Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
2.
Ann Surg Oncol ; 31(3): 2114-2126, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38093168

ABSTRACT

BACKGROUND: Cancer-associated fibroblasts (CAFs) play a crucial role in tumor microenvironment regulation and cancer progression. This study assessed the significance and predictive potential of CAFs in breast cancer prognosis. METHODS: The study included 1503 breast cancer patients. Cancer-associated fibroblasts were identified using morphologic features from hematoxylin and eosin slides. The study analyzed clinicopathologic parameters, survival rates, immune cells, gene sets, and prognostic models using gene-set enrichment analysis, in silico cytometry, pathway analysis, in vitro drug-screening, and gradient-boosting machine (GBM)-learning. RESULTS: The presence of CAFs correlated significantly with young age, lymphatic invasion, and perineural invasion. In silico cytometry showed altered leukocyte subsets in the presence of CAFs, with decreased CD8+ T cells. Gene-set enrichment analysis showed associations with critical processes such as the epithelial-mesenchymal transition and immune modulation. Drug sensitivity analysis in breast cancer cell lines with varying fibroblast activation protein-α expression suggested that CAF-targeted therapies might enhance the efficacy of certain anticancer drugs including ARRY-520, ispinesib-mesylate, paclitaxel, and docetaxel. Integrating CAF presence with machine-learning improved survival prediction. For breast cancer patients, CAFs were independent prognostic markers for worse disease-specific survival and disease-free survival. CONCLUSION: This study highlighted the significance of CAFs in breast cancer biology and provided compelling evidence of their impact on patient outcomes and treatment response. The findings offer valuable insights into the potential of CAFs as prognostic and predictive biomarkers and support the development of CAF-targeted therapies to improve breast cancer management.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Humans , Female , Breast Neoplasms/pathology , Cancer-Associated Fibroblasts/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Prognosis , CD8-Positive T-Lymphocytes/pathology , T-Lymphocytes , Tumor Microenvironment/genetics
3.
Chirality ; 36(3): e23656, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38408846

ABSTRACT

Considering the substantial significance of chiral biomolecules, such as amino acids, in our daily routines, we performed chiral recognition and discrimination of tyrosine (Tyr) enantiomers on (-)-(18-crown-6)-2,3,11,12-tetracarboxylic acid [(-)-18-C-6-TA] as crown-ether type chiral selector (CS) by nuclear magnetic resonance (NMR) spectroscopy and docking simulations. In this study, successful discrimination of the enantiomers of Tyr was achieved, as evidenced by the proton chemical shift differences (ΔΔδ) of Tyr enantiomers observed in the 1 H NMR spectra with (-)-18-C-6-TA CS. We compared the results of these two techniques with the findings obtained from high performance liquid chromatography (HPLC) investigations. In both NMR and HPLC experimental and docking simulation studies, a stronger interaction between the L-Tyr enantiomer with (-)-18-C-6-TA CS than the D-Tyr was consistently observed. Also, the binding energy differences (ΔΔEL-D ) found in simulation data that correspond to enantioselectivity aligned well with the NMR experimental result.


Subject(s)
Crown Ethers , Tyrosine , Stereoisomerism , Crown Ethers/chemistry , Magnetic Resonance Spectroscopy/methods
4.
J Korean Med Sci ; 39(2): e16, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225784

ABSTRACT

BACKGROUND: Tumor spread through air spaces (STAS) is a recently discovered risk factor for lung adenocarcinoma (LUAD). The aim of this study was to investigate specific genetic alterations and anticancer immune responses related to STAS. By using a machine learning algorithm and drug screening in lung cancer cell lines, we analyzed the effect of Janus kinase 2 (JAK2) on the survival of patients with LUAD and possible drug candidates. METHODS: This study included 566 patients with LUAD corresponding to clinicopathological and genetic data. For analyses of LUAD, we applied gene set enrichment analysis (GSEA), in silico cytometry, pathway network analysis, in vitro drug screening, and gradient boosting machine (GBM) analysis. RESULTS: The patients with STAS had a shorter survival time than those without STAS (P < 0.001). We detected gene set-related downregulation of JAK2 associated with STAS using GSEA. Low JAK2 expression was related to poor prognosis and a low CD8+ T-cell fraction. In GBM, JAK2 showed improved survival prediction performance when it was added to other parameters (T stage, N stage, lymphovascular invasion, pleural invasion, tumor size). In drug screening, mirin, CCT007093, dihydroretenone, and ABT737 suppressed the growth of lung cancer cell lines with low JAK2 expression. CONCLUSION: In LUAD, low JAK2 expression linked to the presence of STAS might serve as an unfavorable prognostic factor. A relationship between JAK2 and CD8+ T cells suggests that STAS is indirectly related to the anticancer immune response. These results may contribute to the design of future experimental research and drug development programs for LUAD with STAS.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/diagnosis , Janus Kinase 2/genetics , Lung Neoplasms/pathology , Neoplasm Invasiveness/pathology , Neoplasm Recurrence, Local , Neoplasm Staging , Prognosis , Retrospective Studies , T-Lymphocytes
5.
BMC Urol ; 23(1): 109, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37322432

ABSTRACT

INTRODUCTION: Traditionally, a pigtail catheter (PCN) is placed for preoperative renal access before performing percutaneous nephrolithotomy (PCNL). However, PCN can hamper the passage of the guidewire to the ureter, due to which, access tract can be lost. Therefore, Kumpe Access Catheter (KMP) has been proposed for preoperative renal access before PCNL. In this study, we analyzed the efficacy and safety of KMP for surgical outcomes in modified supine PCNL compared to those in PCN. MATERIALS AND METHODS: From July 2017 to December 2020, 232 patients underwent modified supine PCNL at a single tertiary center, of which 151 patients were enrolled in this study after excluding patients who underwent bilateral surgery, multiple punctures, or combined operations. Enrolled patients were divided into two groups according to the type of pre-PCNL nephrostomy catheter used: PCN versus KMP. A pre-PCNL nephrostomy catheter was selected based on the radiologist's preference. A single surgeon performed all PCNL procedures. Patient characteristics and surgical outcomes, including stone-free rate, operation time, radiation exposure time (RET), and complications, were compared between the two groups. RESULTS: Of the 151 patients, 53 underwent PCN placement, and 98 underwent KMP placement for pre-PCNL nephrostomy. Patient baseline characteristics were comparable between the two groups, except for the renal stone type and multiplicity. The operation time, stone-free rate, and complication rate were not significantly different between the two groups; however, RET was significantly shorter in the KMP group. CONCLUSION: The surgical outcomes of KMP placement were comparable to those of PCN and showed shorter RET during modified supine PCNL. Based on our results, we recommend KMP placement for pre-PCNL nephrostomy, particularly for reducing RET during supine PCNL.


Subject(s)
Kidney Calculi , Nephrolithotomy, Percutaneous , Nephrostomy, Percutaneous , Humans , Nephrolithotomy, Percutaneous/methods , Kidney , Nephrostomy, Percutaneous/methods , Kidney Calculi/surgery , Urinary Catheters , Treatment Outcome , Retrospective Studies
6.
Brief Bioinform ; 21(2): 663-675, 2020 03 23.
Article in English | MEDLINE | ID: mdl-30698638

ABSTRACT

Breast cancer comprises several molecular subtypes with distinct clinical features and treatment responses, and a substantial portion of each subtype remains incurable. A comprehensive analysis of multi-omics data and clinical profiles is required in order to better understand the biological complexity of this cancer type and to identify new prognostic and therapeutic markers. Thus, there arises a need for useful analytical tools to assist in the investigation and clinical management of the disease. We developed Cancer Target Gene Screening (CTGS), a web application that provides rapid and user-friendly analysis of multi-omics data sets from a large number of primary breast tumors. It allows the investigation of genomic and epigenomic aberrations, evaluation of transcriptomic profiles and performance of survival analyses and of bivariate correlations between layers of omics data. Notably, the genome-wide screening function of CTGS prioritizes candidate genes of clinical and biological significance among genes with copy number alteration, DNA methylation and dysregulated expression by the integrative analysis of different types of omics data in customized subgroups of breast cancer patients. These features may help in the identification of druggable cancer driver genes in a specific subtype or the clinical condition of human breast cancer. CTGS is available at http://ctgs.biohackers.net.


Subject(s)
Breast Neoplasms/genetics , Genetic Testing/methods , Genomics/methods , Internet , Proteomics/methods , Transcriptome , Breast Neoplasms/pathology , DNA Copy Number Variations , Female , Gene Expression Profiling , Humans , Survival Analysis
7.
Nature ; 534(7605): 47-54, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27135926

ABSTRACT

We analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, another with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.


Subject(s)
Breast Neoplasms/genetics , Genome, Human/genetics , Mutation/genetics , Cohort Studies , DNA Mutational Analysis , DNA Replication/genetics , DNA, Neoplasm/genetics , Female , Genes, BRCA1 , Genes, BRCA2 , Genomics , Humans , Male , Mutagenesis , Mutation Rate , Oncogenes/genetics , Recombinational DNA Repair/genetics
8.
Cell Mol Life Sci ; 78(1): 207-225, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32140747

ABSTRACT

NAD(P)-dependent steroid dehydrogenase-like (NSDHL), an essential enzyme in human cholesterol synthesis and a regulator of epidermal growth factor receptor (EGFR) trafficking pathways, has attracted interest as a therapeutic target due to its crucial relevance to cholesterol-related diseases and carcinomas. However, the development of pharmacological agents for targeting NSDHL has been hindered by the absence of the atomic details of NSDHL. In this study, we reported two X-ray crystal structures of human NSDHL, which revealed a detailed description of the coenzyme-binding site and the unique conformational change upon the binding of a coenzyme. A structure-based virtual screening and biochemical evaluation were performed and identified a novel inhibitor for NSDHL harboring suppressive activity towards EGFR. In EGFR-driven human cancer cells, treatment with the potent NSDHL inhibitor enhanced the antitumor effect of an EGFR kinase inhibitor. Overall, these findings could serve as good platforms for the development of therapeutic agents against NSDHL-related diseases.


Subject(s)
3-Hydroxysteroid Dehydrogenases/metabolism , Enzyme Inhibitors/metabolism , 3-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , 3-Hydroxysteroid Dehydrogenases/chemistry , 3-Hydroxysteroid Dehydrogenases/genetics , Binding Sites , Cell Line, Tumor , Cell Survival/drug effects , Cholesterol/chemistry , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Erlotinib Hydrochloride/chemistry , Erlotinib Hydrochloride/metabolism , Erlotinib Hydrochloride/pharmacology , Humans , Kinetics , Molecular Docking Simulation , Mutagenesis, Site-Directed , NAD/chemistry , NAD/metabolism , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Signal Transduction
9.
Molecules ; 27(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35807451

ABSTRACT

The circadian clock system is closely associated with inflammatory responses. Dysregulation of the circadian clock genes in the skin impairs the skin barrier function and affects the pathophysiology of atopic dermatitis. Interleukin 4 (IL-4) is a proinflammatory cytokine derived from T-helper type 2 cells; it plays a critical role in the pathogenesis of atopic dermatitis. Agerarin (6,7-dimethoxy-2,2-dimethyl-2H-chromene) is a natural JAK1/2/3 inhibitor isolated from Ageratum houstonianum that has a protective effect on the epidermal skin barrier. However, it remains unclear whether agerarin affects the circadian clock system. The aim of this study is to investigate the effect of agerarin on IL-4-induced PER2 gene expression in human keratinocytes through reverse transcription (RT)-PCR, quantitative real-time PCR (qPCR), immunoblotting, immunofluorescence microscopic analysis, and real-time bioluminescence analysis. We found that agerarin reduced IL-4-induced PER2 mRNA expression by suppressing the JAK-STAT3 pathway. In addition, real-time bioluminescence analysis in PER2:luc2p promoter-reporter cells revealed that agerarin restored the oscillatory rhythmicity of PER2 promoter activity altered by IL-4. These findings suggest that agerarin may be useful as a cosmeceutical agent against inflammatory skin conditions associated with disrupted circadian rhythms, such as atopic dermatitis.


Subject(s)
Dermatitis, Atopic , Janus Kinase Inhibitors , Benzopyrans , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/genetics , Dermatitis, Atopic/metabolism , Humans , Interleukin-4/metabolism , Janus Kinase Inhibitors/pharmacology , Keratinocytes , Period Circadian Proteins/genetics
10.
Biochem Biophys Res Commun ; 534: 303-309, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33276948

ABSTRACT

Kallikrein-related peptidase 7 (KLK7) is a chymotrypsin-like serine peptidase that plays a crucial role in regulating skin desquamation. KLK7 expression is highly upregulated in atopic dermatitis (AD) skin lesions in both humans and mice. Th2-lymphocyte-derived cytokines, including interleukin (IL)-4 and IL-13, have been shown to promote KLK7 expression in keratinocytes in patients with AD. However, the molecular mechanism underlying KLK7 expression remains poorly understood. Here, we demonstrated that the EGR-1-binding sequence (EBS) in the promoter region of KLK7 played a crucial role in IL-13-induced KLK7 transcription. Disruption of the EBS induced by a point mutation inhibited IL-13-induced KLK7 promoter activity. EGR-1 was shown to directly bind to the EBS, and EGR1 knockdown with shRNA abrogated IL-13-induced KLK7 expression. Using Egr1 knockout mice, we showed that Egr-1 was necessary for KLK7 expression in AD-like lesions induced by the repeated topical application of 2,4-dinitrobenzene on the dorsal skin of mice. We also demonstrated that the ERK1/2 mitogen-activated protein kinase (MAPK) pathway was responsible for EGR-1-dependent KLK7 transcription in response to IL-13 stimulation. Our findings delineate a signaling pathway that contributes to the regulation of KLK7 expression through the IL13-ERK MAPK-EGR1 signaling axis.


Subject(s)
Early Growth Response Protein 1/metabolism , Interleukin-13/metabolism , Kallikreins/genetics , Animals , Dermatitis, Atopic/genetics , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Disease Models, Animal , Early Growth Response Protein 1/antagonists & inhibitors , Early Growth Response Protein 1/deficiency , Early Growth Response Protein 1/genetics , Gene Knockdown Techniques , HaCaT Cells , Humans , Kallikreins/metabolism , Keratinocytes/metabolism , Keratinocytes/pathology , MAP Kinase Signaling System , Mice , Mice, Knockout , Mutagenesis, Site-Directed , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , Trans-Activators/antagonists & inhibitors , Trans-Activators/genetics , Trans-Activators/metabolism
11.
EMBO Rep ; 20(10): e48058, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31468695

ABSTRACT

Cyclin-dependent kinase 12 (CDK12) has emerged as an effective therapeutic target due to its ability to regulate DNA damage repair in human cancers, but little is known about the role of CDK12 in driving tumorigenesis. Here, we demonstrate that CDK12 promotes tumor initiation as a novel regulator of cancer stem cells (CSCs) and induces anti-HER2 therapy resistance in human breast cancer. High CDK12 expression caused by concurrent amplification of CDK12 and HER2 in breast cancer patients is associated with disease recurrence and poor survival. CDK12 induces self-renewal of breast CSCs and in vivo tumor-initiating ability, and also reduces susceptibility to trastuzumab. Furthermore, CDK12 kinase activity inhibition facilitates anticancer efficacy of trastuzumab in HER2+ tumors, and mice bearing trastuzumab-resistant HER2+ tumor show sensitivity to an inhibitor of CDK12. Mechanistically, the catalytic activity of CDK12 is required for the expression of genes involved in the activation of ErbB-PI3K-AKT or WNT-signaling cascades. These results suggest that CDK12 is a major oncogenic driver and an actionable target for HER2+ breast cancer to replace or augment current anti-HER2 therapies.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Carcinogenesis/pathology , Cyclin-Dependent Kinases/metabolism , Drug Resistance, Neoplasm , Signal Transduction , Trastuzumab/therapeutic use , Animals , Breast Neoplasms/enzymology , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Chromosomes, Human, Pair 17/genetics , Cyclin-Dependent Kinases/antagonists & inhibitors , Drug Resistance, Neoplasm/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Insulin Receptor Substrate Proteins/metabolism , Mice , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Phosphatidylinositol 3-Kinases/metabolism , Prognosis , Protein Binding/drug effects , Protein Kinase Inhibitors/pharmacology , Receptor, ErbB-3/metabolism , Trastuzumab/pharmacology , Up-Regulation/drug effects , Up-Regulation/genetics , Wnt Signaling Pathway
12.
EMBO Rep ; 16(10): 1288-98, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26303947

ABSTRACT

The histone H3K27 demethylase, UTX, is a known component of the H3K4 methyltransferase MLL complex, but its functional association with H3K4 methylation in human cancers remains largely unknown. Here we demonstrate that UTX loss induces epithelial-mesenchymal transition (EMT)-mediated breast cancer stem cell (CSC) properties by increasing the expression of the SNAIL, ZEB1 and ZEB2 EMT transcription factors (EMT-TFs) and of the transcriptional repressor CDH1. UTX facilitates the epigenetic silencing of EMT-TFs by inducing competition between MLL4 and the H3K4 demethylase LSD1. EMT-TF promoters are occupied by c-Myc and MLL4, and UTX recognizes these proteins, interrupting their transcriptional activation function. UTX decreases H3K4me2 and H3 acetylation at these promoters by forming a transcriptional repressive complex with LSD1, HDAC1 and DNMT1. Taken together, our findings indicate that UTX is a prominent tumour suppressor that functions as a negative regulator of EMT-induced CSC-like properties by epigenetically repressing EMT-TFs.


Subject(s)
Epigenetic Repression , Epithelial-Mesenchymal Transition , Histone Demethylases/genetics , Neoplastic Stem Cells/physiology , Nuclear Proteins/genetics , Repressor Proteins/genetics , Breast Neoplasms , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Histone Deacetylase 1/genetics , Histone Deacetylase 1/physiology , Histone Demethylases/physiology , Humans , Promoter Regions, Genetic , Protein Processing, Post-Translational , Transcription Factors/genetics , Transcription Factors/metabolism
13.
Cell Mol Life Sci ; 73(24): 4643-4660, 2016 12.
Article in English | MEDLINE | ID: mdl-27460000

ABSTRACT

The epithelial-mesenchymal transition (EMT) is a crucial developmental process by which epithelial cells undergo a mesenchymal phenotypic change. During EMT, epigenetic mechanisms including DNA methylation and histone modifications are involved in the regulation of EMT-related genes. The epigenetic gene silencing of the epithelial marker E-cadherin has been well characterized. In particular, three major transcriptional repressors of E-cadherin, Snail, ZEB, and Twist families, also known as EMT-inducing transcription factors (EMT-TFs), play a crucial role in this process by cooperating with multiple epigenetic modifiers. Furthermore, recent studies have identified the novel epigenetic modifiers that control the expression of EMT-TFs, and these modifiers have emerged as critical regulators of cancer development and as novel therapeutic targets for human cancer. In this review, the diverse functions of EMT-TFs in cancer progression, the cooperative mechanisms of EMT-TFs with epigenetic modifiers, and epigenetic regulatory roles for the expression of EMT-TFs will be discussed.


Subject(s)
Carcinogenesis/genetics , Carcinogenesis/pathology , Disease Progression , Epigenesis, Genetic , Epithelial-Mesenchymal Transition/genetics , Neoplasms/genetics , Neoplasms/pathology , Transcription Factors/metabolism , Animals , Humans
14.
FASEB J ; 29(1): 300-13, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25351982

ABSTRACT

Polycomb protein chromobox homolog 7 (CBX7) is involved in several biologic processes including stem cell regulation and cancer development, but its roles in breast cancer remain unknown. Here, we demonstrate that CBX7 negatively regulates breast tumor initiation. CD44(+)/CD24(-)/ESA(+) breast stem-like cells showed diminished CBX7 expression. Furthermore, small hairpin RNA-mediated CBX7 knockdown in breast epithelial and cancer cells increased the CD44(+)/CD24(-)/ESA(+) cell population and reinforced in vitro self-renewal and in vivo tumor-initiating ability. Similarly, CBX7 overexpression repressed these effects. We also found that CBX7 inhibits the Wnt/ß-catenin/T cell factor pathway by enhancing the expression of Dickkopf-1 (DKK-1), a Wnt antagonist. In particular, CBX7 increased DKK-1 transcription by cooperating with p300 acetyltransferase and subsequently enhancing the histone acetylation of the DKK-1 promoter. Furthermore, pharmacologic inhibition of DKK-1 in CBX7-overexpressing cells showed recovery of Wnt signaling and consequent rescue of the CD44(+)/CD24(-)/ESA(+) cell population. Taken together, these findings indicate that CBX7-mediated epigenetic induction of DKK-1 is crucial for the inhibition of breast tumorigenicity, suggesting that CBX7 could be a potential tumor suppressor in human breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Polycomb Repressive Complex 1/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Epigenesis, Genetic , Female , Gene Expression , Gene Knockdown Techniques , HEK293 Cells , Heterografts , Humans , Intercellular Signaling Peptides and Proteins/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Models, Biological , Polycomb Repressive Complex 1/antagonists & inhibitors , Polycomb Repressive Complex 1/genetics , TCF Transcription Factors/metabolism , Tumor Stem Cell Assay , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
15.
Elife ; 122024 Jan 25.
Article in English | MEDLINE | ID: mdl-38270169

ABSTRACT

The α-arrestins form a large family of evolutionally conserved modulators that control diverse signaling pathways, including both G-protein-coupled receptor (GPCR)-mediated and non-GPCR-mediated pathways, across eukaryotes. However, unlike ß-arrestins, only a few α-arrestin targets and functions have been characterized. Here, using affinity purification and mass spectrometry, we constructed interactomes for 6 human and 12 Drosophila α-arrestins. The resulting high-confidence interactomes comprised 307 and 467 prey proteins in human and Drosophila, respectively. A comparative analysis of these interactomes predicted not only conserved binding partners, such as motor proteins, proteases, ubiquitin ligases, RNA splicing factors, and GTPase-activating proteins, but also those specific to mammals, such as histone modifiers and the subunits of V-type ATPase. Given the manifestation of the interaction between the human α-arrestin, TXNIP, and the histone-modifying enzymes, including HDAC2, we undertook a global analysis of transcription signals and chromatin structures that were affected by TXNIP knockdown. We found that TXNIP activated targets by blocking HDAC2 recruitment to targets, a result that was validated by chromatin immunoprecipitation assays. Additionally, the interactome for an uncharacterized human α-arrestin ARRDC5 uncovered multiple components in the V-type ATPase, which plays a key role in bone resorption by osteoclasts. Our study presents conserved and species-specific protein-protein interaction maps for α-arrestins, which provide a valuable resource for interrogating their cellular functions for both basic and clinical research.


Subject(s)
Arrestin , Vacuolar Proton-Translocating ATPases , Animals , Humans , Histones , Drosophila , Arrestins , Mammals
16.
ACS Nano ; 18(20): 12781-12794, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38733343

ABSTRACT

Circulating tumor DNA (ctDNA) detection has been acknowledged as a promising liquid biopsy approach for cancer diagnosis, with various ctDNA assays used for early detection and treatment monitoring. Dispersible magnetic nanoparticle-based electrochemical detection methods have been proposed as promising candidates for ctDNA detection based on the detection performance and features of the platform material. This study proposes a nanoparticle surface-localized genetic amplification approach by integrating Fe3O4-Au core-shell nanoparticles into polymerase chain reactions (PCR). These highly dispersible and magnetically responsive superparamagnetic nanoparticles act as nano-electrodes that amplify and accumulate target ctDNA in situ on the nanoparticle surface upon PCR amplification. These nanoparticles are subsequently captured and subjected to repetitive electrochemical measurements to induce reconfiguration-mediated signal amplification for ultrasensitive (∼3 aM) and rapid (∼7 min) metastatic breast cancer ctDNA detection in vitro. The detection platform can also detect metastatic biomarkers from in vivo samples, highlighting the potential for clinical applications and further expansion to rapid and ultrasensitive multiplex detection of various cancers.


Subject(s)
Circulating Tumor DNA , Electrodes , Humans , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Liquid Biopsy , Gene Amplification , Magnetite Nanoparticles/chemistry , Breast Neoplasms/blood , Breast Neoplasms/diagnosis , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Gold/chemistry , Surface Properties , Electrochemical Techniques/methods , Polymerase Chain Reaction , Female
17.
FASEB J ; 26(12): 5002-13, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22954590

ABSTRACT

Mel-18 has been proposed as a negative regulator of Bmi-1, a cancer stem cell (CSC) marker, but it is still unclear whether Mel-18 is involved in CSC regulation. Here, we examined the effect of Mel-18 on the stemness of human breast CSCs. In Mel-18 small hairpin RNA (shRNA)-transduced MCF-7 cells, side population (SP) cells and breast CSC surface marker (CD44(+)/CD24(-)/ESA(+))-expressing cells, which imply a CSC population, were enriched. Moreover, the self-renewal of CSCs was enhanced by Mel-18 knockdown, as measured by the ability for tumorsphere formation in vitro and tumor-initiating capacity in vivo. Similarly, Mel-18 overexpression inhibited the number and self-renewal activity of breast CSCs in SK-BR-3 cells. Furthermore, our data showed that Mel-18 blockade up-regulated the expression of the Wnt/TCF target Jagged-1, a Notch ligand, and consequently activated the Notch pathway. Pharmacologic inhibition of the Notch and Wnt pathways abrogated Mel-18 knockdown-mediated tumorsphere formation ability. Taken together, our findings suggest that Mel-18 is a novel negative regulator of breast CSCs that inhibits the stem cell population and in vitro and in vivo self-renewal through the inactivation of Wnt-mediated Notch signaling.


Subject(s)
Neoplastic Stem Cells/metabolism , Polycomb Repressive Complex 1/genetics , Receptor, Notch1/genetics , TCF Transcription Factors/genetics , Wnt Proteins/genetics , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Immunoblotting , MCF-7 Cells , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Models, Genetic , Neoplastic Stem Cells/pathology , Polycomb Repressive Complex 1/metabolism , RNA Interference , Receptor, Notch1/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Side-Population Cells/metabolism , Side-Population Cells/pathology , Signal Transduction/genetics , Transplantation, Heterologous , Wnt Signaling Pathway/genetics
18.
Biomedicines ; 11(2)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36830950

ABSTRACT

Cancer is the second leading cause of death worldwide, accounting for approximately 10 million deaths in 2020 [...].

19.
Sci Rep ; 13(1): 21704, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38066206

ABSTRACT

Although previous studies have shown correlation between regional cerebral oxygen saturation (rScO2) and mixed venous oxygen saturation (SvO2), there is a lack of pragmatic information on the clinical applicability of these findings, such as tracking ability. We retrospectively analyzed continuous intraoperative recordings of rScO2 and SvO2 obtained from a pulmonary artery catheter and either of two near-infrared spectroscopy (NIRS) devices (INVOS 5100C, Medtronic; O3, Masimo) during off-pump cardiopulmonary bypass (OPCAB) surgery in adult patients. The ability of rScO2 to track SvO2 was quantitatively evaluated with 5 min interval changes transformed into relative values. The analysis included 176 h of data acquired from 48 subjects (26 and 22 subjects for INVOS and O3 dataset, respectively). The area under ROC of the left-rScO2 for detecting change of SvO2 ≥ 10% in INVOS and O3 datasets were 0.919 (95% CI 0.903-0.936) and 0.852 (95% CI 0.818-0.885). The concordance rates between the interval changes of left-rScO2 and SvO2 in INVOS and O3 datasets were 90.6% and 91.9% with 10% exclusion zone. rScO2 can serve as a noninvasive tool for detecting changes in SvO2 levels, a critical hemodynamic measurement.


Subject(s)
Oxygen , Spectroscopy, Near-Infrared , Adult , Humans , Spectroscopy, Near-Infrared/methods , Oxygen Saturation , Retrospective Studies , Oximetry/methods
20.
Biomed Pharmacother ; 166: 115312, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37567072

ABSTRACT

Histone deacetylases (HDACs) are key epigenetic regulators and classified into four subtypes. Despite the various roles of each HDAC isoform, the lack of selective HDAC inhibitors has limited the elucidation of their roles in biological systems. HDAC11, the sole class-IV HDAC, is highly expressed in the brain, however, the role of HDAC11 in microglia is not fully understood. Based on the modification of MC1568, we developed a novel HDAC inhibitor, 5. Interestingly, 5 suppresses lipopolysaccharide-induced microglial activation by the initiation of autophagy and subsequent inhibition of nitric oxide production. Furthermore, we demonstrated that 5 significantly alleviates depression-like behavior by inhibiting microglial activation in mouse brain. Our discovery reveals that specific pharmacological regulation of HDAC11 induces autophagy and reactive nitrogen species balance in microglia for the first time, which makes HDAC11 a new therapeutic target for depressive disorder.


Subject(s)
Depression , Histone Deacetylase Inhibitors , Microglia , Animals , Mice , Brain/drug effects , Brain/metabolism , Depression/drug therapy , Depression/genetics , Depression/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Microglia/drug effects , Microglia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL