Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Hum Mol Genet ; 29(6): 1002-1017, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32047912

ABSTRACT

LgDel mice, which model the heterozygous deletion of genes at human chromosome 22q11.2 associated with DiGeorge/22q11.2 deletion syndrome (22q11DS), have cranial nerve and craniofacial dysfunction as well as disrupted suckling, feeding and swallowing, similar to key 22q11DS phenotypes. Divergent trigeminal nerve (CN V) differentiation and altered trigeminal ganglion (CNgV) cellular composition prefigure these disruptions in LgDel embryos. We therefore asked whether a distinct transcriptional state in a specific population of early differentiating LgDel cranial sensory neurons, those in CNgV, a major source of innervation for appropriate oropharyngeal function, underlies this departure from typical development. LgDel versus wild-type (WT) CNgV transcriptomes differ significantly at E10.5 just after the ganglion has coalesced. Some changes parallel altered proportions of cranial placode versus cranial neural crest-derived CNgV cells. Others are consistent with a shift in anterior-posterior patterning associated with divergent LgDel cranial nerve differentiation. The most robust quantitative distinction, however, is statistically verifiable increased variability of expression levels for most of the over 17 000 genes expressed in common in LgDel versus WT CNgV. Thus, quantitative expression changes of functionally relevant genes and increased stochastic variation across the entire CNgV transcriptome at the onset of CN V differentiation prefigure subsequent disruption of cranial nerve differentiation and oropharyngeal function in LgDel mice.


Subject(s)
DiGeorge Syndrome/pathology , Disease Models, Animal , Embryo, Mammalian/pathology , Gene Expression Regulation , Sensory Receptor Cells/pathology , Transcriptome , Trigeminal Nerve/pathology , Animals , DiGeorge Syndrome/genetics , Embryo, Mammalian/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Sensory Receptor Cells/metabolism , Trigeminal Nerve/metabolism
2.
Anal Chem ; 93(2): 1059-1067, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33289381

ABSTRACT

The inability to distinguish aggressive from indolent prostate cancer is a longstanding clinical problem. Prostate specific antigen (PSA) tests and digital rectal exams cannot differentiate these forms. Because only ∼10% of diagnosed prostate cancer cases are aggressive, existing practice often results in overtreatment including unnecessary surgeries that degrade patients' quality of life. Here, we describe a fast microfluidic immunoarray optimized to determine 8-proteins simultaneously in 5 µL of blood serum for prostate cancer diagnostics. Using polymeric horseradish peroxidase (poly-HRP, 400 HRPs) labels to provide large signal amplification and limits of detection in the sub-fg mL-1 range, a protocol was devised for the optimization of the fast, accurate assays of 100-fold diluted serum samples. Analysis of 130 prostate cancer patient serum samples revealed that some members of the protein panel can distinguish aggressive from indolent cancers. Logistic regression was used to identify a subset of the panel, combining biomarker proteins ETS-related gene protein (ERG), insulin-like growth factor-1 (IGF-1), pigment epithelial-derived factor (PEDF), and serum monocyte differentiation antigen (CD-14) to predict whether a given patient should be referred for biopsy, which gave a much better predictive accuracy than PSA alone. This represents the first prostate cancer blood test that can predict which patients will have a high biopsy Gleason score, a standard pathology score used to grade tumors.


Subject(s)
Biomarkers, Tumor/blood , Immunoassay , Microfluidic Analytical Techniques , Neoplasm Proteins/blood , Prostatic Neoplasms/diagnosis , Humans , Male , Prostatic Neoplasms/blood
3.
Anal Chem ; 91(11): 7394-7402, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31050399

ABSTRACT

We report herein a novel pipet-based "ELISA in a tip" as a new versatile diagnostic tool featuring better sensitivity, shorter incubation time, accessibility, and low sample and reagent volumes compared to traditional ELISA. Capture and analysis of data by a cell phone facilitates electronic delivery of results to health care providers. Pipette tips were designed and 3D printed as adapters to fit most commercial 50-200 µL pipettes. Capture antibodies (Ab1) are immobilized on the inner walls of the pipet tip, which serves as the assay compartment where samples and reagents are moved in and out by pipetting. Signals are generated using colorimetric or chemiluminescent (CL) reagents and can be quantified using a cell phone, CCD camera, or plate reader. We utilized pipet-tip ELISA to detect four cancer biomarker proteins with detection limits similar to or lower than microplate ELISAs at 25% assay cost and time. Recoveries of these proteins from spiked human serum were 85-115% or better, depending slightly on detection mode. Using CCD camera quantification of CL with femto-luminol reagent gave limits of detection (LOD) as low as 0.5 pg/mL. Patient samples (13) were assayed for 3 biomarker proteins with results well correlated to conventional ELISA and an established microfluidic electrochemical immunoassay.


Subject(s)
Biomarkers, Tumor/analysis , Enzyme-Linked Immunosorbent Assay , Printing, Three-Dimensional , Prostatic Neoplasms/diagnosis , Telemedicine , Antibodies/immunology , Biomarkers, Tumor/immunology , Biosensing Techniques , Cell Phone , Electrochemical Techniques , Humans , Insulin-Like Growth Factor I/analysis , Insulin-Like Growth Factor I/immunology , Lipopolysaccharide Receptors/analysis , Lipopolysaccharide Receptors/immunology , Male , Microfluidic Analytical Techniques , Prostate-Specific Antigen/analysis , Prostate-Specific Antigen/immunology
4.
Adv Exp Med Biol ; 1164: 119-139, 2019.
Article in English | MEDLINE | ID: mdl-31576545

ABSTRACT

Alternative splicing, the process of removing introns and joining exons of pre-mRNA, is critical for growth, development, tissue homeostasis, and species diversity. Dysregulation of alternative splicing can initiate and drive disease. Aberrant alternative splicing has been shown to promote the "hallmarks of cancer" in both hematological and solid cancers. Of interest, recent work has focused on the role of alternative splicing in prostate cancer and prostate cancer health disparities. We will provide a review of prostate cancer health disparities involving the African American population, alternative RNA splicing, and alternative splicing in prostate cancer. Lastly, we will summarize our work on differential alternative splicing in prostate cancer disparities and its implications for disparate health outcomes and therapeutic targets.


Subject(s)
Alternative Splicing , Drug Resistance , Health Status Disparities , Prostatic Neoplasms , Black or African American/statistics & numerical data , Alternative Splicing/genetics , Drug Resistance/genetics , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/physiopathology
5.
Carcinogenesis ; 39(7): 879-888, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29726910

ABSTRACT

Prostate cancer (PCa) is a clinically and molecularly heterogeneous disease, with variation in outcomes only partially predicted by grade and stage. Additional tools to distinguish indolent from aggressive disease are needed. Phenotypic characteristics of stemness correlate with poor cancer prognosis. Given this correlation, we identified single-nucleotide polymorphisms (SNPs) of stemness-related genes and examined their associations with PCa survival. SNPs within stemness-related genes were analyzed for association with overall survival of PCa in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. Significant SNPs predicted to be functional were selected for linkage disequilibrium analysis and combined and stratified analyses. Identified SNPs were evaluated for association with gene expression. SNPs of CD44 (rs9666607), ABCC1 (rs35605 and rs212091) and GDF15 (rs1058587) were associated with PCa survival and predicted to be functional. A role for rs9666607 of CD44 and rs35605 of ABCC1 in RNA splicing regulation, rs212091 of ABCC1 in miRNA binding site activity and rs1058587 of GDF15 in causing an amino acid change was predicted. These SNPs represent potential novel prognostic markers for overall survival of PCa and support a contribution of the stemness pathway to PCa patient outcome.


Subject(s)
Genetic Predisposition to Disease/genetics , MicroRNAs/genetics , Oncogenes/genetics , Polymorphism, Single Nucleotide/genetics , Prostatic Neoplasms/genetics , RNA Splicing/genetics , Signal Transduction/genetics , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Carcinogenesis/genetics , Growth Differentiation Factor 15/genetics , Humans , Hyaluronan Receptors/genetics , Male , Middle Aged , Multidrug Resistance-Associated Proteins/genetics , Prostate/pathology
6.
Anal Chem ; 90(12): 7569-7577, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29779368

ABSTRACT

We report here the fabrication and validation of a novel 3D-printed, automated immunoarray to detect multiple proteins with ultralow detection limits. This low cost, miniature immunoarray employs electrochemiluminescent (ECL) detection measured with a CCD camera and employs touch-screen control of a micropump to facilitate automated use. The miniaturized array features prefilled reservoirs to deliver sample and reagents to a paper-thin pyrolytic graphite microwell detection chip to complete sandwich immunoassays. The detection chip achieves high sensitivity by using single-wall carbon nanotube-antibody conjugates in the microwells and employing massively labeled antibody-decorated RuBPY-silica nanoparticles to generate ECL. The total cost of an array is $0.65, and an eight-protein assay can be done in duplicate for $0.14 per protein with limits of detection (LOD) as low as 78-110 fg mL-1 in diluted serum. The electronic control system costs $210 in components. Utility of the automated immunoarray was demonstrated by detecting an eight-protein prostate cancer biomarker panel in human serum samples in 25 min. The system is well suited to future clinical and point-of-care diagnostic testing and could be used in resource-limited environments.


Subject(s)
Automation , Biomarkers, Tumor/blood , Microfluidic Analytical Techniques , Nanostructures/chemistry , Neoplasm Proteins/blood , Printing, Three-Dimensional , Prostatic Neoplasms/blood , Cell Line, Tumor , Humans , Male , Microfluidic Analytical Techniques/instrumentation , Printing, Three-Dimensional/instrumentation , Prostatic Neoplasms/diagnosis
7.
Bioinformatics ; 33(23): 3852-3860, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28174897

ABSTRACT

MOTIVATION: We have proposed a mixture model based approach to the concordant integrative analysis of multiple large-scale two-sample expression datasets. Since the mixture model is based on the transformed differential expression test P-values (z-scores), it is generally applicable to the expression data generated by either microarray or RNA-seq platforms. The mixture model is simple with three normal distribution components for each dataset to represent down-regulation, up-regulation and no differential expression. However, when the number of datasets increases, the model parameter space increases exponentially due to the component combination from different datasets. RESULTS: In this study, motivated by the well-known generalized estimating equations (GEEs) for longitudinal data analysis, we focus on the concordant components and assume that the proportions of non-concordant components follow a special structure. We discuss the exchangeable, multiset coefficient and autoregressive structures for model reduction, and their related expectation-maximization (EM) algorithms. Then, the parameter space is linear with the number of datasets. In our previous study, we have applied the general mixture model to three microarray datasets for lung cancer studies. We show that more gene sets (or pathways) can be detected by the reduced mixture model with the exchangeable structure. Furthermore, we show that more genes can also be detected by the reduced model. The Cancer Genome Atlas (TCGA) data have been increasingly collected. The advantage of incorporating the concordance feature has also been clearly demonstrated based on TCGA RNA sequencing data for studying two closely related types of cancer. AVAILABILITY AND IMPLEMENTATION: Additional results are included in a supplemental file. Computer program R-functions are freely available at http://home.gwu.edu/∼ylai/research/Concordance. CONTACT: ylai@gwu.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Gene Expression Profiling/methods , Oligonucleotide Array Sequence Analysis/methods , Sequence Analysis, RNA/methods , Databases, Genetic , Genetic Association Studies , Genome, Human , Humans , Lung Neoplasms/genetics , Models, Statistical
8.
Dev Biol ; 409(2): 329-42, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26554723

ABSTRACT

Pediatric dysphagia-feeding and swallowing difficulties that begin at birth, last throughout childhood, and continue into maturity--is one of the most common, least understood complications in children with developmental disorders. We argue that a major cause of pediatric dysphagia is altered hindbrain patterning during pre-natal development. Such changes can compromise craniofacial structures including oropharyngeal muscles and skeletal elements as well as motor and sensory circuits necessary for normal feeding and swallowing. Animal models of developmental disorders that include pediatric dysphagia in their phenotypic spectrum can provide mechanistic insight into pathogenesis of feeding and swallowing difficulties. A fairly common human genetic developmental disorder, DiGeorge/22q11.2 Deletion Syndrome (22q11DS) includes a substantial incidence of pediatric dysphagia in its phenotypic spectrum. Infant mice carrying a parallel deletion to 22q11DS patients have feeding and swallowing difficulties that approximate those seen in pediatric dysphagia. Altered hindbrain patterning, craniofacial malformations, and changes in cranial nerve growth prefigure these difficulties. Thus, in addition to craniofacial and pharyngeal anomalies that arise independently of altered neural development, pediatric dysphagia may result from disrupted hindbrain patterning and its impact on peripheral and central neural circuit development critical for feeding and swallowing. The mechanisms that disrupt hindbrain patterning and circuitry may provide a foundation to develop novel therapeutic approaches for improved clinical management of pediatric dysphagia.


Subject(s)
Deglutition Disorders/pathology , Growth and Development , Animals , Child , Disease Models, Animal , Humans , Models, Biological , Nerve Net/physiopathology
9.
BMC Genomics ; 18(Suppl 1): 1050, 2017 01 25.
Article in English | MEDLINE | ID: mdl-28198679

ABSTRACT

BACKGROUND: With the current microarray and RNA-seq technologies, two-sample genome-wide expression data have been widely collected in biological and medical studies. The related differential expression analysis and gene set enrichment analysis have been frequently conducted. Integrative analysis can be conducted when multiple data sets are available. In practice, discordant molecular behaviors among a series of data sets can be of biological and clinical interest. METHODS: In this study, a statistical method is proposed for detecting discordance gene set enrichment. Our method is based on a two-level multivariate normal mixture model. It is statistically efficient with linearly increased parameter space when the number of data sets is increased. The model-based probability of discordance enrichment can be calculated for gene set detection. RESULTS: We apply our method to a microarray expression data set collected from forty-five matched tumor/non-tumor pairs of tissues for studying pancreatic cancer. We divided the data set into a series of non-overlapping subsets according to the tumor/non-tumor paired expression ratio of gene PNLIP (pancreatic lipase, recently shown it association with pancreatic cancer). The log-ratio ranges from a negative value (e.g. more expressed in non-tumor tissue) to a positive value (e.g. more expressed in tumor tissue). Our purpose is to understand whether any gene sets are enriched in discordant behaviors among these subsets (when the log-ratio is increased from negative to positive). We focus on KEGG pathways. The detected pathways will be useful for our further understanding of the role of gene PNLIP in pancreatic cancer research. Among the top list of detected pathways, the neuroactive ligand receptor interaction and olfactory transduction pathways are the most significant two. Then, we consider gene TP53 that is well-known for its role as tumor suppressor in cancer research. The log-ratio also ranges from a negative value (e.g. more expressed in non-tumor tissue) to a positive value (e.g. more expressed in tumor tissue). We divided the microarray data set again according to the expression ratio of gene TP53. After the discordance enrichment analysis, we observed overall similar results and the above two pathways are still the most significant detections. More interestingly, only these two pathways have been identified for their association with pancreatic cancer in a pathway analysis of genome-wide association study (GWAS) data. CONCLUSIONS: This study illustrates that some disease-related pathways can be enriched in discordant molecular behaviors when an important disease-related gene changes its expression. Our proposed statistical method is useful in the detection of these pathways. Furthermore, our method can also be applied to genome-wide expression data collected by the recent RNA-seq technology.


Subject(s)
Gene Expression Profiling , Genome-Wide Association Study , Transcriptome , Algorithms , Computational Biology/methods , Computational Biology/standards , Databases, Genetic , Genome-Wide Association Study/methods , Genome-Wide Association Study/standards , High-Throughput Nucleotide Sequencing , Humans , Models, Statistical , Neoplasms/genetics , Neoplasms/metabolism , Reproducibility of Results , Signal Transduction
10.
Int J Cancer ; 141(4): 731-743, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28510291

ABSTRACT

Evidence suggests that cells with a stemness phenotype play a pivotal role in oncogenesis, and prostate cells exhibiting this phenotype have been identified. We used two genome-wide association study (GWAS) datasets of African descendants, from the Multiethnic/Minority Cohort Study of Diet and Cancer (MEC) and the Ghana Prostate Study, and two GWAS datasets of non-Hispanic whites, from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial and the Breast and Prostate Cancer Cohort Consortium (BPC3), to analyze the associations between genetic variants of stemness-related genes and racial disparities in susceptibility to prostate cancer. We evaluated associations of single-nucleotide polymorphisms (SNPs) in 25 stemness-related genes with prostate cancer risk in 1,609 cases and 2,550 controls of non-Hispanic whites (4,934 SNPs) and 1,144 cases and 1,116 controls of African descendants (5,448 SNPs) with correction by false discovery rate ≤0.2. We identified 32 SNPs in five genes (TP63, ALDH1A1, WNT1, MET and EGFR) that were significantly associated with prostate cancer risk, of which six SNPs in three genes (TP63, ALDH1A1 and WNT1) and eight EGFR SNPs showed heterogeneity in susceptibility between these two racial groups. In addition, 13 SNPs in MET and one in ALDH1A1 were found only in African descendants. The in silico bioinformatics analyses revealed that EGFR rs2072454 and SNPs in linkage with the identified SNPs in MET and ALDH1A1 (r2 > 0.6) were predicted to regulate RNA splicing. These variants may serve as novel biomarkers for racial disparities in prostate cancer risk.


Subject(s)
Black or African American/genetics , Neoplastic Stem Cells/metabolism , Prostatic Neoplasms/genetics , RNA Splicing , White People/genetics , Datasets as Topic , Gene Regulatory Networks , Genetic Heterogeneity , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Polymorphism, Single Nucleotide , Prostatic Neoplasms/ethnology
12.
Muscle Nerve ; 56(6): 1119-1127, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28745831

ABSTRACT

INTRODUCTION: Osteopontin (OPN) polymorphisms are associated with muscle size and modify disease progression in Duchenne muscular dystrophy (DMD). We hypothesized that OPN may share a molecular network with myostatin (MSTN). METHODS: Studies were conducted in the golden retriever (GRMD) and mdx mouse models of DMD. Follow-up in-vitro studies were employed in myogenic cells and the mdx mouse treated with recombinant mouse (rm) or human (Hu) OPN protein. RESULTS: OPN was increased and MSTN was decreased and levels correlated inversely in GRMD hypertrophied muscle. RM-OPN treatment led to induced AKT1 and FoxO1 phosphorylation, microRNA-486 modulation, and decreased MSTN. An AKT1 inhibitor blocked these effects, whereas an RGD-mutant OPN protein and an RGDS blocking peptide showed similar effects to the AKT inhibitor. RMOPN induced myotube hypertrophy and minimal Feret diameter in mdx muscle. DISCUSSION: OPN may interact with AKT1/MSTN/FoxO1 to modify normal and dystrophic muscle. Muscle Nerve 56: 1119-1127, 2017.


Subject(s)
Forkhead Box Protein O1/metabolism , Muscle Fibers, Skeletal/metabolism , Myoblasts/metabolism , Myostatin/metabolism , Osteopontin/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Cell Line, Transformed , Dogs , Dose-Response Relationship, Drug , Female , Humans , Mice , Mice, Inbred mdx , Muscle Fibers, Skeletal/drug effects , Myoblasts/drug effects , Osteopontin/pharmacology
13.
Anal Chem ; 87(8): 4472-8, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25821929

ABSTRACT

Point-of-care diagnostics based on multiplexed protein measurements face challenges of simple, automated, low-cost, and high-throughput operation with high sensitivity. Herein, we describe an automated, microprocessor-controlled microfluidic immunoarray for simultaneous multiplexed detection of small protein panels in complex samples. A microfluidic sample/reagent delivery cassette was coupled to a 30-microwell detection array to achieve sensitive detection of four prostate cancer biomarker proteins in serum. The proteins are prostate specific antigen (PSA), prostate specific membrane antigen (PSMA), platelet factor-4 (PF-4), and interlukin-6 (IL-6). The six channel system is driven by integrated micropumps controlled by an inexpensive programmable microprocessor. The reagent delivery cassette and detection array feature channels made by precision-cut 0.8 mm silicone gaskets. Single-wall carbon nanotube forests were grown in printed microwells on a pyrolytic graphite detection chip and decorated with capture antibodies. The detection chip is housed in a machined microfluidic chamber with a steel metal shim counter electrode and Ag/AgCl reference electrode for electrochemiluminescent (ECL) measurements. The preloaded sample/reagent cassette automatically delivers samples, wash buffers, and ECL RuBPY-silica-antibody detection nanoparticles sequentially. An onboard microcontroller controls micropumps and reagent flow to the detection chamber according to a preset program. Detection employs tripropylamine, a sacrificial reductant, while applying 0.95 V vs Ag/AgCl. Resulting ECL light was measured by a CCD camera. Ultralow detection limits of 10-100 fg mL(-1) were achieved in simultaneous detection of the four protein in 36 min assays. Results for the four proteins in prostate cancer patient serum gave excellent correlation with those from single-protein ELISA.


Subject(s)
Biomarkers, Tumor/analysis , Electrochemical Techniques , Immunoassay/methods , Luminescent Measurements , Antigens, Surface/analysis , Automation , Enzyme-Linked Immunosorbent Assay , Glutamate Carboxypeptidase II/analysis , Humans , Interleukin-6/analysis , Kallikreins/analysis , Platelet Factor 4/analysis , Prostate-Specific Antigen/analysis
14.
Nat Genet ; 38(2): 234-9, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16415889

ABSTRACT

Cardiovascular disorders are influenced by genetic and environmental factors. The TIGR rodent expression web-based resource (TREX) contains over 2,200 microarray hybridizations, involving over 800 animals from 18 different rat strains. These strains comprise genetically diverse parental animals and a panel of chromosomal substitution strains derived by introgressing individual chromosomes from normotensive Brown Norway (BN/NHsdMcwi) rats into the background of Dahl salt sensitive (SS/JrHsdMcwi) rats. The profiles document gene-expression changes in both genders, four tissues (heart, lung, liver, kidney) and two environmental conditions (normoxia, hypoxia). This translates into almost 400 high-quality direct comparisons (not including replicates) and over 100,000 pairwise comparisons. As each individual chromosomal substitution strain represents on average less than a 5% change from the parental genome, consomic strains provide a useful mechanism to dissect complex traits and identify causative genes. We performed a variety of data-mining manipulations on the profiles and used complementary physiological data from the PhysGen resource to demonstrate how TREX can be used by the cardiovascular community for hypothesis generation.


Subject(s)
Databases, Genetic , Disease Models, Animal , Genomics , Heart Diseases/genetics , Hematologic Diseases/genetics , Lung Diseases/genetics , Animals , Gene Expression Profiling , Genetic Variation , Genomics/methods , Heart Diseases/physiopathology , Hematologic Diseases/physiopathology , Hypoxia/chemically induced , Internet , Lung Diseases/physiopathology , Male , Microarray Analysis , Myocardium/metabolism , Rats , Rats, Inbred BN , Rats, Inbred Dahl , Regulatory Sequences, Nucleic Acid/genetics
15.
BMC Genomics ; 15 Suppl 1: S6, 2014.
Article in English | MEDLINE | ID: mdl-24564564

ABSTRACT

BACKGROUND: Gene set enrichment analysis (GSEA) is an important approach to the analysis of coordinate expression changes at a pathway level. Although many statistical and computational methods have been proposed for GSEA, the issue of a concordant integrative GSEA of multiple expression data sets has not been well addressed. Among different related data sets collected for the same or similar study purposes, it is important to identify pathways or gene sets with concordant enrichment. METHODS: We categorize the underlying true states of differential expression into three representative categories: no change, positive change and negative change. Due to data noise, what we observe from experiments may not indicate the underlying truth. Although these categories are not observed in practice, they can be considered in a mixture model framework. Then, we define the mathematical concept of concordant gene set enrichment and calculate its related probability based on a three-component multivariate normal mixture model. The related false discovery rate can be calculated and used to rank different gene sets. RESULTS: We used three published lung cancer microarray gene expression data sets to illustrate our proposed method. One analysis based on the first two data sets was conducted to compare our result with a previous published result based on a GSEA conducted separately for each individual data set. This comparison illustrates the advantage of our proposed concordant integrative gene set enrichment analysis. Then, with a relatively new and larger pathway collection, we used our method to conduct an integrative analysis of the first two data sets and also all three data sets. Both results showed that many gene sets could be identified with low false discovery rates. A consistency between both results was also observed. A further exploration based on the KEGG cancer pathway collection showed that a majority of these pathways could be identified by our proposed method. CONCLUSIONS: This study illustrates that we can improve detection power and discovery consistency through a concordant integrative analysis of multiple large-scale two-sample gene expression data sets.


Subject(s)
Gene Expression Profiling/methods , Lung Neoplasms/genetics , Algorithms , Computational Biology/methods , Databases, Genetic , Genome, Human , Humans , Models, Statistical , Oligonucleotide Array Sequence Analysis/methods
16.
Addict Biol ; 18(3): 480-95, 2013 May.
Article in English | MEDLINE | ID: mdl-22804800

ABSTRACT

Neuroadaptations in the ventral striatum (VS) and ventral midbrain (VMB) following chronic opioid administration are thought to contribute to the pathogenesis and persistence of opiate addiction. In order to identify candidate genes involved in these neuroadaptations, we utilized a behavior-genetics strategy designed to associate contingent intravenous drug self-administration with specific patterns of gene expression in inbred mice differentially predisposed to the rewarding effects of morphine. In a Yoked-control paradigm, C57BL/6J mice showed clear morphine-reinforced behavior, whereas DBA/2J mice did not. Moreover, the Yoked-control paradigm revealed the powerful consequences of self-administration versus passive administration at the level of gene expression. Morphine self-administration in the C57BL/6J mice uniquely up- or down-regulated 237 genes in the VS and 131 genes in the VMB. Interestingly, only a handful of the C57BL/6J self-administration genes (<3%) exhibited a similar expression pattern in the DBA/2J mice. Hence, specific sets of genes could be confidently assigned to regional effects of morphine in a contingent- and genotype-dependent manner. Bioinformatics analysis revealed that neuroplasticity, axonal guidance and micro-RNAs (miRNAs) were among the key themes associated with drug self-administration. Noteworthy were the primary miRNA genes H19 and micro-RNA containing gene (Mirg), processed, respectively, to mature miRNAs miR-675 and miR-154, because they are prime candidates to mediate network-like changes in responses to chronic drug administration. These miRNAs have postulated roles in dopaminergic neuron differentiation and mu-opioid receptor regulation. The strategic approach designed to focus on reinforcement-associated genes provides new insight into the role of neuroplasticity pathways and miRNAs in drug addiction.


Subject(s)
MicroRNAs/genetics , Morphine Dependence/genetics , Morphine/pharmacology , Narcotics/pharmacology , Neuronal Plasticity/drug effects , Adaptation, Physiological , Analysis of Variance , Animals , Axons/drug effects , Infusions, Intravenous , Mice , Mice, Inbred C57BL , Microarray Analysis , Reinforcement, Psychology , Reward , Self Administration
17.
Sci Rep ; 13(1): 2864, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36806315

ABSTRACT

Platelets play a crucial role in cancer and thrombosis. However, the receptor-ligand repertoire mediating prostate cancer (PCa) cell-platelet interactions and ensuing consequences have not been fully elucidated. Microvilli emanating from the plasma membrane of PCa cell lines (RC77 T/E, MDA PCa 2b) directly contacted individual platelets and platelet aggregates. PCa cell-platelet interactions were associated with calcium mobilization in platelets, and translocation of P-selectin and integrin αIIbß3 onto the platelet surface. PCa cell-platelet interactions reciprocally promoted PCa cell invasion and apoptotic resistance, and these events were insensitive to androgen receptor blockade by bicalutamide. PCa cells were exceedingly sensitive to activation by platelets in vitro, occurring at a PCa cell:platelet coculture ratio as low as 1:10 (whereas PCa patient blood contains 1:2,000,000 per ml). Conditioned medium from cocultures stimulated PCa cell invasion but not apoptotic resistance nor platelet aggregation. Candidate transmembrane signaling proteins responsible for PCa cell-platelet oncogenic events were identified by RNA-Seq and broadly divided into 4 major categories: (1) integrin-ligand, (2) EPH receptor-ephrin, (3) immune checkpoint receptor-ligand, and (4) miscellaneous receptor-ligand interactions. Based on antibody neutralization and small molecule inhibitor assays, PCa cell-stimulated calcium mobilization in platelets was found to be mediated by a fibronectin1 (FN1)-αIIbß3 signaling axis. Platelet-stimulated PCa cell invasion was facilitated by a CD55-adhesion G protein coupled receptor E5 (ADGRE5) axis, with contribution from platelet cytokines CCL3L1 and IL32. Platelet-stimulated PCa cell apoptotic resistance relied on ephrin-EPH receptor and lysophosphatidic acid (LPA)-LPA receptor (LPAR) signaling. Of participating signaling partners, FN1 and LPAR3 overexpression was observed in PCa specimens compared to normal prostate, while high expression of CCR1 (CCL3L1 receptor), EPHA1 and LPAR5 in PCa was associated with poor patient survival. These findings emphasize that non-overlapping receptor-ligand pairs participate in oncogenesis and thrombosis, highlighting the complexity of any contemplated clinical intervention strategy.


Subject(s)
Calcium , Prostatic Neoplasms , Male , Humans , Ligands , Receptor, EphA1 , Integrins
18.
medRxiv ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38106031

ABSTRACT

Clopidogrel, an anti-platelet drug, used to prevent thrombosis after percutaneous coronary intervention. Clopidogrel resistance results in recurring ischemic episodes, with African Americans suffering disproportionately. The aim of this study was to identify biomarkers of clopidogrel resistance in African American patients. We conducted a genome-wide association study, including local ancestry adjustment, in 141 African Americans on clopidogrel to identify associations with high on-treatment platelet reactivity (HTPR). We validated genome-wide and suggestive hits in an independent cohort of African American clopidogrel patients (N = 823) from the Million Veteran's Program (MVP) along with in vitro functional follow up. We performed differential gene expression (DGE) analysis in whole blood with functional follow-up in MEG-01 cells. We identified rs7807369, within thrombospondin 7A (THSD7A), as significantly associated with increasing risk of HTPR (p = 4.56 × 10-9). Higher THSD7A expression was associated with HTPR in an independent gene expression cohort of clopidogrel treated patients (p = 0.004) and supported by increased gene expression on THSD7A in primary human endothelial cells carrying the risk haplotype. Two SNPs (rs1149515 and rs191786) were validated in the MVP cohort. DGE analysis identified an association with decreased LAIR1 expression to HTPR. LAIR1 knockdown in a MEG-01 cells resulted in increased expression of SYK and AKT1, suggesting an inhibitory role of LAIR1 in the Glycoprotein VI pathway. Notably, the CYP2C19 variants showed no association with clopidogrel response in the discovery or MVP cohorts. In summary, these finding suggest that other variants outside of CYP2C19 star alleles play an important role in clopidogrel response in African Americans.

19.
EMBO Rep ; 11(9): 691-7, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20651739

ABSTRACT

High expression of metastasis-associated protein 1 co-regulator (MTA1), a component of the nuclear remodelling and histone deacetylase complex, has been associated with human tumours. However, the precise role of MTA1 in tumorigenesis remains unknown. In this study, we show that induced levels of MTA1 are sufficient to transform Rat1 fibroblasts and that the transforming potential of MTA1 is dependent on its acetylation at Lys626. Underlying mechanisms of MTA1-mediated transformation include activation of the Ras-Raf pathway by MTA1 but not by acetylation-inactive MTA1; this was due to the repression of Galphai2 transcription, which negatively influences Ras activation. We observed that acetylated MTA1-histone deacetylase (HDAC) interaction was required for the recruitment of the MTA1-HDAC complex to the Galphai2 regulatory element and consequently for the repression of Galphai2 transcription and expression leading to activation of the Ras-Raf pathway. The findings presented in this study provide for the first time--to the best of our knowledge--evidence of acetylation-dependent oncogenic activity of a cancer-relevant gene product.


Subject(s)
Cell Transformation, Neoplastic , Histone Deacetylases/metabolism , Oncogenes , Repressor Proteins/metabolism , Acetylation , Animals , Cell Line , Cell Movement , Female , Fibroblasts/cytology , Fibroblasts/physiology , GTP-Binding Protein alpha Subunit, Gi2/genetics , GTP-Binding Protein alpha Subunit, Gi2/metabolism , Gene Expression Regulation, Neoplastic , Histone Deacetylases/genetics , Humans , Lysine/metabolism , Mice , Mice, Nude , Neoplasms, Experimental , Repressor Proteins/genetics , Trans-Activators , Transcription, Genetic , Transplantation, Heterologous , ras Proteins/genetics , ras Proteins/metabolism
20.
Exp Cell Res ; 317(20): 2981-94, 2011 Dec 10.
Article in English | MEDLINE | ID: mdl-22001118

ABSTRACT

Glucagon levels are elevated in diabetes and some liver diseases. Increased glucagon secretion leads to abnormal stimulation of glucagon receptors (GRs) and consequent elevated glucose production in the liver. Blocking glucagon receptor signaling has been proposed as a potential treatment option for diabetes and other conditions associated with hyperglycemia. Elucidating mechanisms of GR desensitization and downregulation may help identify new drug targets besides GR itself. The present study explores the mechanisms of GR internalization and the role of PKCα, GPCR kinases (GRKs) and ß-arrestins therein. We have reported previously that PKCα mediates GR phosphorylation and desensitization. While the PKC agonist, PMA, did not affect GR internalization when tested alone, it increased glucagon-mediated GR internalization by 25-40% in GR-expressing HEK-293 cells (HEK-GR cells). In both primary hepatocytes and HEK-GR cells, glucagon treatment recruited PKCα to the plasma membrane where it colocalized with GR. We also observed that overexpression of GRK2, GRK3, or GRK5 enhanced GR internalization. In addition, we found that GR utilizes both clathrin- and caveolin-mediated endocytosis in HEK-GR cells. Glucagon triggered translocation of both ß-arrestin1 and ß-arrestin2 from the cytosol to the perimembrane region, and overexpression of ß-arrestin1 and ß-arrestin2 increased GR internalization. Furthermore, both ß-arrestin1 and ß-arrestin2 colocalized with GR and with Cav-1, suggesting the possible involvement of these arrestins in GR internalization.


Subject(s)
Arrestins/metabolism , G-Protein-Coupled Receptor Kinases/metabolism , Protein Kinase C-alpha/metabolism , Receptors, Glucagon/metabolism , Animals , Caveolins/metabolism , Cell Membrane/metabolism , Cells, Cultured , Clathrin/metabolism , Cricetinae , Endocytosis/physiology , Glucagon/metabolism , HEK293 Cells , Hepatocytes/metabolism , Humans , Male , Protein Transport , beta-Arrestins
SELECTION OF CITATIONS
SEARCH DETAIL