28) than those in patients with malignant NGGCTs (n = 127). Among malignant NGGCTs, patients with choriocarcinoma showed the highest 5-year OS of 87.6%, while yolk sac tumors showed the lowest OS (68.8%). For malignant NGGCT subgroups, an increase in serum ß-hCG levels by 100 mIU/mL was identified as a significant prognostic factor associated with the EFS and OS. CONCLUSION: Our result shows excellent survival outcomes of overall CNS NGGCT. However, treatment outcome varied widely across the histopathologic subgroup of NGGCT. Hence, this study suggests the necessity for accurate diagnosis by surgical biopsy and further optimization of diagnosis and treatment according to the histopathology of NGGCTs. Future clinical trials should be designed for individualized treatments for different NGGCTs subsets.


Subject(s)
Brain Neoplasms , Germinoma , Neoplasms, Germ Cell and Embryonal , Male , Humans , Child , Retrospective Studies , Prognosis , Neoplasms, Germ Cell and Embryonal/diagnosis , Neoplasms, Germ Cell and Embryonal/therapy , Germinoma/pathology , Brain Neoplasms/therapy , Brain Neoplasms/drug therapy , Chorionic Gonadotropin, beta Subunit, Human
7.
Int J Mol Sci ; 23(23)2022 Dec 04.
Article in English | MEDLINE | ID: mdl-36499623

ABSTRACT

Rare subpopulations of cancer stem cells (CSCs) have the ability to self-renew and are the primary driving force behind cancer metastatic dissemination and the preeminent hurdle to cancer treatment. As opposed to differentiated, non-malignant tumor offspring, CSCs have sophisticated metabolic patterns that, depending on the kind of cancer, rely mostly on the oxidation of major fuel substrates such as glucose, glutamine, and fatty acids for survival. Glutaminolysis is a series of metabolic reactions that convert glutamine to glutamate and, eventually, α-ketoglutarate, an intermediate in the tricarboxylic acid (TCA) cycle that provides biosynthetic building blocks. These building blocks are mostly utilized in the synthesis of macromolecules and antioxidants for redox homeostasis. A recent study revealed the cellular and molecular interconnections between glutamine and cancer stemness in the cell. Researchers have increasingly focused on glutamine catabolism in their attempt to discover an effective therapy for cancer stem cells. Targeting catalytic enzymes in glutaminolysis, such as glutaminase (GLS), is achievable with small molecule inhibitors, some of which are in early-phase clinical trials and have promising safety profiles. This review summarizes the current findings in glutaminolysis of CSCs and focuses on novel cancer therapies that target glutaminolysis in CSCs.


Subject(s)
Glutamine , Neoplasms , Humans , Glutamine/metabolism , Glutaminase/metabolism , Neoplastic Stem Cells/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Glutamic Acid , Glucose/metabolism
8.
Int J Hyperthermia ; 38(1): 1627-1632, 2021.
Article in English | MEDLINE | ID: mdl-34775895

ABSTRACT

OBJECTIVES: To compare the therapeutic effects of locoregional deep hyperthermia combined with intravesical chemotherapy with those of intravesical chemotherapy alone in patients with intermediate-/high-risk non-muscle invasive bladder cancer (NMIBC). To evaluate the impact of thermal dose in hyperthermia treatment. METHODS: We analyzed data retrieved from the medical records of patients with intermediate-/high-risk NMIBC treated with intravesical mitomycin (IM group) or locoregional deep hyperthermia combined with intravesical mitomycin (CHT group) at a single tertiary care hospital between May 2016 and June 2019. The primary and secondary endpoints were the recurrence-free survival rate and progression-free survival rate, respectively. Thermal dose was evaluated and adverse events were also recorded. RESULTS: In total, 43 patients (CHT: 18 patients, IM: 25 patients) were enrolled. The median follow-up durations were 14 and 23 months, respectively. The recurrence rate at 12 months was significantly lower in the CHT group than in the IM group (11.1% vs. 44%, p = .048); this trend persisted at 24 months (CHT: 11.1%, IM: 48%; p = .027). The recurrence-free survival was also significantly higher in the CHT group than in the IM group (p = .028). No tumor recurrence was noted in patients who received a thermal dose of ≥4 CEM43. All adverse events were well tolerated, and there was no treatment-related mortality. CONCLUSIONS: Intravesical chemotherapy combined with locoregional deep hyperthermia for intermediate-/high-risk papillary NMIBC can significantly decrease the recurrence rate relative to that observed after intravesical chemotherapy alone.


Subject(s)
Hyperthermia, Induced , Urinary Bladder Neoplasms , Administration, Intravesical , Antibiotics, Antineoplastic/therapeutic use , Humans , Mitomycin/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Urinary Bladder Neoplasms/drug therapy
9.
Int J Mol Sci ; 22(23)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34884429

ABSTRACT

As a source of growth factors for expediting wound healing and tissue regeneration, plasma-rich plasma (PRP) has been extensively applied in diverse fields including orthopaedics, ophthalmology, oral and maxillofacial surgery, dentistry, and gynaecology. However, the function of PRP in metabolic regulations remains enigmatic. A standardized method was devised herein to enrich growth factors and to lyophilize it as enhanced PRP (ePRP) powder, which could become ubiquitously available without mechanical centrifugation in clinical practice. To identify metabolic reprogramming in human dermal fibroblasts under ePRP treatment, putative metabolic targets were identified by transcriptome profiling and validated for their metabolic effects and mechanism. ePRP does not only promote wound healing but re-aligns energy metabolism by shifting to glycolysis through stimulation of glycolytic enzyme activity in fibroblasts. On the contrary, oxygen consumption rates and several mitochondrial respiration activities were attenuated in ePRP-treated fibroblasts. Furthermore, ePRP treatment drives the mitochondrial resetting by hindering the mitochondrial biogenesis-related genes and results in a dampened mitochondrial mass. Antioxidant production was further increased by ePRP treatment to prevent reactive oxygen species formation. Besides, ePRP also halts the senescence progression of fibroblasts by activating SIRT1 expression. Importantly, the glycolytic inhibitor 2-DG can completely reverse the ePRP-enhanced wound healing capacity, whereas the mitochondrial inhibitor oligomycin cannot. This is the first study to utilize PRP for comprehensively investigating its effects on the metabolic reprogramming of fibroblasts. These findings indicate that PRP's primary metabolic regulation is to promote metabolic reprogramming toward glycolytic energy metabolism in fibroblasts, preserving redox equilibrium and allowing anabolic pathways necessary for the healing and anti-ageing process.


Subject(s)
Glycolysis , Platelet-Rich Plasma/metabolism , Skin/cytology , Wound Healing , Cell Culture Techniques , Cell Line , Cell Proliferation , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Regenerative Medicine , Sirtuin 1/metabolism , Skin/metabolism
10.
Int J Hyperthermia ; 36(1): 932-937, 2019.
Article in English | MEDLINE | ID: mdl-31535591

ABSTRACT

Background: Magnetic resonance-guided focused ultrasound surgery (MRgFUS) is an alternative local therapy for patients with painful bone metastasis. However, little is known about the prognostic and predictive factors of MRgFUS in treating bone metastasis. Materials and methods: This retrospective study analyzed the performance status, treated site, pretreatment pain score, pretreatment tumor volume and lesion coverage volume factor (CVF) of 31 patients who underwent MRgFUS. A numerical rating scale for pain was used at the same time to assess the clinical response. Radiographic responses were evaluated using a modified version of The University of Texas MD Anderson Cancer Center criteria and reference to the MR imaging or computed tomography scans obtained 3 months after treatment. Univariate and multivariate logistic regression analyses were conducted to examine the effect of variables on clinical and radiographic responses. Results: The overall clinical response rate was 83.9% and radiographic response rate was 67.7%. Multivariate logistic regression analysis revealed that the better pretreatment Karnofsky performance status (KPS) (odds ratio: 1.220, 95% confidence interval (CI): 1.033-1.440; p = 0.019) was significantly associated with a more positive clinical response, and that the lesion CVF (odds ratio: 1.183, 95% CI: 1.029-1.183; p = 0.0055) was an independent prognostic factor for radiographic responses. The radiographic response of patients with lesion CVF ≥70% and CVF <70% were 91.7% and 52.6%, respectively (p = 0.0235). Conclusion: The pretreatment KPS was an independent prognostic factor for clinical responses, and lesion CVF was an independent prognostic factor for radiographic responses.


Subject(s)
Bone Neoplasms/secondary , High-Intensity Focused Ultrasound Ablation/methods , Magnetic Resonance Imaging/methods , Adult , Aged , Female , Humans , Male , Middle Aged , Prognosis , Retrospective Studies
11.
Mar Drugs ; 17(9)2019 Sep 08.
Article in English | MEDLINE | ID: mdl-31500384

ABSTRACT

Malignant glioma (MG) is a poor prognostic brain tumor with inevitable recurrence after multimodality treatment. Searching for more effective treatment is urgently needed. Differentiation induction via epigenetic modification has been proposed as a potential anticancer strategy. Natural products are known as fruitful sources of epigenetic modifiers with wide safety margins. We thus explored the effects of oligo-fucoidan (OF) from brown seaweed on this notion in MG cells including Grade III U87MG cells and Grade IV glioblastoma multiforme (GBM)8401 cells and compared to the immortalized astrocyte SVGp12 cells. The results showed that OF markedly suppress the proliferation of MG cells and only slightly affected that of SVGp12 cells. OF inhibited the protein expressions of DNA methyltransferases 1, 3A and 3B (DNMT1, 3A and 3B) accompanied with obvious mRNA induction of differentiation markers (MBP, OLIG2, S100ß, GFAP, NeuN and MAP2) both in U87MG and GBM8401 cells. Accordingly, the methylation of p21, a DNMT3B target gene, was decreased by OF. In combination with the clinical DNMT inhibitor decitabine, OF could synergize the growth inhibition and MBP induction in U87MG cells. Appropriated clinical trials are warranted to evaluate this potential complementary approach for MG therapy after confirmation of the effects in vivo.


Subject(s)
Brain Neoplasms/drug therapy , Cell Differentiation/drug effects , Epigenesis, Genetic/drug effects , Glioma/drug therapy , Polysaccharides/pharmacology , Antineoplastic Agents/pharmacology , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Cell Differentiation/genetics , Cell Line, Tumor , Epigenesis, Genetic/genetics , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioma/genetics , Humans , Neoplasm Recurrence, Local/drug therapy
12.
J Xray Sci Technol ; 25(3): 465-477, 2017.
Article in English | MEDLINE | ID: mdl-28157113

ABSTRACT

BACKGROUND AND PURPOSE: As recent studies have suggested relatively low α/ß for prostate cancer, the interest in hypofractionated stereotactic body radiotherapy (SBRT) for prostate cancer is rising. The aim of this study is to compare dosimetric results of Cyberknife (CK) with Tomotherapy (HT) in SBRT for localized prostate cancer. Furthermore, the radiobiologic consequences of heterogeneous dose distribution are also analyzed. MATERIAL AND METHOD: A total of 12 cases of localized prostate cancer previously treated with SBRT were collected. Treatments had been planned and delivered using CK. Then HT plans were generated for comparison afterwards. The prescribed dose was 37.5Gy in 5 fractions. Dosimetric indices for target volumes and organs at risk (OAR) were compared. For radiobiological evaluation, generalized equivalent uniform dose (gEUD) and normal tissue complication probability (NTCP) were calculated and compared. RESULT: Both CK and HT achieved target coverage while meeting OAR constraints adequately. HT plans resulted in better dose homogeneity (Homogeneity index: 1.04±0.01 vs. 1.21±0.01; p = 0.0022), target coverage (97.74±0.86% vs. 96.56±1.17%; p = 0.0076) and conformity (new vonformity index: 1.16±0.05 vs. 1.21±0.04; p = 0.0096). HT was shown to predict lower late rectal toxicity as compared to CK. Integral dose to body was also significantly lower in HT plans (46.59±6.44 Gy'L vs 57.05±11.68 Gy'L; p = 0.0029). CONCLUSION: Based on physical dosimetry and radiobiologic considerations, HT may have advantages over CK, specifically in rectal sparing which could translate into clinical benefit of decreased late toxicities.


Subject(s)
Prostatic Neoplasms/radiotherapy , Radiosurgery , Radiotherapy Planning, Computer-Assisted/methods , Humans , Male
13.
J Biomed Mater Res B Appl Biomater ; 112(1): e35348, 2024 01.
Article in English | MEDLINE | ID: mdl-38247238

ABSTRACT

Encapsulated cell therapy (ECT) shows significant potential for treating neurodegenerative disorders including Alzheimer's and Parkinson's, which currently lack curative medicines and must be managed symptomatically. This novel technique encapsulates functional cells with a semi-permeable membrane, providing protection while enabling critical nutrients and therapeutic substances to pass through. Traditional ECT procedures, on the other hand, pose difficulties in terms of cell survival and retrieval. We introduce the Microtube Array Membrane (MTAM), a revolutionary technology that solves these constraints, in this comprehensive overview. Microtube Array Membrane has distinct microstructures that improve encapsulated cells' long-term viability by combining the advantages of macro and micron scales. Importantly, the MTAM platform improves biosafety by allowing the entire encapsulated unit to be retrieved in the event of an adverse reaction. Our findings show that MTAM-based ECT has a great potential in a variety of illness situations. For cancer treatment, hybridoma cells secreting anti-CEACAM 6 antibodies inhibit triple-negative breast cancer cell lines for an extended period of time. In animal brain models of Alzheimer's disease, hybridoma cells secreting anti-pTau antibodies successfully reduce pTau buildup, accompanied by improvements in memory performance. In mouse models, MTAM-encapsulated primary cardiac mesenchymal stem cells dramatically improve overall survival and heart function. These findings illustrate the efficacy and adaptability of MTAM-based ECT in addressing major issues such as immunological isolation, cell viability, and patient safety. We provide new possibilities for the treatment of neurodegenerative illnesses and other conditions by combining the potential of ECT with MTAM. Continued research and development in this subject has a lot of promise for developing cell therapy and giving hope to people suffering from chronic diseases.


Subject(s)
Brain , Cell- and Tissue-Based Therapy , Animals , Mice , Humans , Biological Transport , Cell Line , Disease Models, Animal
14.
Biomedicines ; 11(7)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37509721

ABSTRACT

BACKGROUND: Hepatocellular carcinoma is the sixth most diagnosed malignancy and the fourth most common cause of cancer-related mortality globally. Despite progress in the treatment of liver cancer, nonsurgical treatments remain unsatisfactory, and only 15% of early-stage cases are surgically operable. Radiotherapy (RT) is a non-surgical treatment option for liver cancer when other traditional treatment methods are ineffective. However, RT has certain limitations, including eliciting poor therapeutic effects in patients with advanced and recurrent tumors. Tumor-associated macrophages (TAMs) are major inflammatory cells in the tumor microenvironment that are key to tumor development, angiogenesis, invasion, and metastasis, and they play an essential role in RT responses. METHODS: We used big data analysis to determine the potential of targeting CXCL6/CXCR2. We enrolled 50 patients with liver cancer who received RT at our hospital. Tumor tissue samples were examined for any relationship between CXCL6/CXCR2 activity and patient prognosis. Using a cell coculture system (Transwell), we cocultured Huh7 liver cancer cells and THP-1 monocytes with and without CXCL6/CXCR2 small interfering RNA for 72 h. RESULTS: The overexpression of CXCL6/CXCR2 was highly correlated with mortality. Our tissue study indicated a positive correlation between CXCL6/CXCR2 and M2-TAMs subsets. The coculture study demonstrated that THP-1 monocytes can secrete CXCL6, which acts on the CXCR2 receptor on the surface of Huh7 cells and activates IFN-g/p38 MAPK/NF-κB signals to promote the epithelial-mesenchymal transition and radio-resistance. CONCLUSIONS: Modulating the TAM/CXCL6/CXCR2 tumor immune signaling axis may be a new treatment strategy for the effective eradication of radiotherapy-resistant hepatocellular carcinoma cells.

15.
Nanomaterials (Basel) ; 13(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36985905

ABSTRACT

Radiotherapy is one of the most common therapeutic regimens for cancer treatment. Over the past decade, proton therapy (PT) has emerged as an advanced type of radiotherapy (RT) that uses proton beams instead of conventional photon RT. Both PT and carbon-ion beam therapy (CIBT) exhibit excellent therapeutic results because of the physical characteristics of the resulting Bragg peaks, which has been exploited for cancer treatment in medical centers worldwide. Although particle therapies show significant advantages to photon RT by minimizing the radiation damage to normal tissue after the tumors, they still cause damage to normal tissue before the tumor. Since the physical mechanisms are different from particle therapy and photon RT, efforts have been made to ameliorate these effects by combining nanomaterials and particle therapies to improve tumor targeting by concentrating the radiation effects. Metallic nanoparticles (MNPs) exhibit many unique properties, such as strong X-ray absorption cross-sections and catalytic activity, and they are considered nano-radioenhancers (NREs) for RT. In this review, we systematically summarize the putative mechanisms involved in NRE-induced radioenhancement in particle therapy and the experimental results in in vitro and in vivo models. We also discuss the potential of translating preclinical metal-based NP-enhanced particle therapy studies into clinical practice using examples of several metal-based NREs, such as SPION, Abraxane, AGuIX, and NBTXR3. Furthermore, the future challenges and development of NREs for PT are presented for clinical translation. Finally, we propose a roadmap to pursue future studies to strengthen the interplay of particle therapy and nanomedicine.

16.
Cells ; 12(7)2023 03 26.
Article in English | MEDLINE | ID: mdl-37048091

ABSTRACT

Exosomes are effective therapeutic vehicles that may transport their substances across cells. They are shown to possess the capacity to affect cell proliferation, migration, anti-apoptosis, anti-scarring, and angiogenesis, via the action of transporting molecular components. Possessing immense potential in regenerative medicine, exosomes, especially stem cell-derived exosomes, have the advantages of low immunogenicity, minimal invasiveness, and broad clinical applicability. Exosome biodistribution and pharmacokinetics may be altered, in response to recent advancements in technology, for the purpose of treating particular illnesses. Yet, prior to clinical application, it is crucial to ascertain the ideal dose and any potential negative consequences of an exosome. This review focuses on the therapeutic potential of stem cell-derived exosomes and further illustrates the molecular mechanisms that underpin their potential in musculoskeletal regeneration, wound healing, female infertility, cardiac recovery, immunomodulation, neurological disease, and metabolic regulation. In addition, we provide a summary of the currently effective techniques for isolating exosomes, and describe the innovations in biomaterials that improve the efficacy of exosome-based treatments. Overall, this paper provides an updated overview of the biological factors found in stem cell-derived exosomes, as well as potential targets for future cell-free therapeutic applications.


Subject(s)
Exosomes , Humans , Female , Exosomes/metabolism , Tissue Distribution , Stem Cells/metabolism , Wound Healing , Cicatrix/metabolism
17.
Exp Hematol Oncol ; 12(1): 37, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37046292

ABSTRACT

Surgical intervention is the first-line treatment in well-selected hepatocellular carcinoma (HCC) patients. However, only a few patients are suitable to receive radical surgery. We conducted a systematic review and meta-analysis to evaluate local control among four local ablative therapies in inoperable HCC patients, including radiofrequency ablation therapy (RFA), microwave ablation therapy (MWA), stereotactic ablative radiotherapy (SABR), and particle radiotherapy. The primary outcome was the local control rate and the secondary were regional and distant progression rates, overall survival rate, and adverse events. We included twenty-six studies from PubMed, EMBASE, and Cochrane Library databases. MWA (p < 0.001) and particle radiotherapy (p < 0.001) showed better performance of local control compared to RFA, while SABR (p = 0.276) showed a non-significant trend. However, SABR (p = 0.002) and particle radiotherapy (p < 0.001) showed better performance than RFA in HCCs of ≥ 30 mm in size. MWA showed a similar result to RFA while SABR and particle radiotherapy showed a lower survival rate in the 2-, 3-, and 4-year overall survival rates. Our results indicate that MWA, SABR and particle radiotherapy were safe and no inferior to RFA in local control rate. Besides, the local control rates of SABR and particle radiotherapy are better than RFA in HCC of ≥ 30 mm in size. As a result, we suggested that MWA, SABR and particle radiotherapy to be effective alternatives to RFA for inoperable HCC. Moreover, the tumor size should be taken into consideration for optimal treatment selection between local ablative therapies.

18.
Cells ; 12(17)2023 08 22.
Article in English | MEDLINE | ID: mdl-37681860

ABSTRACT

Androgen has been shown to regulate male physiological activities and cancer proliferation. It is used to antagonize estrogen-induced proliferative effects in breast cancer cells. However, evidence indicates that androgen can stimulate cancer cell growth in estrogen receptor (ER)-positive and ER-negative breast cancer cells via different types of receptors and different mechanisms. Androgen-induced cancer growth and metastasis link with different types of integrins. Integrin αvß3 is predominantly expressed and activated in cancer cells and rapidly dividing endothelial cells. Programmed death-ligand 1 (PD-L1) also plays a vital role in cancer growth. The part of integrins in action with androgen in cancer cells is not fully mechanically understood. To clarify the interactions between androgen and integrin αvß3, we carried out molecular modeling to explain the potential interactions of androgen with integrin αvß3. The androgen-regulated mechanisms on PD-L1 and its effects were also addressed.


Subject(s)
Androgens , B7-H1 Antigen , Male , Humans , Androgens/pharmacology , Endothelial Cells , Integrin alphaVbeta3 , Cell Transformation, Neoplastic
19.
Aliment Pharmacol Ther ; 57(11): 1299-1312, 2023 06.
Article in English | MEDLINE | ID: mdl-36914943

ABSTRACT

BACKGROUND: There is still controversy about whether tenofovir disoproxil fumarate (TDF) and entecavir (ETV) have different effects on the outcomes of patients with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). AIMS: The aim of this study was to compare the prognoses between ETV and TDF treatment among patients with HBV-related HCC after hepatectomy. METHODS: An analysis was done on data from the Taiwan Cancer Registry, which was linked to Taiwan National Health Insurance Research Database, for the years 2011-2016. We identified 7107 patients with HBV-related HCC after curative hepatectomy, and 25.3% of them used ETV or TDF after surgery. After propensity score overlap weighting, 1797 patients treated with ETV (n = 1365) or TDF (n = 432) were included for analyses. Cox proportional hazards models were used to compare the efficacy of ETV and TDF for recurrence and overall survival (OS). RESULTS: After hepatectomy, the recurrence rate per 100 person-years was 14.87 for the ETV group and 9.25 for the TDF group. The risk of recurrence was similar in the TDF group and the ETV group (HR [95% CI]: 0.91 [0.69-1.19; p = 0.479]), as was the risk of all-cause mortality (HR [95% CI]: 0.67 [0.42-1.07]; p = 0.091). When considering early recurrence (<2 years) and late recurrence (≧2 years), the TDF and ETV groups showed no significant differences. Subgroup analyses and sensitivity analyses demonstrated consistent results. CONCLUSION: Both TDF and ETV showed similar health benefits in terms of recurrence and OS in patients with HBV-related HCC patients after hepatectomy.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B, Chronic , Liver Neoplasms , Humans , Tenofovir/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Hepatitis B virus , Antiviral Agents/therapeutic use , Hepatectomy/adverse effects , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/drug therapy , Treatment Outcome , Liver Neoplasms/drug therapy , Prognosis
20.
Diagnostics (Basel) ; 13(9)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37174988

ABSTRACT

Stereotactic ablative radiotherapy (SABR) may improve survival in patients with inoperable pulmonary oligometastases. However, the impact of pulmonary oligometastatic status after systemic therapy on SABR outcomes remains unclear. Hence, we investigated the outcomes of SABR in 45 patients with 77 lung tumors and the prognostic value of pulmonary oligoprogression. Eligibility criteria were pulmonary oligometastases (defined as ≤5 metastatic lung tumors), controlled extrapulmonary disease (EPD) after front-line systemic therapy, SABR as primary local treatment for inoperable pulmonary metastases, and consecutive imaging follow-up. Oligometastatic lung tumor was classified into controlled or oligoprogressive status. Overall survival (OS), in-field progression-free survival (IFPFS), out-field progression-free survival (OFPFS), and prognostic variables were evaluated. With 21.8 months median follow-up, the median OS, IFPFS, and OFPFS were 28.3, not reached, and 6.5 months, respectively. Two-year OS, IFPFS, and OFPFS rates were 56.0%, 74.2%, and 17.3%, respectively. Oligoprogressive status (p = 0.003), disease-free interval < 24 months (p = 0.041), and biologically effective dose (BED10) < 100 Gy (p = 0.006) were independently associated with inferior OS. BED10 ≥ 100 Gy (p = 0.029) was independently correlated with longer IFPFS. Oligoprogressive status (p = 0.017) and EPD (p = 0.019) were significantly associated with inferior OFPFS. Grade ≥ 2 radiation pneumonitis occurred in four (8.9%) patients. Conclusively, SABR with BED10 ≥ 100 Gy could provide substantial in-field tumor control and longer OS for systemic therapy respondents with inoperable pulmonary oligometastases. Oligoprogressive lung tumors exhibited a higher risk of out-field treatment failure and shorter OS. Hence, systemic therapy should be tailored for patients with oligoprogression to reduce the risk of out-field treatment failure. However, in the absence of effective systemic therapy, SABR is a reasonable alternative to reduce resistant tumor burden.

SELECTION OF CITATIONS
SEARCH DETAIL