Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 569
Filter
Add more filters

Publication year range
1.
Chem Soc Rev ; 53(9): 4674-4706, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38529583

ABSTRACT

High power conversion efficiency (PCE) and long-term stability are essential prerequisites for the commercialization of polymer solar cells (PSCs). Small-molecule acceptors (SMAs) are core materials that have led to recent, rapid increases in the PCEs of the PSCs. However, a critical limitation of the resulting PSCs is their poor long-term stability. Blend morphology degradation from rapid diffusion of SMAs with low glass transition temperatures (Tgs) is considered the main cause of the poor long-term stability of the PSCs. The recent emergence of oligomerized SMAs (OSMAs), composed of two or more repeating SMA units (i.e., dimerized and trimerized SMAs), has shown great promise in overcoming these challenges. This innovation in material design has enabled OSMA-based PSCs to reach impressive PCEs near 19% and exceptional long-term stability. In this review, we summarize the evolution of OSMAs, including their research background and recent progress in molecular design. In particular, we discuss the mechanisms for high PCE and stability of OSMA-based PSCs and suggest useful design guidelines for high-performance OSMAs. Furthermore, we reflect on the existing hurdles and future directions for OSMA materials towards achieving commercially viable PSCs with high PCEs and operational stabilities.

2.
Nano Lett ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856974

ABSTRACT

In this study, we examined the nanostructured molecular packing and orientations of poly[[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)] (P(NDI2OD-T2)) films formed on water for the application of nanotechnology-based organic electronic devices. First, the nanoscale molecule-substrate interaction between the polymer and water was modulated by controlling the alkyl side chain length in NDI-based copolymers. Increasing alkyl side chain lengths induced a nanomorphological transition from face-on to edge-on orientation, confirmed by molecular dynamics simulations revealing nanostructural behavior. Second, the nanoscale intermolecular interactions of P(NDI2OD-T2) were controlled by varying the volume ratio of the high-boiling-point additive solvent in the binary solvent blends. As the additive solvent ratio increased, the nanostructured molecular orientation of the P(NDI2OD-T2) films on water changed remarkably from edge-on to bimodal with more face-on crystallites, thereby affecting charge transport. Our finding provides essential insights for precise nanoscale morphological control on water substrates, enabling the formation of high-performance polymer films for organic electronic devices.

3.
Nat Prod Rep ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916377

ABSTRACT

Covering: up to December 2023Decalin-containing tetramic acid derivatives, especially 3-decalinoyltetramic acids (3-DTAs), are commonly found as fungal secondary metabolites. Numerous biological activities of this class of compounds, such as antibiotic, antiviral, antifungal, antiplasmodial, and antiprotozoal properties, have been the subject of ongoing research. For this reason, these molecules have attracted a lot of interest from the scientific community and various efforts including semi-synthesis, co-culturing with bacteria and biosynthetic gene sequencing have been made to obtain more derivatives. In this review, 3-DTAs are classified into four major groups based on the absolute configuration of the bicyclic decalin ring. Their biosynthetic pathways, various biological activities, and structure-activity relationship are then introduced.

4.
Small ; : e2400915, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597683

ABSTRACT

Hole transporting layers (HTLs), strategically positioned between electrode and light absorber, play a pivotal role in shaping charge extraction and transport in organic solar cells (OSCs). However, the commonly used poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL, with its hygroscopic and acidic nature, undermines the operational durability of OSC devices. Herein, an environmentally friendly approach is developed utilizing nickel acetate tetrahydrate (NiAc·4H2O) and [2-(9H-carbazol-9-yl)ethyl] phosphonic acid (2PACz) as the NiAc·4H2O/2PACz HTL, aiming at overcoming the limitations posed by the conventional PEDOT:PSS one. Encouragingly, a remarkable power conversion efficiency (PCE) of 19.12% is obtained for the OSCs employing NiAc·4H2O/2PACz as the HTL, surpassing that of devices with the PEDOT:PSS HTL (17.59%), which is ranked among the highest ones of OSCs. This improvement is attributed to the appropriate work function, enhanced hole mobility, facilitated exciton dissociation efficiency, and lower recombination loss of NiAc·4H2O/2PACz-based devices. Furthermore, the NiAc·4H2O/2PACz-based OSCs exhibit superior operational stability compared to their PEDOT:PSS-based counterparts. Of significant note, the NiAc·4H2O/2PACz HTL demonstrates a broad generality, boosting the PCE of the PM6:PY-IT and PM6:Y6-based OSCs from 16.47% and 16.79% (with PEDOT:PSS-based analogs as HTLs) to 17.36% and 17.57%, respectively. These findings underscore the substantial potential of the NiAc·4H2O/2PACz HTL in advancing OSCs, offering improved performance and stability, thereby opening avenue for highly efficient and reliable solar energy harvesting technologies.

5.
Microvasc Res ; 155: 104698, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38801943

ABSTRACT

Angiogenesis is mainly regulated by the delivery of VEGF-dependent signaling to cells. However, the angiogenesis mechanism regulated by VEGF-induced miRNA is still not understood. After VEGF treatment in HUVECs, we screened the changed miRNAs through small-RNA sequencing and found VEGF-induced miR-4701-3p. Furthermore, the GFP reporter gene was used to reveal that TOB2 expression was regulated by miR-4701-3p, and it was found that TOB2 and miR-4701-3p modulation could cause angiogenesis in an in-vitro angiogenic assay. Through the luciferase assay, it was confirmed that the activation of the angiogenic transcription factor MEF2 was regulated by the suppression and overexpression of TOB2 and miR-4701-3p. As a result, MEF2 downstream gene mRNAs that induce angiogenic function were regulated. We used the NCBI GEO datasets to reveal that the expression of TOB2 and MEF2 was significantly changed in cardiovascular disease. Finally, it was confirmed that the expression of circulating miR-4701-3p in the blood of myocardial infarction patients was remarkably increased. In patients with myocardial infarction, circulating miR-4701-3p was increased regardless of age, BMI, and sex, and showed high AUC levels in specificity and sensitivity analysis (AUROC) (AUC = 0.8451, 95 % CI 0.78-0.90). Our data showed TOB2-mediated modulation of MEF2 and its angiogenesis by VEGF-induced miR-4701-3p in vascular endothelial cells. In addition, through bioinformatics analysis using GEO data, changes in TOB2 and MEF2 were revealed in cardiovascular disease. We suggest that circulating miR-4701-3p has high potential as a biomarker for myocardial infarction.

6.
Article in English | MEDLINE | ID: mdl-38711168

ABSTRACT

BACKGROUND AND AIM: Transarterial chemoembolization (TACE) is one of the standard modalities used to treat unresectable hepatocellular carcinoma (HCC), but the effectiveness of TACE for treating patients with a solitary small (≤3 cm) HCC and well-preserved liver function has not been definitively established. This study aimed to determine the therapeutic impact of TACE in patients with these characteristics. METHODS: This multicenter (four university hospitals) retrospective cohort study analyzed the medical records of 250 patients with a solitary small (≤3 cm) HCC and Child-Turcotte-Pugh (CTP) class A liver function diagnosed over 10 years. Posttreatment outcomes, including overall survival (OS), recurrence-free survival (RFS), and adverse events, were assessed following TACE therapy. RESULTS: One hundred and thirty-eight of the 250 patients (55.2%) treated with TACE achieved complete remission (CR). Overall median OS was 77.7 months, and median OS was significantly longer in the CR group than in the non-CR group (89.1 vs. 58.8 months, P = 0.001). Median RFS was 19.1 months in the CR group. Subgroup analysis identified hypertension, an elevated serum albumin level, and achieving CR as significant positive predictors of OS, whereas diabetes, hepatitis c virus infection, and tumor size (>2 cm) were poor prognostic factors of OS. CONCLUSIONS: The study demonstrates the effectiveness of TACE as a viable alternative for treating solitary small (≤3 cm) HCC in CTP class A patients.

7.
BMC Vet Res ; 20(1): 24, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38216988

ABSTRACT

BACKGROUND: Salinomycin, an antibiotic, have potential as a veterinary drug for fish due to its anti-parasitic activity against several fish parasites. Thus the residual levels of salinomycin in muscles of two significant aquaculture species in Korea, olive flounder and black rockfish, were analyzed using HPLC-MS-MS. RESULTS: The proper method to analyze the residual salinomycin in fish muscles using LC-MS-MS was settled and the method was validated according to CODEX guidelines. The residues in three distinct groups for two fish species were analyzed using the matrix match calibration curves at points of five different times following oral administration. After oral administration, salinomycin rapidly breaks down in both olive flounder and black rockfish. After 7th days, the average residue in all groups of two fish spp. decreased below limit of quantitation (LOQ). CONCLUSION: Due to low residue levels in fish muscles, salinomycin may therefore be a treatment that is safe for both fish and humans. This result could contribute to establishment of MRL (minimal residual limit) for approval of salinomycin for use in aquaculture.


Subject(s)
Fish Diseases , Flounder , Perciformes , Polyether Polyketides , Pyrans , Humans , Animals , Fish Diseases/drug therapy , Fish Diseases/parasitology , Fishes , Muscles/parasitology , Administration, Oral
8.
Int Orthop ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836871

ABSTRACT

PURPOSE: The results of past studies comparing percutaneous techniques with traditional open techniques for hallux valgus are controversial. Therefore, this study aimed to compare the radiologic and clinical outcomes of percutaneous and open distal chevron osteotomies. METHODS: Seventy-one patients with mild to severe hallux valgus deformity were randomized to undergo percutaneous distal chevron osteotomy (percutaneous group, n = 36) or open distal chevron osteotomy (open group, n = 35) between October 2019 and September 2020. Radiological and clinical outcomes were assessed preoperatively and postoperatively. Outcome measures included the foot and ankle outcome score, foot functional index, visual analogue scale (VAS) scores for pain, range of motion (ROM) of the first metatarsophalangeal (MTP) joint, hallux valgus angle, intermetatarsal angle, and first metatarsal shortening. Additionally, the first metatarsal declination angle was measured to evaluate sagittal malunion. RESULTS: The mean first metatarsal declination angle decreased significantly at 12 months postoperatively in both groups (p = 0.021 and p < 0.001 in the percutaneous and open groups, respectively), and the decrement was significantly greater in the open group (p = 0.033). The mean VAS score for pain on postoperative day one was 4.2 ± 1.9 and 5.3 ± 1.7 in the percutaneous and open groups, respectively (p = 0.019). The mean ROM of the first MTP joint did not change significantly after surgery, from 72.5 ± 7.5 preoperatively to 71.0 ± 9.5 at 12 months postoperatively in the percutaneous group (p = 0.215); however, it decreased significantly from 70.6 ± 7.3 preoperatively to 63.4 ± 10.4 at 12 months postoperatively in the open group (p < 0.001). There were no significant differences between the groups regarding other clinical outcomes. CONCLUSION: The percutaneous group showed a lower immediate pain level at postoperative day 1 and better ROM of the first MTP joint at 12 months postoperatively.

9.
Int J Mol Sci ; 25(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38928356

ABSTRACT

The topology of the basement membrane (BM) affects cell physiology and pathology, and BM thickening is associated with various chronic lung diseases. In addition, the topology of commercially available poly (ethylene terephthalate) (PET) membranes, which are used in preclinical in vitro models, differs from that of the human BM, which has a fibrous and elastic structure. In this study, we verified the effect of BM thickness on the differentiation of normal human bronchial epithelial (NHBE) cells. To evaluate whether the thickness of poly-ε-carprolactone (PCL) mesh affects the differentiation of NHBE cells, cells were grown on thin- (6-layer) and thick-layer (80-layer) meshes consisting of electrospun PCL nanofibers using an air-liquid interface (ALI) cell culture system. It was found that the NHBE cells formed a normal pseudostratified epithelium composed of ciliated, goblet, and basal cells on the thin-layer PCL mesh; however, goblet cell hyperplasia was observed on the thick-layer PCL mesh. Differentiated NHBE cells cultured on the thick-layer PCL mesh also demonstrated increased epithelial-mesenchymal transition (EMT) compared to those cultured on the thin-layer PCL mesh. In addition, expression of Sox9, nuclear factor (NF)-κB, and oxidative stress-related markers, which are also associated with goblet cell hyperplasia, was increased in the differentiated NHBE cells cultured on the thick-layer PCL mesh. Thus, the use of thick electrospun PCL mesh led to NHBE cells differentiating into hyperplastic goblet cells via EMT and the oxidative stress-related signaling pathway. Therefore, the topology of the BM, for example, thickness, may affect the differentiation direction of human bronchial epithelial cells.


Subject(s)
Basement Membrane , Cell Differentiation , Epithelial Cells , Polyesters , Humans , Polyesters/chemistry , Basement Membrane/metabolism , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition , Nanofibers/chemistry , Cells, Cultured , Bronchi/cytology , Bronchi/metabolism
10.
J Biomed Sci ; 30(1): 26, 2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37088847

ABSTRACT

BACKGROUND: Although mRNA dysregulation can induce changes in mesenchymal stem cell (MSC) homeostasis, the mechanisms by which post-transcriptional regulation influences MSC differentiation potential remain understudied. PUMILIO2 (PUM2) represses translation by binding target mRNAs in a sequence-specific manner. METHODS: In vitro osteogenic differentiation assays were conducted using human bone marrow-derived MSCs. Alkaline phosphatase and alizarin red S staining were used to evaluate the osteogenic potential of MSCs. A rat xenograft model featuring a calvarial defect to examine effects of MSC-driven bone regeneration. RNA-immunoprecipitation (RNA-IP) assay was used to determine the interaction between PUM2 protein and Distal-Less Homeobox 5 (DLX5) mRNA. Ovariectomized (OVX) mice were employed to evaluate the effect of gene therapy for postmenopausal osteoporosis. RESULTS: Here, we elucidated the molecular mechanism of PUM2 in MSC osteogenesis and evaluated the applicability of PUM2 knockdown (KD) as a potential cell-based or gene therapy. PUM2 level was downregulated during MSC osteogenic differentiation, and PUM2 KD enhanced MSC osteogenic potential. Following PUM2 KD, MSCs were transplanted onto calvarial defects in 12-week-old rats; after 8 weeks, transplanted MSCs promoted bone regeneration. PUM2 KD upregulated the expression of DLX5 mRNA and protein and the reporter activity of its 3'-untranslated region. RNA-IP revealed direct binding of PUM2 to DLX5 mRNA. We then evaluated the potential of adeno-associated virus serotype 9 (AAV9)-siPum2 as a gene therapy for osteoporosis in OVX mice. CONCLUSION: Our findings suggest a novel role for PUM2 in MSC osteogenesis and highlight the potential of PUM2 KD-MSCs in bone regeneration. Additionally, we showed that AAV9-siPum2 is a potential gene therapy for osteoporosis.


Subject(s)
Mesenchymal Stem Cells , Osteoporosis , Humans , Rats , Mice , Animals , Osteogenesis/genetics , Down-Regulation , Cell Differentiation , Bone Regeneration/genetics , RNA , RNA, Messenger/metabolism , Cells, Cultured , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
11.
Cell Commun Signal ; 21(1): 257, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37749552

ABSTRACT

BACKGROUND: G protein-coupled receptor heteromerization is believed to exert dynamic regulatory impact on signal transduction. CXC chemokine receptor 4 (CXCR4) and its ligand CXCL12, both of which are overexpressed in many cancers, play a pivotal role in metastasis. Likewise, lysophosphatidic acid receptor 1 (LPA1) is implicated in cancer cell proliferation and migration. In our preliminary study, we identified LPA1 as a prospective CXCR4 interactor. In the present study, we investigated in detail the formation of the CXCR4-LPA1 heteromer and characterized the unique molecular features and function of this heteromer. METHODS: We employed bimolecular fluorescence complementation, bioluminescence resonance energy transfer, and proximity ligation assays to demonstrate heteromerization between CXCR4 and LPA1. To elucidate the distinctive molecular characteristics and functional implications of the CXCR4-LPA1 heteromer, we performed various assays, including cAMP, BRET for G protein activation, ß-arrestin recruitment, ligand binding, and transwell migration assays. RESULTS: We observed that CXCR4 forms heteromers with LPA1 in recombinant HEK293A cells and the human breast cancer cell line MDA-MB-231. Coexpression of LPA1 with CXCR4 reduced CXCL12-mediated cAMP inhibition, ERK activation, Gαi/o activation, and ß-arrestin recruitment, while CXCL12 binding to CXCR4 remained unaffected. In contrast, CXCR4 had no impact on LPA1-mediated signaling. The addition of lysophosphatidic acid (LPA) further hindered CXCL12-induced Gαi/o recruitment to CXCR4. LPA or alkyl-OMPT inhibited CXCL12-induced migration in various cancer cells that endogenously express both CXCR4 and LPA1. Conversely, CXCL12-induced calcium signaling and migration were increased in LPAR1 knockout cells, and LPA1-selective antagonists enhanced CXCL12-induced Gαi/o signaling and cell migration in the parental MDA-MB-231 cells but not in LPA1-deficient cells. Ultimately, complete inhibition of cell migration toward CXCL12 and alkyl-OMPT was only achieved in the presence of both CXCR4 and LPA1 antagonists. CONCLUSIONS: The presence and impact of CXCR4-LPA1 heteromers on CXCL12-induced signaling and cell migration have been evidenced across various cell lines. This discovery provides crucial insights into a valuable regulatory mechanism of CXCR4 through heteromerization. Moreover, our findings propose a therapeutic potential in combined CXCR4 and LPA1 inhibitors for cancer and inflammatory diseases associated with these receptors, simultaneously raising concerns about the use of LPA1 antagonists alone for such conditions. Video Abstract.


Subject(s)
Calcium Signaling , Chemokine CXCL12 , Receptors, CXCR4 , Receptors, Lysophosphatidic Acid , Humans , Cell Movement , Ligands , Prospective Studies
12.
J Nat Prod ; 86(8): 2031-2038, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37589086

ABSTRACT

Feature-based molecular networking analysis suggested the presence of naphthol tetramers in Daldinia childae 047219, the same species but a different strain from one used previously for the discovery of naphthol trimers promoting adiponectin synthesis. The new tetramers were composed of 5-methoxy-4-naphthol, each of which was connected to one another in various positions. Targeted isolation afforded six previously unreported naphthol tetramers (1-6) together with 13 known polyketides (7-19) including naphthol monomers, dimers, and trimers. Structures of the isolated compounds were established by using NMR and mass spectroscopic analysis. Nodulisporin A (13), nodulisporin B (14), and 1,1',3',3″-ternaphthalene-5,5',5″-trimethoxy-4,4',4″-triol (16) demonstrated anti-inflammatory activities against NO production, but the new compounds were less active.


Subject(s)
Ascomycota , Xylariales , Naphthols , Tandem Mass Spectrometry
13.
J Nat Prod ; 86(6): 1596-1605, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37276438

ABSTRACT

Xanthoquinodins make up a distinctive class of xanthone-anthraquinone heterodimers reported as secondary metabolites from several fungal species. Through a collaborative multi-institutional screening program, a fungal extract prepared from a Trichocladium sp. was identified that exhibited strong inhibitory effects against several human pathogens (Mycoplasma genitalium, Plasmodium falciparum, Cryptosporidium parvum, and Trichomonas vaginalis). This report focuses on one of the unique samples that exhibited a desirable combination of biological effects: namely, it inhibited all four test pathogens and demonstrated low levels of toxicity toward HepG2 (human liver) cells. Fractionation and purification of the bioactive components and their congeners led to the identification of six new compounds [xanthoquinodins NPDG A1-A5 (1-5) and B1 (6)] as well as several previously reported natural products (7-14). The chemical structures of 1-14 were determined based on interpretation of their 1D and 2D NMR, HRESIMS, and electronic circular dichroism (ECD) data. Biological testing of the purified metabolites revealed that they possessed widely varying levels of inhibitory activity against a panel of human pathogens. Xanthoquinodins A1 (7) and A2 (8) exhibited the most promising broad-spectrum inhibitory effects against M. genitalium (EC50 values: 0.13 and 0.12 µM, respectively), C. parvum (EC50 values: 5.2 and 3.5 µM, respectively), T. vaginalis (EC50 values: 3.9 and 6.8 µM, respectively), and P. falciparum (EC50 values: 0.29 and 0.50 µM, respectively) with no cytotoxicity detected at the highest concentration tested (HepG2 EC50 > 25 µM).


Subject(s)
Anti-Infective Agents , Cryptosporidiosis , Cryptosporidium , Mitosporic Fungi , Humans , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Molecular Structure
14.
J Nat Prod ; 86(4): 947-957, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37042709

ABSTRACT

In an effort to activate silent biosynthetic gene clusters, Streptomyces samsunensis DSM42010, a producer of geldanamycin, was cultured at four different pHs (4.5, 5.4, 6.6, and 7.4). An acidic culture condition (pH 5.4) was selected for a chemical investigation since S. samsunensis showed a different metabolic profile compared to when it was cultured under other conditions. Seven new (1-7) and four known (8-11) compounds were isolated from these cultures. The structures of the isolated compounds were determined by spectroscopic techniques and chemical derivatization. Relative and absolute configurations of the new compounds (1-5) were established using JBCA, PGME method, advanced Marfey's method, modified Mosher's method, and comparison of observed and calculated ECD data. Interestingly, compounds 1-3 were truncated versions of geldanamycin, and compound 4 was also deduced to originate from geldanamycin. Compound 5 was composed of 3-methyltyrosine and 6-hydroxy-2,4-hexadienoic acid connected through an amide bond. Compounds 6 and 7 were dihydrogenated forms of geldanamycin with a hydroxy substitution. It is possible that culturing this strain under acidic conditions interfered to some degree with the geldanamycin polyketide synthase, leading to production of truncated versions as well as analogues of geldanamycin. Compounds 1, 8, and 9 showed significant antivirulence activity, inhibiting production of α-toxin by methicillin-resistant Staphylococcus aureus without growth attenuation and global regulatory inhibition; compounds 1, 8, and 9 may become promising α-toxin-specific antivirulence leads with less risk of resistance development.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Streptomyces , Benzoquinones , Streptomyces/chemistry
15.
Int J Mol Sci ; 24(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37446261

ABSTRACT

Plasmodium vivax is the most widespread cause of malaria, especially in subtropical and temperate regions such as Asia-Pacific and America. P. vivax lactate dehydrogenase (PvLDH), an essential enzyme in the glycolytic pathway, is required for the development and reproduction of the parasite. Thus, LDH from these parasites has garnered attention as a diagnostic biomarker for malaria and as a potential molecular target for developing antimalarial drugs. In this study, we prepared a transformed Escherichia coli strain for the overexpression of PvLDH without codon optimization. We introduced this recombinant plasmid DNA prepared by insertion of the PvLDH gene in the pET-21a(+) expression vector, into the Rosetta(DE3), an E. coli strain suitable for eukaryotic protein expression. The time, temperature, and inducer concentration for PvLDH expression from this E. coli Rosetta(DE3), containing the original PvLDH gene, were optimized. We obtained PvLDH with a 31.0 mg/L yield and high purity (>95%) from this Rosetta(DE3) strain. The purified protein was characterized structurally and functionally. The PvLDH expressed and purified from transformed bacteria without codon optimization was successfully demonstrated to exhibit its potential tetramer structure and enzyme activity. These findings are expected to provide valuable insights for research on infectious diseases, metabolism, diagnostics, and therapeutics for malaria caused by P. vivax.


Subject(s)
Malaria, Vivax , Malaria , Humans , Plasmodium vivax/genetics , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/chemistry , Escherichia coli/genetics , Malaria, Vivax/parasitology , Malaria/genetics , Codon/genetics
16.
Am J Orthod Dentofacial Orthop ; 164(4): 584-592, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37212767

ABSTRACT

INTRODUCTION: This study investigated the long-term effect and stability of skeletally anchored facemasks (SAFMs) with lateral nasal wall anchorage compared with conventional tooth-borne facemasks (TBFMs) in growing patients with a Class III relationship. METHODS: A total of 180 subjects treated with SAFMs (n = 66) and TBFMs (n = 114) were screened. Thirty-four subjects were qualified and grouped into the SAFM group (n = 17) and TBFM group (n = 17). Lateral cephalograms were taken at the initial observation, after the protraction, and at the final observation. RESULTS: Greater advancement of the maxilla was attained with SAFM than with TBFM after protraction (initial observation - after the protraction) (P <0.05). In particular, advancement of the midfacial area (SN-Or) was prominent and maintained after the postpubertal stage (P <0.05). The intermaxillary relationship was also improved (ANB, AB-MP) (P <0.05), and greater counterclockwise rotation of the palatal plane (FH-PP) was observed in the SAFM group compared with the TBFM group (P <0.05). CONCLUSIONS: Compared with TBFM, the orthopedic effects of SAFM were greater in the midfacial area. The palatal plane had a greater counterclockwise rotation in the SAFM group than in the TBFM group. Maxilla (SN-Or), intermaxillary relationship (APDI), and palatal plane angle (FH-PP) demonstrated a significant difference between the 2 groups after the postpubertal stage.

17.
J Nat Prod ; 85(12): 2804-2816, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36475432

ABSTRACT

Adiponectin-synthesis-promoting compounds possess therapeutic potential to treat diverse metabolic diseases, including obesity and diabetes. Phenotypic screening to find adiponectin-synthesis-promoting compounds was performed using the adipogenesis model of human bone marrow mesenchymal stem cells. The extract of the endolichenic fungus Daldinia childiae 047215 significantly promoted adiponectin production. Bioactivity-guided isolation led to 13 active polyketides (1-13), which include naphthol monomers, dimers, and trimers. To the best of our knowledge, trimers of naphthol (1-4) have not been previously isolated as either natural or synthetic products. The novel naphthol trimer 3,1',3',3″-ternaphthalene-5,5',5″-trimethoxy-4,4',4″-triol (2) and a dimer, nodulisporin A (12), exhibited concentration-dependent adiponectin-synthesis-promoting activity (EC50 30.8 and 15.2 µM, respectively). Compounds 2 and 12 bound to all three peroxisome proliferator-activated receptor (PPAR) subtypes, PPARα, PPARγ, and PPARδ. In addition, compound 2 transactivated retinoid X receptor α, whereas 12 did not. Naphthol oligomers 2 and 12 represent novel pan-PPAR modulators and are potential pharmacophores for designing new therapeutic agents against hypoadiponectinemia-associated metabolic diseases.


Subject(s)
Ascomycota , Peroxisome Proliferator-Activated Receptors , Humans , Adiponectin/metabolism , Naphthols , Ascomycota/metabolism , PPAR gamma/metabolism , PPAR alpha
18.
Mol Ther ; 29(3): 1151-1163, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33160074

ABSTRACT

Efficient differentiation of pluripotent stem cells (PSCs) into cardiac cells is essential for the development of new therapeutic modalities to repair damaged heart tissue. We identified a novel cell surface marker, the G protein-coupled receptor lysophosphatidic acid receptor 4 (LPAR4), specific to cardiac progenitor cells (CPCs) and determined its functional significance and therapeutic potential. During in vitro differentiation of mouse and human PSCs toward cardiac lineage, LPAR4 expression peaked after 3-7 days of differentiation in cardiac progenitors and then declined. In vivo, LPAR4 was specifically expressed in the early stage of embryonal heart development, and as development progressed, LPAR4 expression decreased and was non-specifically distributed. We identified the effective agonist octadecenyl phosphate and a p38 MAPK blocker as the downstream signal blocker. Sequential stimulation and inhibition of LPAR4 using these agents enhanced the in vitro efficiency of cardiac differentiation from mouse and human PSCs. Importantly, in vivo, this sequential stimulation and inhibition of LPAR4 reduced the infarct size and rescued heart dysfunction in mice. In conclusion, LPAR4 is a novel CPC marker transiently expressed only in heart during embryo development. Modulation of LPAR4-positive cells may be a promising strategy for repairing myocardium after myocardial infarction.


Subject(s)
Cell Differentiation , Myocardial Infarction/therapy , Myocytes, Cardiac/cytology , Pluripotent Stem Cells/cytology , Receptors, Purinergic P2/metabolism , Receptors, Purinergic/metabolism , Animals , Cell Proliferation , Cells, Cultured , Humans , Mice , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Receptors, Purinergic/chemistry , Receptors, Purinergic/genetics , Receptors, Purinergic P2/chemistry , Receptors, Purinergic P2/genetics
19.
BMC Musculoskelet Disord ; 23(1): 1110, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36539743

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) has been known to accelerate bone healing. Many cells and molecules have been investigated but the exact mechanism is still unknown. The neuroinflammatory state of TBI has been reported recently. We aimed to investigate the effect of TBI on fracture healing in patients with tibia fractures and assess whether the factors associated with hematoma formation changed more significantly in the laboratory tests in the fractures accompanied with TBI. METHODS: We retrospectively investigated patients who were surgically treated for tibia fractures and who showed secondary bone healing. Patients with and without TBI were divided for comparative analyses. Radiological parameters were time to callus formation and the largest callus ratio during follow-up. Preoperative levels of complete blood count and chemical battery on admission were measured in all patients. Subgroup division regarding age, gender, open fracture, concomitant fracture and severity of TBI were compared. RESULTS: We included 48 patients with a mean age of 44.9 (range, 17-78), of whom 35 patients (72.9%) were male. There were 12 patients with TBI (Group 1) and 36 patients without TBI (Group 2). Group 1 showed shorter time to callus formation (P <  0.001), thicker callus ratio (P = 0.015), leukocytosis and lymphocytosis (P ≤ 0.028), and lower red blood cell counts (RBCs), hemoglobin, and hematocrit (P <  0.001). Aging and severity of TBI were correlated with time to callus formation and callus ratio (P ≤ 0.003) while gender, open fracture, and concomitant fracture were unremarkable. CONCLUSION: Tibia fractures with TBI showed accelerated bone healing and superior measurements associated with hematoma formation (lymphocytes, RBCs, hemoglobin, hematocrit). Promoted fracture healing in TBI was correlated with the enhanced proinflammatory state. LEVEL OF EVIDENCE: III, case control study.


Subject(s)
Brain Injuries, Traumatic , Fractures, Open , Tibial Fractures , Humans , Male , Adult , Middle Aged , Female , Fracture Healing , Case-Control Studies , Retrospective Studies , Tibia , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Bony Callus , Tibial Fractures/complications , Tibial Fractures/diagnostic imaging , Tibial Fractures/surgery
20.
J Korean Med Sci ; 37(11): e92, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35315603

ABSTRACT

BACKGROUND: Tenofovir disoproxil fumarate (TDF, Viread®) had been used as a standard treatment option of chronic hepatitis B (CHB). This clinical trial was conducted to evaluate the efficacy and safety of DA-2802 (tenofovir disoproxil orotate) compared to TDF. METHODS: The present study was a double blind randomized controlled trial. Patients with CHB were recruited from 25 hospitals in Korea and given DA-2802 at a dose of 319 mg once daily or Viread® at a dose of 300 mg once daily for 48 weeks from March 2017 to January 2019. Change in hepatitis B virus (HBV) DNA level at week 48 after dosing compared to baseline was the primary efficacy endpoint. Secondary efficacy endpoints were proportions of subjects with undetectable HBV DNA, those with normal alanine aminotransferase (ALT) levels, and those with loss of hepatitis B envelop antigen (HBeAg), those with loss of hepatitis B surface antigen (HBsAg). Adverse events (AEs) were also investigated. RESULTS: A total of 122 patients (DA-2802 group: n = 61, Viread® group: n = 61) were used as full analysis set for efficacy analysis. Mean age, proportion of males, laboratory results and virologic characteristics were not different between the two groups. The change in HBV DNA level at week 48 from baseline was -5.13 ± 1.40 in the DA-2802 group and -4.97 ± 1.40 log10 copies/mL in the Viread® group. The analysis of primary endpoint using the nonparametric analysis of covariance showed statistically significant results (P < 0.001), which confirmed non-inferiority of DA-2802 to Viread® by a prespecified noninferiority margin of 1. The proportion of undetectable HBV DNA was 78.7% in the DA-2802 group and 75.4% in the Viread® group (P = 0.698). The proportion of subjects who had normal ALT levels was 75.4% in the DA-2802 group and 73.3% in the Viread® group (P = 0.795). The proportion of those with HBeAg loss was 8.1% in the DA-2802 group and 10.8% in the Viread® group (P = 1.000). No subject showed HBsAg loss. The frequency of AEs during treatment was similar between the two groups. Most AEs were mild to moderate in severity. CONCLUSION: DA-2802 is considered an effective and safe treatment for patients with CHB. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02967939.


Subject(s)
Antiviral Agents/therapeutic use , Hepatitis B, Chronic/drug therapy , Orotic Acid/therapeutic use , Tenofovir/therapeutic use , Adult , Dose-Response Relationship, Drug , Double-Blind Method , Female , Humans , Male , Middle Aged , Republic of Korea , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL