Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(49): e2213628119, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36442127

ABSTRACT

Single-nucleotide polymorphisms in the human juxtaposed with another zinc finger protein 1 (JAZF1) gene have repeatedly been associated with both type 2 diabetes (T2D) and height in multiple genome-wide association studies (GWAS); however, the mechanism by which JAZF1 causes these traits is not yet known. To investigate the possible functional role of JAZF1 in growth and glucose metabolism in vivo, we generated Jazf1 knockout (KO) mice and examined body composition and insulin sensitivity both in young and adult mice by using 1H-nuclear magnetic resonance and hyperinsulinemic-euglycemic clamp techniques. Plasma concentrations of insulin-like growth factor 1 (IGF-1) were reduced in both young and adult Jazf1 KO mice, and young Jazf1 KO mice were shorter in stature than age-matched wild-type mice. Young Jazf1 KO mice manifested reduced fat mass, whereas adult Jazf1 KO mice manifested increased fat mass and reductions in lean body mass associated with increased plasma growth hormone (GH) concentrations. Adult Jazf1 KO manifested muscle insulin resistance that was further exacerbated by high-fat diet feeding. Gene set enrichment analysis in Jazf1 KO liver identified the hepatocyte hepatic nuclear factor 4 alpha (HNF4α), which was decreased in Jazf1 KO liver and in JAZF1 knockdown cells. Moreover, GH-induced IGF-1 expression was inhibited by JAZF1 knockdown in human hepatocytes. Taken together these results demonstrate that reduction of JAZF1 leads to early growth retardation and late onset insulin resistance in vivo which may be mediated through alterations in the GH-IGF-1 axis and HNF4α.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Humans , Mice , Co-Repressor Proteins/genetics , Diabetes Mellitus, Type 2/genetics , DNA-Binding Proteins , Genome-Wide Association Study , Growth Disorders , Hepatocyte Nuclear Factor 4/genetics , Insulin Resistance/genetics , Insulin-Like Growth Factor I/genetics , Mice, Knockout
2.
Int J Mol Sci ; 25(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38256169

ABSTRACT

Graphislactone A (GPA), a secondary metabolite derived from a mycobiont found in the lichens of the genus Graphis, exhibits antioxidant properties. However, the potential biological functions and therapeutic applications of GPA at the cellular and animal levels have not yet been investigated. In the present study, we explored the therapeutic potential of GPA in mitigating non-alcoholic fatty liver disease (NAFLD) and its underlying mechanisms through a series of experiments using various cell lines and animal models. GPA demonstrated antioxidant capacity on a par with that of vitamin C in cultured hepatocytes and reduced the inflammatory response induced by lipopolysaccharide in primary macrophages. However, in animal studies using an NAFLD mouse model, GPA had a milder impact on liver inflammation while markedly attenuating hepatic steatosis. This effect was confirmed in an animal model of early fatty liver disease without inflammation. Mechanistically, GPA inhibited lipogenesis rather than fat oxidation in cultured hepatocytes. Similarly, RNA sequencing data revealed intriguing associations between GPA and the adipogenic pathways during adipocyte differentiation. GPA effectively reduced lipid accumulation and suppressed lipogenic gene expression in AML12 hepatocytes and 3T3-L1 adipocytes. In summary, our study demonstrates the potential application of GPA to protect against hepatic steatosis in vivo and suggests a novel role for GPA as an underlying mechanism in lipogenesis, paving the way for future exploration of its therapeutic potential.


Subject(s)
Antioxidants , Non-alcoholic Fatty Liver Disease , Animals , Mice , Antioxidants/pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Lipogenesis , Diet , Inflammation
3.
Proc Natl Acad Sci U S A ; 116(35): 17419-17428, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31341090

ABSTRACT

Viperin is an interferon (IFN)-inducible multifunctional protein. Recent evidence from high-throughput analyses indicates that most IFN-inducible proteins, including viperin, are intrinsically expressed in specific tissues; however, the respective intrinsic functions are unknown. Here we show that the intrinsic expression of viperin regulates adipose tissue thermogenesis, which is known to counter metabolic disease and contribute to the febrile response to pathogen invasion. Viperin knockout mice exhibit increased heat production, resulting in a reduction of fat mass, improvement of high-fat diet (HFD)-induced glucose tolerance, and enhancement of cold tolerance. These thermogenic phenotypes are attributed to an adipocyte-autonomous mechanism that regulates fatty acid ß-oxidation. Under an HFD, viperin expression is increased, and its function is enhanced. Our findings reveal the intrinsic function of viperin as a novel mechanism regulating thermogenesis in adipose tissues, suggesting that viperin represents a molecular target for thermoregulation in clinical contexts.


Subject(s)
Adipose Tissue/metabolism , Gene Expression Regulation , Proteins/genetics , Thermogenesis/genetics , Adipocytes/metabolism , Animals , Energy Metabolism/genetics , Male , Mice , Mice, Knockout
4.
Nature ; 510(7506): 542-6, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24847880

ABSTRACT

Metformin is considered to be one of the most effective therapeutics for treating type 2 diabetes because it specifically reduces hepatic gluconeogenesis without increasing insulin secretion, inducing weight gain or posing a risk of hypoglycaemia. For over half a century, this agent has been prescribed to patients with type 2 diabetes worldwide, yet the underlying mechanism by which metformin inhibits hepatic gluconeogenesis remains unknown. Here we show that metformin non-competitively inhibits the redox shuttle enzyme mitochondrial glycerophosphate dehydrogenase, resulting in an altered hepatocellular redox state, reduced conversion of lactate and glycerol to glucose, and decreased hepatic gluconeogenesis. Acute and chronic low-dose metformin treatment effectively reduced endogenous glucose production, while increasing cytosolic redox and decreasing mitochondrial redox states. Antisense oligonucleotide knockdown of hepatic mitochondrial glycerophosphate dehydrogenase in rats resulted in a phenotype akin to chronic metformin treatment, and abrogated metformin-mediated increases in cytosolic redox state, decreases in plasma glucose concentrations, and inhibition of endogenous glucose production. These findings were replicated in whole-body mitochondrial glycerophosphate dehydrogenase knockout mice. These results have significant implications for understanding the mechanism of metformin's blood glucose lowering effects and provide a new therapeutic target for type 2 diabetes.


Subject(s)
Gluconeogenesis/drug effects , Glycerolphosphate Dehydrogenase/antagonists & inhibitors , Metformin/pharmacology , Mitochondria/enzymology , Animals , Blood Glucose/analysis , Blood Glucose/biosynthesis , Cells, Cultured , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/enzymology , Diabetes Mellitus, Type 2/metabolism , Glycerolphosphate Dehydrogenase/deficiency , Glycerolphosphate Dehydrogenase/genetics , Glycerolphosphate Dehydrogenase/metabolism , Humans , Hypoglycemic Agents/pharmacology , Insulin/metabolism , Insulin Secretion , Lactic Acid/metabolism , Liver/drug effects , Liver/metabolism , Male , Mice, Knockout , Oxidation-Reduction/drug effects , Rats , Rats, Sprague-Dawley
5.
Int J Mol Sci ; 22(1)2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33396939

ABSTRACT

Liver fibrosis is a consequence of chronic liver injury associated with chronic viral infection, alcohol abuse, and nonalcoholic fatty liver. The evidence from clinical and animal studies indicates that transforming growth factor-ß (TGF-ß) signaling is associated with the development of liver fibrosis. Krüppel-like factor 10 (KLF10) is a transcription factor that plays a significant role in TGF-ß-mediated cell growth, apoptosis, and differentiation. In recent studies, it has been reported to be associated with glucose homeostasis and insulin resistance. In the present study, we investigated the role of KLF10 in the progression of liver disease upon a high-sucrose diet (HSD) in mice. Wild type (WT) and Klf10 knockout (KO) mice were fed either a control chow diet or HSD (50% sucrose) for eight weeks. Klf10 KO mice exhibited significant hepatic steatosis, inflammation, and liver injury upon HSD feeding, whereas the WT mice exhibited mild hepatic steatosis with no apparent liver injury. The livers of HSD-fed Klf10 KO mice demonstrated significantly increased endoplasmic reticulum stress, oxidative stress, and proinflammatory cytokines. Klf10 deletion led to the development of sucrose-induced hepatocyte cell death both in vivo and in vitro. Moreover, it significantly increased fibrogenic gene expression and collagen accumulation in the liver. Increased liver fibrosis was accompanied by increased phosphorylation and nuclear localization of Smad3. Here, we demonstrate that HSD-fed mice develop a severe liver injury in the absence of KLF10 due to the hyperactivation of the endoplasmic reticulum stress response and CCAAT/enhance-binding protein homologous protein (CHOP)-mediated apoptosis of hepatocytes. The current study suggests that KLF10 plays a protective role against the progression of hepatic steatosis into liver fibrosis in a lipogenic state.


Subject(s)
Dietary Sucrose/toxicity , Early Growth Response Transcription Factors/physiology , Endoplasmic Reticulum Stress , Gene Deletion , Inflammation/complications , Kruppel-Like Transcription Factors/physiology , Liver Cirrhosis/etiology , Animals , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidative Stress
6.
J Korean Med Sci ; 33(26): e178, 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-29930489

ABSTRACT

BACKGROUND: Lung cancer is the most common cause of cancer-related mortality worldwide. We previously reported the identification of a new genetic marker, cellular retinoic acid binding protein 2 (CRABP2), in lung cancer tissues. The aim of this study was to assess plasma levels of CRABP2 from patients with non-small cell lung cancer (NSCLC). METHODS: Blood samples that were collected from 122 patients with NSCLC between September 2009 and September 2013 were selected for the analysis, along with samples from age- (± 5 years), sex-, and cigarette smoking history (± 10 pack-years [PY])-matched controls from the Korea Biobank Network. The control specimens were from patients who were without malignancies or pulmonary diseases. We measured plasma levels of CRABP2 using commercially available enzyme-linked immunosorbent assay kits. RESULTS: The mean age of the NSCLC patients was 71.8 ± 8.9 years, and the median cigarette smoking history was 32 PY (range, 0-150 PY). Plasma CRABP2 levels were significantly higher in patients with NSCLC than in the matched controls (37.63 ± 28.71 ng/mL vs. 24.09 ± 21.09 ng/mL, P < 0.001). Higher plasma CRABP2 levels were also correlated with lower survival rates in NSCLC patients (P = 0.014). CONCLUSION: Plasma CRABP2 levels might be a novel diagnostic and prognostic marker in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Receptors, Retinoic Acid/blood , Aged , Aged, 80 and over , Biomarkers, Tumor , Female , Humans , Male , Middle Aged , Prognosis , Republic of Korea , Survival Rate
7.
Oncology ; 93(2): 115-121, 2017.
Article in English | MEDLINE | ID: mdl-28445892

ABSTRACT

OBJECTIVE: The aim of this study was to assess the feasibility of a modified FOLFOX regimen as first-line treatment in elderly patients with metastatic gastric cancer (GC) or colorectal cancer (CRC). METHODS: We included chemotherapy-naïve patients over 80 years old with metastatic GC or CRC in our study. From September 2008 to November 2014, 28 consecutive patients were enrolled and treated with modified FOLFOX. RESULTS: The study population consisted of an equal number of GC and CRC patients. The median age was 82.2 years in the GC group and 81.1 years in the CRC group. The total number of administered cycles was 89 (with a median of 6 per patient) in the GC group and 112 (with a median of 8 per patient) in the CRC group. Median progression-free survival (PFS) and overall survival (OS) were 5.4 and 6.6 months in the GC group and 7.3 and 8.1 months in the CRC group, respectively. There was no significant difference in PFS (p = 0.941) and OS (p = 0.238) between the GC and the CRC group. The 1-year survival rates were 35.7% with GC and 42.9% with CRC. Common grade 3/4 hematology toxicities were neutropenia (10.7%) and anemia (14.3%). Salvage chemotherapy was administered to 1 patient with GC and 7 patients with CRC. CONCLUSIONS: The modified FOLFOX regimen can be cautiously considered as a first-line treatment option in extremely elderly patients with metastatic GC or CRC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colorectal Neoplasms/drug therapy , Stomach Neoplasms/drug therapy , Aged, 80 and over , Antineoplastic Agents/therapeutic use , Feasibility Studies , Female , Fluorouracil/therapeutic use , Humans , Leucovorin/therapeutic use , Male , Neoplasm Metastasis/therapy , Organoplatinum Compounds/therapeutic use , Republic of Korea , Survival Rate , Treatment Outcome
8.
J Mol Cell Cardiol ; 91: 104-13, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26746142

ABSTRACT

AMP-activated kinase (AMPK) is a stress responsive kinase that regulates cellular metabolism and protects against cardiomyocyte injury during ischemia-reperfusion (IR). Mitochondria play an important role in cell survival, but the specific actions of activated AMPK in maintaining mitochondrial integrity and function during reperfusion are unknown. Thus, we assessed the consequences of AMPK inactivation on heart mitochondrial function during reperfusion. Mouse hearts expressing wild type (WT) or kinase-dead (KD) AMPK were studied. Mitochondria isolated from KD hearts during reperfusion had intact membrane integrity, but demonstrated reduced oxidative capacity, increased hydrogen peroxide production and decreased resistance to mitochondrial permeability transition pore opening compared to WT. KD hearts showed increased activation of the mitogen activated protein kinase kinase 4 (MKK4) and downstream c-Jun terminal kinase (JNK) and greater necrosis during reperfusion after coronary occlusion. Transgenic expression of mitochondrial catalase (MCAT) prevented the excessive cardiac JNK activation and attenuated the increased myocardial necrosis observed during reperfusion in KD mice. Inhibition of JNK increased the resistance of KD hearts to mPTP opening, contractile dysfunction and necrosis during IR. Thus, intrinsic activation of AMPK is critical to prevent excess mitochondrial reactive oxygen production and consequent JNK signaling during reperfusion, thereby protecting against mPTP opening, irreversible mitochondrial damage and myocardial injury.


Subject(s)
MAP Kinase Kinase 4/genetics , Myocardial Infarction/genetics , Necrosis/genetics , Animals , Apoptosis/drug effects , Catalase/genetics , Catalase/metabolism , Gene Expression Regulation , Hydrogen Peroxide/antagonists & inhibitors , Hydrogen Peroxide/metabolism , MAP Kinase Kinase 4/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Reperfusion , Myocardium/metabolism , Myocardium/pathology , Necrosis/metabolism , Necrosis/pathology , Necrosis/prevention & control , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Transgenes
9.
Hepatology ; 62(1): 135-46, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25808625

ABSTRACT

UNLABELLED: The endoplasmic reticulum (ER) is the principal organelle in the cell for protein folding and trafficking, lipid synthesis, and cellular calcium homeostasis. Perturbation of ER function results in activation of the unfolded protein response (UPR) and is implicated in abnormal lipid biosynthesis and development of insulin resistance. In this study, we investigated whether transcription of sphingosine kinase (Sphk)2 is regulated by ER stress-mediated UPR pathways. Sphk2, a major isotype of sphingosine kinase in the liver, was transcriptionally up-regulated by tunicamycin and lipopolysaccharides. Transcriptional regulation of Sphk2 was mediated by activation of activating transcription factor (ATF)4 as demonstrated by promoter assays, immunoblotting, and small interfering RNA analyses. In primary hepatocytes, adenoviral Sphk2 expression elevated cellular sphingosine 1 phosphate (S1P) and activated protein kinase B phosphorylation, with no alteration of insulin receptor substrate phosphorylation. Hepatic overexpression of Sphk2 in mice fed a high-fat diet (HFD) led to elevated S1P and reduced ceramide, sphingomyelin, and glucosylceramide in plasma and liver. Hepatic accumulation of lipid droplets by HFD feeding was reduced by Sphk2-mediated up-regulation of fatty acid (FA) oxidizing genes and increased FA oxidation in liver. In addition, glucose intolerance and insulin resistance were ameliorated by improved hepatic insulin signaling through Sphk2 up-regulation. CONCLUSION: Sphk2 is transcriptionally up-regulated by acute ER stress through activation of ATF4 and improves perturbed hepatic glucose and FA metabolism.


Subject(s)
Endoplasmic Reticulum Stress , Fatty Liver/metabolism , Insulin Resistance , Liver/enzymology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Activating Transcription Factor 4/metabolism , Animals , Cells, Cultured , Diet, High-Fat , Fatty Acids/metabolism , Hepatocytes/enzymology , Lipid Droplets/metabolism , Lipids/blood , Lysophospholipids/metabolism , Male , Mice, Inbred C57BL , Oxidation-Reduction , Proto-Oncogene Proteins c-akt/metabolism , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Unfolded Protein Response , Up-Regulation
10.
Nucleic Acids Res ; 42(22): 13799-811, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25399420

ABSTRACT

The H19 lncRNA has been implicated in development and growth control and is associated with human genetic disorders and cancer. Acting as a molecular sponge, H19 inhibits microRNA (miRNA) let-7. Here we report that H19 is significantly decreased in muscle of human subjects with type-2 diabetes and insulin resistant rodents. This decrease leads to increased bioavailability of let-7, causing diminished expression of let-7 targets, which is recapitulated in vitro where H19 depletion results in impaired insulin signaling and decreased glucose uptake. Furthermore, acute hyperinsulinemia downregulates H19, a phenomenon that occurs through PI3K/AKT-dependent phosphorylation of the miRNA processing factor KSRP, which promotes biogenesis of let-7 and its mediated H19 destabilization. Our results reveal a previously undescribed double-negative feedback loop between sponge lncRNA and target miRNA that contributes to glucose regulation in muscle cells.


Subject(s)
Glucose/metabolism , MicroRNAs/metabolism , Muscle, Skeletal/metabolism , RNA, Long Noncoding/metabolism , Animals , Down-Regulation , Feedback, Physiological , Humans , Hyperinsulinism/genetics , Hyperinsulinism/metabolism , Insulin/pharmacology , Male , Mice, Inbred C57BL , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , RNA-Binding Proteins/physiology , Signal Transduction , Trans-Activators/physiology
11.
Neurochem Res ; 40(5): 1013-22, 2015 May.
Article in English | MEDLINE | ID: mdl-25777256

ABSTRACT

p63 is a transcription factor of p53 gene family, which are involved in development, differentiation and cell response to stress; however, its roles in ischemic preconditioning (IPC) in the brain are not clear. In the present study, we investigated the effect of IPC on p63 immunoreactivity caused by 5 min of transient cerebral ischemia in gerbils. IPC was induced by subjecting the gerbils to 2 min of transie ischemia 1 day prior to 5 min of transient ischemia. The animals were randomly assigned to four groups (sham-operated-group, ischemia-operated-group, IPC plus (+)-sham-operated-group and IPC + ischemia-operated-group). The number of viable neurons in the stratum pyramidale of the hippocampal CA1 region (CA1) was significantly increased by IPC + ischemia-operated-group compared with that in the ischemia-operated-group 5 days after ischemic insult. We found that strong p63 immunoreactivity was detected in the CA1 pyramidal neurons in the sham-operated-group, and the immunoreactivity was decreased with time after ischemia-reperfusion. In addition, strong p63 immunoreactivity was newly expressed in microglial cells of the CA1 region from 2 days after ischemia-reperfusion. In all the IPC + sham-operated-groups, p63 immunoreactivity in the CA1 pyramidal neurons was similar to that in the sham-operated-group, and the immunoreactivity was well maintained in the IPC + ischemia-operated-groups after cerebral ischemia. In brief, our present findings show that IPC dramatically protected the reduction of p63 immunoreactivity in the pyramidal neurons of the CA1 region after ischemia-reperfusion, and this result suggests that the expression of p63 may be necessary for neurons to survive after transient cerebral ischemia.


Subject(s)
CA1 Region, Hippocampal/metabolism , Ischemic Attack, Transient/metabolism , Ischemic Attack, Transient/prevention & control , Ischemic Preconditioning/methods , Phosphoproteins/biosynthesis , Trans-Activators/biosynthesis , Animals , CA1 Region, Hippocampal/pathology , Gene Expression Regulation , Gerbillinae , Ischemic Attack, Transient/pathology , Male
12.
Proc Natl Acad Sci U S A ; 109(37): 14966-71, 2012 Sep 11.
Article in English | MEDLINE | ID: mdl-22912404

ABSTRACT

Fatty acid amide hydrolase (FAAH) knockout mice are prone to excess energy storage and adiposity, whereas mutations in FAAH are associated with obesity in humans. However, the molecular mechanism by which FAAH affects energy expenditure (EE) remains unknown. Here we show that reduced energy expenditure in FAAH(-/-) mice could be attributed to decreased circulating triiodothyronine and thyroxine concentrations secondary to reduced mRNA expression of both pituitary thyroid-stimulating hormone and hypothalamic thyrotropin-releasing hormone. These reductions in the hypothalamic-pituitary-thyroid axis were associated with activation of hypothalamic peroxisome proliferating-activated receptor γ (PPARγ), and increased hypothalamic deiodinase 2 expression. Infusion of NAEs (anandamide and palmitoylethanolamide) recapitulated increases in PPARγ-mediated decreases in EE. FAAH(-/-) mice were also prone to diet-induced hepatic insulin resistance, which could be attributed to increased hepatic diacylglycerol content and protein kinase Cε activation. Our data indicate that FAAH deletion, and the resulting increases in NAEs, predispose mice to ectopic lipid storage and hepatic insulin resistance by promoting centrally mediated hypothyroidism.


Subject(s)
Amidohydrolases/genetics , Energy Metabolism/physiology , Hypothyroidism/complications , Hypothyroidism/genetics , Insulin Resistance/physiology , Amides , Amidohydrolases/deficiency , Analysis of Variance , Animals , Arachidonic Acids/administration & dosage , Chromatography, Liquid , Endocannabinoids/administration & dosage , Energy Metabolism/genetics , Ethanolamines/administration & dosage , Hypothyroidism/enzymology , Immunoblotting , Mice , Mice, Knockout , PPAR gamma , Palmitic Acids/administration & dosage , Polymerase Chain Reaction , Polyunsaturated Alkamides/administration & dosage , Tandem Mass Spectrometry , Thyrotropin/metabolism , Thyrotropin-Releasing Hormone/metabolism , Thyroxine/blood , Triiodothyronine/blood
13.
Diabetologia ; 57(6): 1232-41, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24718953

ABSTRACT

AIMS/HYPOTHESIS: Aerobic exercise increases muscle glucose and improves insulin action through numerous pathways, including activation of Ca(2+)/calmodulin-dependent protein kinases (CAMKs) and peroxisome proliferator γ coactivator 1α (PGC-1α). While overexpression of PGC-1α increases muscle mitochondrial content and oxidative type I fibres, it does not improve insulin action. Activation of CAMK4 also increases the content of type I muscle fibres, PGC-1α level and mitochondrial content. However, it remains unknown whether CAMK4 activation improves insulin action on glucose metabolism in vivo. METHODS: The effects of CAMK4 activation on skeletal muscle insulin action were quantified using transgenic mice with a truncated and constitutively active form of CAMK4 (CAMK4([Symbol: see text])) in skeletal muscle. Tissue-specific insulin sensitivity was assessed in vivo using a hyperinsulinaemic-euglycaemic clamp and isotopic measurements of glucose metabolism. RESULTS: The rate of insulin-stimulated whole-body glucose uptake was increased by ∼25% in CAMK4([Symbol: see text]) mice. This was largely attributed to an increase of ∼60% in insulin-stimulated glucose uptake in the quadriceps, the largest hindlimb muscle. These changes were associated with improvements in insulin signalling, as reflected by increased phosphorylation of Akt and its substrates and an increase in the level of GLUT4 protein. In addition, there were extramuscular effects: CAMK4([Symbol: see text]) mice had improved hepatic and adipose insulin action. These pleiotropic effects were associated with increased levels of PGC-1α-related myokines in CAMK4([Symbol: see text]) skeletal muscle. CONCLUSIONS/INTERPRETATION: Activation of CAMK4 enhances mitochondrial biogenesis in skeletal muscle while also coordinating improvements in whole-body insulin-mediated glucose.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 4/metabolism , Glucose/metabolism , Insulin/metabolism , Muscle, Skeletal/enzymology , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 4/genetics , Female , Male , Mice , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Transcription Factors/genetics
14.
J Biol Chem ; 288(28): 20135-50, 2013 Jul 12.
Article in English | MEDLINE | ID: mdl-23744065

ABSTRACT

Insulin stimulates glucose uptake in 3T3-L1 adipocytes in part by causing endoproteolytic cleavage of TUG (tether containing a ubiquitin regulatory X (UBX) domain for glucose transporter 4 (GLUT4)). Cleavage liberates intracellularly sequestered GLUT4 glucose transporters for translocation to the cell surface. To test the role of this regulation in muscle, we used mice with muscle-specific transgenic expression of a truncated TUG fragment, UBX-Cter. This fragment causes GLUT4 translocation in unstimulated 3T3-L1 adipocytes. We predicted that transgenic mice would have GLUT4 translocation in muscle during fasting. UBX-Cter expression caused depletion of PIST (PDZ domain protein interacting specifically with TC10), which transmits an insulin signal to TUG. Whereas insulin stimulated TUG proteolysis in control muscles, proteolysis was constitutive in transgenic muscles. Fasting transgenic mice had decreased plasma glucose and insulin concentrations compared with controls. Whole-body glucose turnover was increased during fasting but not during hyperinsulinemic clamp studies. In muscles with the greatest UBX-Cter expression, 2-deoxyglucose uptake during fasting was similar to that in control muscles during hyperinsulinemic clamp studies. Fasting transgenic mice had increased muscle glycogen, and GLUT4 targeting to T-tubule fractions was increased 5.7-fold. Whole-body oxygen consumption (VO2), carbon dioxide production (VCO2), and energy expenditure were increased by 12-13%. After 3 weeks on a high fat diet, the decreased fasting plasma glucose in transgenic mice compared with controls was more marked, and increased glucose turnover was not observed; the transgenic mice continued to have an increased metabolic rate. We conclude that insulin stimulates TUG proteolysis to translocate GLUT4 in muscle, that this pathway impacts systemic glucose homeostasis and energy metabolism, and that the effects of activating this pathway are maintained during high fat diet-induced insulin resistance in mice.


Subject(s)
Carrier Proteins/metabolism , Glucose Transporter Type 4/metabolism , Glucose/metabolism , Muscle, Skeletal/metabolism , 3T3-L1 Cells , Adaptor Proteins, Signal Transducing , Animals , Blood Glucose/metabolism , Carbon Dioxide/metabolism , Carrier Proteins/genetics , Deoxyglucose/metabolism , Fasting/blood , Female , Glycogen/metabolism , Golgi Matrix Proteins , Hypoglycemic Agents/blood , Hypoglycemic Agents/pharmacology , Immunoblotting , Insulin/blood , Insulin/pharmacology , Intracellular Signaling Peptides and Proteins , Male , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Mice, Transgenic , Muscle, Skeletal/drug effects , Oxygen Consumption/drug effects , Protein Transport/drug effects , Proteolysis/drug effects
15.
Mamm Genome ; 25(9-10): 508-21, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24792749

ABSTRACT

The world-wide prevalence of obesity and diabetes has increased sharply during the last two decades. Accordingly, the metabolic phenotyping of genetically engineered mouse models is critical for evaluating the functional roles of target genes in obesity and diabetes, and for developing new therapeutic targets. In this review, we discuss the practical meaning of metabolic phenotyping, the strategy of choosing appropriate tests, and considerations when designing and performing metabolic phenotyping in mice.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Obesity/metabolism , Phenotype , Animals , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Mice , Mice, Transgenic , Obesity/diagnosis , Obesity/genetics , Risk Factors
16.
Proc Natl Acad Sci U S A ; 108(14): 5748-52, 2011 Apr 05.
Article in English | MEDLINE | ID: mdl-21436037

ABSTRACT

Mice overexpressing acylCoA:diacylglycerol (DAG) acyltransferase 2 in the liver (Liv-DGAT2) have been shown to have normal hepatic insulin responsiveness despite severe hepatic steatosis and increased hepatic triglyceride, diacylglycerol, and ceramide content, demonstrating a dissociation between hepatic steatosis and hepatic insulin resistance. This led us to reevaluate the role of DAG in causing hepatic insulin resistance in this mouse model of severe hepatic steatosis. Using hyperinsulinemic-euglycemic clamps, we studied insulin action in Liv-DGAT2 mice and their wild-type (WT) littermate controls. Here, we show that Liv-DGAT2 mice manifest severe hepatic insulin resistance as reflected by decreased suppression of endogenous glucose production (0.8 ± 41.8 vs. 87.7 ± 34.3% in WT mice, P < 0.01) during the clamps. Hepatic insulin resistance could be attributed to an almost 12-fold increase in hepatic DAG content (P < 0.01) resulting in a 3.6-fold increase in protein kinase Cε (PKCε) activation (P < 0.01) and a subsequent 52% decrease in insulin-stimulated insulin receptor substrate 2 (IRS-2) tyrosine phosphorylation (P < 0.05), as well as a 64% decrease in fold increase pAkt/Akt ratio from basal conditions (P < 0.01). In contrast, hepatic insulin resistance in these mice was not associated with increased endoplasmic reticulum (ER) stress or inflammation. Importantly, hepatic insulin resistance in Liv-DGAT2 mice was independent of differences in body composition, energy expenditure, or food intake. In conclusion, these findings strengthen the link between hepatic steatosis and hepatic insulin resistance and support the hypothesis that DAG-induced PKCε activation plays a major role in nonalcoholic fatty liver disease (NAFLD)-associated hepatic insulin resistance.


Subject(s)
Diacylglycerol O-Acyltransferase/metabolism , Fatty Liver/metabolism , Insulin Resistance/physiology , Liver/enzymology , Analysis of Variance , Animals , Blood Glucose , Cytokines/blood , Endoplasmic Reticulum/metabolism , Fatty Acids/blood , Immunoprecipitation , Insulin Receptor Substrate Proteins/metabolism , Mice , Micropore Filters , Phosphorylation , Protein Kinase C-epsilon/metabolism , Reverse Transcriptase Polymerase Chain Reaction
17.
J Biol Chem ; 287(10): 7213-23, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22232553

ABSTRACT

Body fat, insulin resistance, and type 2 diabetes are often linked together, but the molecular mechanisms that unify their association are poorly understood. Wnt signaling regulates adipogenesis, and its altered activity has been implicated in the pathogenesis of type 2 diabetes and metabolic syndrome. LRP6(+/-) mice on a high fat diet were protected against diet-induced obesity and hepatic and adipose tissue insulin resistance compared with their wild-type (WT) littermates. Brown adipose tissue insulin sensitivity and reduced adiposity of LRP6(+/-) mice were accounted for by diminished Wnt-dependent mTORC1 activity and enhanced expression of brown adipose tissue PGC1-α and UCP1. LRP6(+/-) mice also exhibited reduced endogenous hepatic glucose output, which was due to diminished FoxO1-dependent expression of the key gluconeogenic enzyme glucose-6-phosphatase (G6pase). In addition, in vivo and in vitro studies showed that loss of LRP6 allele is associated with increased leptin receptor expression, which is a likely cause of hepatic insulin sensitivity in LRP6(+/-) mice. Our study identifies LRP6 as a nutrient-sensitive regulator of body weight and glucose metabolism and as a potential target for pharmacological interventions in obesity and diabetes.


Subject(s)
Adipose Tissue, Brown/metabolism , Energy Metabolism/physiology , Glucose/metabolism , Homeostasis/physiology , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Mitochondria/metabolism , Adiposity/physiology , Alleles , Animals , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Dietary Fats/adverse effects , Dietary Fats/pharmacology , Energy Metabolism/drug effects , Forkhead Box Protein O1 , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gluconeogenesis/physiology , Glucose/genetics , Glucose-6-Phosphatase/genetics , Glucose-6-Phosphatase/metabolism , Homeostasis/drug effects , Insulin Resistance/genetics , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Knockout , Mitochondria/genetics , Multiprotein Complexes , Obesity/chemically induced , Obesity/genetics , Obesity/metabolism , Proteins/genetics , Proteins/metabolism , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , TOR Serine-Threonine Kinases , Wnt Signaling Pathway/physiology
18.
J Biol Chem ; 287(4): 2558-67, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22128176

ABSTRACT

Hepatic insulin resistance has been attributed to both increased endoplasmic reticulum (ER) stress and accumulation of intracellular lipids, specifically diacylglycerol (DAG). The ER stress response protein, X-box-binding protein-1 (XBP1), was recently shown to regulate hepatic lipogenesis, suggesting that hepatic insulin resistance in models of ER stress may result from defective lipid storage, as opposed to ER-specific stress signals. Studies were designed to dissociate liver lipid accumulation and activation of ER stress signaling pathways, which would allow us to delineate the individual contributions of ER stress and hepatic lipid content to the pathogenesis of hepatic insulin resistance. Conditional XBP1 knock-out (XBP1Δ) and control mice were fed fructose chow for 1 week. Determinants of whole-body energy balance, weight, and composition were determined. Hepatic lipids including triglyceride, DAGs, and ceramide were measured, alongside markers of ER stress. Whole-body and tissue-specific insulin sensitivity were determined by hyperinsulinemic-euglycemic clamp studies. Hepatic ER stress signaling was increased in fructose chow-fed XBP1Δ mice as reflected by increased phosphorylated eIF2α, HSPA5 mRNA, and a 2-fold increase in hepatic JNK activity. Despite JNK activation, XBP1Δ displayed increased hepatic insulin sensitivity during hyperinsulinemic-euglycemic clamp studies, which was associated with increased insulin-stimulated IRS2 tyrosine phosphorylation, reduced hepatic DAG content, and reduced PKCε activity. These studies demonstrate that ER stress and IRE1α-mediated JNK activation can be disassociated from hepatic insulin resistance and support the hypothesis that hepatic insulin resistance in models of ER stress may be secondary to ER stress modulation of hepatic lipogenesis.


Subject(s)
DNA-Binding Proteins/metabolism , Endoplasmic Reticulum Stress , Endoribonucleases/metabolism , Insulin Resistance , JNK Mitogen-Activated Protein Kinases/metabolism , Lipid Metabolism , Liver/metabolism , Protein Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism , Animals , DNA-Binding Proteins/genetics , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Chaperone BiP , Endoribonucleases/genetics , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , JNK Mitogen-Activated Protein Kinases/genetics , Mice , Mice, Knockout , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Regulatory Factor X Transcription Factors , Signal Transduction/genetics , Transcription Factors/genetics , X-Box Binding Protein 1
19.
Biochem Biophys Res Commun ; 435(4): 634-9, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-23685151

ABSTRACT

Hydrogen peroxide (H2O2) functions as a second messenger in growth factor receptor-mediated intracellular signaling cascade and is tumorigenic by virtue of its ability to promote cell proliferation; however, the mechanisms underlying the growth stimulatory action of H2O2 are less understood. Here we report an important mechanism for antagonistic effects of H2O2 on growth inhibitory response to transforming growth factor-ß1 (TGF-ß1). In Mv1Lu and HepG2 cells, pretreatment of H2O2 (0.05-0.2 mM) completely blocked TGF-ß1-mediated induction of p15(INK4B) expression and increase of its promoter activity. Interestingly, H2O2 selectively suppressed the transcriptional activation potential of Smad3, not Smad2, in the absence of effects on TGF-ß1-induced phosphorylation of the COOH-tail SSXS motif of Smad3 and its nuclear translocation. Mechanism studies showed that H2O2 increases the phosphorylation of Smad3 at the middle linker region in a concentration- and time-dependent manner and this effect is mediated by activation of extracellular signal-activated kinase 1/2 through Akt. Furthermore, expression of a mutant Smad3 in which linker phosphorylation sites were ablated significantly abrogated the inhibitory effects of H2O2 on TGF-ß1-induced increase of p15(INK4B)-Luc reporter activity and blockade of cell cycle progression from G1 to S phase. These findings for the first time define H2O2 as a signaling molecule that modulate Smad3 linker phosphorylation and its transcriptional activity, thus providing a potential mechanism whereby H2O2 antagonizes the cytostatic function of TGF-ß1.


Subject(s)
Cell Cycle Checkpoints/physiology , Hydrogen Peroxide/pharmacology , MAP Kinase Signaling System/physiology , Transforming Growth Factor beta1/metabolism , Animals , Cell Cycle Checkpoints/drug effects , Enzyme Activation/drug effects , Hep G2 Cells , Humans , MAP Kinase Signaling System/drug effects , Mink , Phosphorylation/drug effects
20.
Cell Mol Neurobiol ; 33(7): 991-1001, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23893372

ABSTRACT

The extent of neuronal damage/death in some brain regions is highly correlated to duration time of transient ischemia. In the present study, we carried out neuronal degeneration/death and glial changes in the septum 4 days after 5, 10, 15, and 20 min of transient cerebral ischemia using gerbils. To examine neuronal damage, Fluoro-Jade B (F-J B, a marker for neuronal degeneration) histofluorescence staining was used. F-J B positive ((+)) cells were detected in the septo-hippocampal nucleus (SHN) of the septum only in the 20 min ischemia-group; the mean number of F-J B(+) neurons was 14.9 ± 2.5/400 µm(2) in a section. Gliosis of astrocytes and microglia was examined using anti-glial fibrillary acidic protein (GFAP) and anti-ionized calcium-binding adapter molecule 1 (Iba-1), respectively. In all the ischemia-groups, GFAP- and Iba-1-immunoreactive astrocytes and microglia, respectively, were increased in number, and apparently tended to be increased in their immunoreactivity. Especially, in the 20 min ischemia-group, the number and immunoreactivity of Iba-immunoreactive microglia was highest and strongest in the ischemic SHN 4 days after ischemia-reperfusion. In brief, our findings showed that neuronal damage/death in the SHN occurred and gliosis was apparently increased in the 20 min ischemia-group at 4 days after ischemia-reperfusion.


Subject(s)
Brain Ischemia/pathology , Fluoresceins/metabolism , Gerbillinae/metabolism , Gliosis/metabolism , Gliosis/pathology , Neurons/pathology , Septum of Brain/pathology , Animals , Astrocytes/metabolism , Astrocytes/pathology , Benzoxazines , Brain Ischemia/complications , Brain Ischemia/metabolism , Fluorescent Antibody Technique , Glial Fibrillary Acidic Protein/metabolism , Gliosis/complications , Male , Microfilament Proteins/metabolism , Microglia/metabolism , Microglia/pathology , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Septum of Brain/metabolism , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL