Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Development ; 149(7)2022 04 01.
Article in English | MEDLINE | ID: mdl-35297995

ABSTRACT

Establishing a functional circulatory system is required for post-implantation development during murine embryogenesis. Previous studies in loss-of-function mouse models showed that FOXO1, a Forkhead family transcription factor, is required for yolk sac (YS) vascular remodeling and survival beyond embryonic day (E) 11. Here, we demonstrate that at E8.25, loss of Foxo1 in Tie2-cre expressing cells resulted in increased sprouty 2 (Spry2) and Spry4 expression, reduced arterial gene expression and reduced Kdr (also known as Vegfr2 and Flk1) transcripts without affecting overall endothelial cell identity, survival or proliferation. Using a Dll4-BAC-nlacZ reporter line, we found that one of the earliest expressed arterial genes, delta like 4, is significantly reduced in Foxo1 mutant YS without being substantially affected in the embryo proper. We show that FOXO1 binds directly to previously identified Spry2 gene regulatory elements (GREs) and newly identified, evolutionarily conserved Spry4 GREs to repress their expression. Furthermore, overexpression of Spry4 in transient transgenic embryos largely recapitulates the reduced expression of arterial genes seen in conditional Foxo1 mutants. Together, these data reveal a novel role for FOXO1 as a key transcriptional repressor regulating both pre-flow arterial specification and subsequent vessel remodeling within the murine YS.


Subject(s)
Nerve Tissue Proteins/metabolism , Vascular Remodeling , Yolk Sac , Animals , Arteries , Embryo, Mammalian/metabolism , Endothelial Cells/metabolism , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Mice , Vascular Remodeling/genetics , Yolk Sac/metabolism
2.
Mar Drugs ; 20(9)2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36135769

ABSTRACT

A marine natural product possesses a diverse and unique scaffold that contributes to a vast array of bioactivities. Tricyclic guanidine alkaloids are a type of scaffold found only in marine natural products. These rare skeletons exhibit a wide range of biological applications, but their synthetic approaches are still limited. Various stereochemical assignments of the compounds remain unresolved. Batzelladine and ptilocaulins are an area of high interest in research on tricyclic guanidine alkaloids. In addition, mirabilins and netamines are among the other tricyclic guanidine alkaloids that contain the ptilocaulin skeleton. Due to the different structural configurations of batzelladine and ptilocaulin, these two main skeletons are afforded attention in many reports. These two main skeletons exhibit different kinds of compounds by varying their ester chain and sidechain. The synthetic approaches to tricyclic guanidine alkaloids, especially the batzelladine and ptilocaulin skeletons, are discussed. Moreover, this review compiles the first and latest research on the synthesis of these compounds and their bioactivities, dating from the 1980s to 2022.


Subject(s)
Alkaloids , Biological Products , Alkaloids/chemistry , Esters , Guanidine/chemistry , Guanidine/pharmacology , Guanidines/chemistry , Stereoisomerism
3.
Int J Mol Sci ; 23(9)2022 May 04.
Article in English | MEDLINE | ID: mdl-35563493

ABSTRACT

Ailanthoidol (ATD) has been isolated from the barks of Zanthoxylum ailanthoides and displays anti-inflammatory, antioxidant, antiadipogenic, and antitumor promotion activities. Recently, we found that ATD suppressed TGF-ß1-induced migration and invasion of HepG2 cells. In this report, we found that ATD exhibited more potent cytotoxicity in Huh7 hepatoma cells (mutant p53: Y220C) than in HepG2 cells (wild-type p53). A trypan blue dye exclusion assay and colony assay showed ATD inhibited the growth of Huh7 cells. ATD also induced G1 arrest and reduced the expression of cyclin D1 and CDK2. Flow cytometry analysis with Annexin-V/PI staining demonstrated that ATD induced significant apoptosis in Huh7 cells. Moreover, ATD increased the expression of cleaved PARP and Bax and decreased the expression of procaspase 3/8 and Bcl-xL/Bcl-2. In addition, ATD decreased the expression of mutant p53 protein (mutp53), which is associated with cell proliferation with the exploration of p53 siRNA transfection. Furthermore, ATD suppressed the phosphorylation of the signal transducer and activator of transcription 3 (STAT3) and the expression of mevalonate kinase (MVK). Consistent with ATD, the administration of S3I201 (STAT 3 inhibitor) reduced the expression of Bcl-2/Bcl-xL, cyclin D1, mutp53, and MVK. These results demonstrated ATD's selectivity against mutp53 hepatoma cells involving the downregulation of mutp53 and inactivation of STAT3.


Subject(s)
Benzofurans , Carcinoma, Hepatocellular , Liver Neoplasms , Aminosalicylic Acids , Apoptosis/physiology , Benzenesulfonates , Benzofurans/pharmacology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin D1/metabolism , Down-Regulation , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mutant Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism
4.
Analyst ; 144(6): 1968-1974, 2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30694266

ABSTRACT

Preparation of selective magnetic adsorbents for dispersive micro-solid phase extraction often involves multi-step reactions which are time consuming. This study demonstrates a simplified method for the synthesis of a magnetic adsorbent, which is selective towards the adsorption of mercury(ii) ions (Hg2+). In this method, the incorporation of a metal capturing ligand (3-oxo-1,3-diphenylpropyl-2-(naphthalen-2-ylamino) ethylcarbamodithioate) and the coating of magnetic particles with silica gel was performed in a single step. This adsorbent was then used in solid-phase microextraction for the preconcentration of Hg2+ in water. In this study, a mercury analyzer was used to quantify the Hg2+. Under optimized conditions, the developed analytical method achieved a low detection limit (4.0 ng L-1), satisfactory enrichment factor (96.4) and wide linearity range (50.0-5000 ng L-1) with a good coefficient of determination (0.9985) and good repeatability (<7%). The preconcentration factor of this method was 100. This proposed method was also successfully utilized for the determination of Hg2+ in drinking water, tap water and surface water with good recovery (>91%) and high intra-day and inter-day precision.

5.
BMC Genomics ; 17: 391, 2016 05 23.
Article in English | MEDLINE | ID: mdl-27216822

ABSTRACT

BACKGROUND: Clostridium perfringens causes toxin-mediated diseases, including gas gangrene (clostridial myonecrosis) and food poisoning in humans. The production of the toxins implicated in gas gangrene, α-toxin and perfringolysin O, is regulated by the VirSR two-component regulatory system. In addition, RevR, an orphan response regulator, has been shown to affect virulence in the mouse myonecrosis model. RevR positively regulates the expression of genes that encode hydrolytic enzymes, including hyaluronidases and sialidases. RESULTS: To further characterize the VirSR and RevR regulatory networks, comparative transcriptomic analysis was carried out with strand-specific RNA-seq on C. perfringens strain JIR325 and its isogenic virR and revR regulatory mutants. Using the edgeR analysis package, 206 genes in the virR mutant and 67 genes in the revR mutant were found to be differentially expressed. Comparative analysis revealed that VirR acts as a global negative regulator, whilst RevR acts as a global positive regulator. Therefore, about 95 % of the differentially expressed genes were up-regulated in the virR mutant, whereas 81 % of the differentially expressed genes were down-regulated in the revR mutant. Importantly, we identified 23 genes that were regulated by both VirR and RevR, 18 of these genes, which included the sporulation-specific spoIVA, sigG and sigF genes, were regulated positively and negatively by RevR and VirR, respectively. Furthermore, analysis of the mapped RNA-seq reads visualized as depth of coverage plots showed that there were 93 previously unannotated transcripts in intergenic regions. These transcripts potentially encode small RNA molecules. CONCLUSION: In conclusion, using strand-specific RNA-seq analysis, this study has identified differentially expressed chromosomal and pCP13 native plasmid-encoded genes, antisense transcripts, and transcripts within intergenic regions that are controlled by the VirSR or RevR regulatory systems.


Subject(s)
Bacterial Proteins/genetics , Clostridium perfringens/genetics , Mutation , Sequence Analysis, RNA/methods , Gene Expression Profiling/methods , Gene Expression Regulation, Bacterial , Gene Regulatory Networks , Molecular Sequence Annotation
6.
J Transl Med ; 14: 263, 2016 09 09.
Article in English | MEDLINE | ID: mdl-27612633

ABSTRACT

BACKGROUND: Moniliformediquinone (MFD), a phenanthradiquinone in Dendrobium moniliforme, was synthesized in our laboratory. Beyond its in vitro inhibitory effects on cancer cells, other biological activity of MFD is unknown. The purpose of the present study was to investigate the effects of MFD on hepatic fibrogenesis in vitro and in vivo. METHODS: Hepatic stellate HSC-T6 was cultured. Cell viability assay and western blot analyses were performed. Male ICR mice were evaluated on CCl4-induced hepatotoxicity using both histological examination and immunohistochemical staining. RESULTS: First, in vitro study showed that the synthesized MFD effectively attenuated the expression of transforming growth factor-ß1 (TGF-ß1), connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), and type I collagen (COL-1), which modulated the hepatic fibrogenesis. Furthermore, MFD reduced the phosphorylation of p65 NFκB in HSC-T6 cells. In vivo, liver fibrosis was induced by CCl4 twice a week for 10 weeks in mice. The administration of the MFD was started after 1 week of CCl4 thrice-weekly; the MFD significantly reduced plasma aspartate transaminase (AST) and lactose dehydrogenase (LDH) as well as hepatic hydroxy-proline, α-SMA, and COL-1 expression in CCl4-treated mice. Pathological analysis showed that the MFD alleviated CCl4-induced hepatic inflammation, necrosis and fibrosis. These results suggest that MFD possesses therapeutic potential for liver fibrosis. CONCLUSIONS: The synthesized MFD exhibits anti-fibrotic potential by inactivation of HSCs in vitro and decreases mouse hepatic fibrosis in vivo. Further investigation into their clinical therapeutic potential is required.


Subject(s)
Hepatic Stellate Cells/pathology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Phenanthrenes/therapeutic use , Quinones/therapeutic use , Animals , Biomarkers/metabolism , Carbon Tetrachloride , Cell Line , Cytokines/metabolism , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver Cirrhosis/metabolism , Mice , Mice, Inbred ICR , Phenanthrenes/chemistry , Phenanthrenes/pharmacology , Quinones/chemistry , Quinones/pharmacology
7.
Bioorg Med Chem ; 23(15): 4669-4680, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26088338

ABSTRACT

Poly (ADP-ribose) polymerases (PARPs) play diverse roles in various cellular processes that involve DNA repair and programmed cell death. Amongst these polymerases is PARP-1 which is the key DNA damage-sensing enzyme that acts as an initiator for the DNA repair mechanism. Dihydroorotate dehydrogenase (DHODH) is an enzyme in the pyrimidine biosynthetic pathway which is an important target for anti-hyperproliferative and anti-inflammatory drug design. Since these enzymes share a common role in the DNA replication and repair mechanisms, it may be beneficial to target both PARP-1 and DHODH in attempts to design new anti-cancer agents. Benzimidazole derivatives have shown a wide variety of pharmacological activities including PARP and DHODH inhibition. We hereby report the design, synthesis and bioactivities of a series of benzimidazole derivatives as inhibitors of both the PARP-1 and DHODH enzymes.


Subject(s)
Benzimidazoles/pharmacology , Enzyme Inhibitors/pharmacology , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Poly(ADP-ribose) Polymerases/drug effects , Dihydroorotate Dehydrogenase , Poly (ADP-Ribose) Polymerase-1 , Structure-Activity Relationship
8.
J Urol ; 191(5): 1429-38, 2014 May.
Article in English | MEDLINE | ID: mdl-24316097

ABSTRACT

PURPOSE: Hormone refractory metastatic prostate cancer is a major obstacle in clinical treatment. The key focus of this study was the discovery and development of a potential agent for this disease. MATERIALS AND METHODS: Several pharmacological and biochemical assays were used to characterize the apoptotic signaling pathways of moniliformediquinone, a natural product, in hormone refractory metastatic prostate cancer. RESULTS: Moniliformediquinone induced cell cycle arrest at the S-phase and subsequent apoptosis in the hormone refractory metastatic prostate cancer cell lines PC-3 and DU-145. Further examination showed that moniliformediquinone induced a DNA damage response associated with Chk1, Chk2, c-Jun and JNK activation. Mitochondrial apoptosis pathways were also activated, including loss of mitochondrial membrane potential, cytochrome c release, and activation of caspase-9 and 3. The antioxidant and glutathione precursor N-acetylcysteine, and the antioxidant Trolox™ completely abolished moniliformediquinone induced generation of reactive oxygen species. However, N-acetylcysteine but not Trolox blocked moniliformediquinone mediated apoptosis and related signaling cascades. Further identification showed that moniliformediquinone alone did not conjugate glutathione but significantly decreased cellular glutathione levels. The in vivo study revealed that moniliformediquinone completely inhibited tumor growth with no weight loss. CONCLUSIONS: Our data suggest that moniliformediquinone is a potential anticancer agent for hormone refractory metastatic prostate cancer by decreasing cellular glutathione, leading to a DNA damage response and cell cycle arrest at the S-phase. Mitochondrial stress also occurs due to moniliformediquinone action through loss of mitochondrial membrane potential and cytochrome c release, which in turn induce the activation of caspase cascades and apoptotic cell death.


Subject(s)
Antineoplastic Agents/therapeutic use , DNA Damage , Glutathione/physiology , Mitochondria/metabolism , Phenanthrenes/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Quinones/therapeutic use , Drug Screening Assays, Antitumor , Humans , Male , Tumor Cells, Cultured
9.
BMC Complement Altern Med ; 14: 491, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25510435

ABSTRACT

BACKGROUND: Wedelia chinensis is traditionally used as a hepatoprotective herb in Taiwan. The aim of this study was to evaluate the neuroprotective potential of W. chinensis. METHODS: An ethyl acetate extract of W. chinensis (EAW) was prepared and analyzed by HPLC. The neuroprotective potential of EAW was assessed by tert-butylhydroperoxide (t-BHP)-induced damage in PC12 cells and D-galactose-induced damage in mouse cortex. RESULTS: EAW exhibited potent radical scavenging property and highly contained luteolin and wedelolactone. EAW decreased t-BHP-induced reactive oxygen species (ROS) accumulation, cytotoxicity and apoptosis in PC12 cells. EAW and its major constituents blocked t-BHP-induced cytochrome C release and Bcl-2 family protein ratio change. EAW and its major constituents increased the endogenous antioxidant capacity evaluated by the binding activity assay of nuclear factor E2-related factor 2 (Nrf2) to antioxidant response element (ARE) and nuclear translocation of Nrf2 respectively in PC12 cells. Finally, EAW inhibited D-galactose-induced lipid peroxidation, apoptosis and neuron loss in the cerebral cortex of mice. CONCLUSION: These results demonstrate that W. chinensis has neuroprotective potential through blocking oxidative stress-induced damage and that luteolin and wedelolactone contribute to the protective action.


Subject(s)
Apoptosis/drug effects , Brain/drug effects , Coumarins/pharmacology , Luteolin/pharmacology , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Wedelia/chemistry , Animals , Antioxidants/analysis , Antioxidants/pharmacology , Brain/metabolism , Coumarins/analysis , Cytochromes c/metabolism , Galactose , Lipid Peroxidation/drug effects , Luteolin/analysis , Medicine, Chinese Traditional , Mice, Inbred ICR , NF-E2-Related Factor 2/metabolism , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/analysis , Neuroprotective Agents/pharmacology , PC12 Cells , Plant Extracts/chemistry , Rats , Reactive Oxygen Species/metabolism , Taiwan , tert-Butylhydroperoxide
10.
Drug Discov Ther ; 18(3): 199-206, 2024.
Article in English | MEDLINE | ID: mdl-38987208

ABSTRACT

Senolytics are drugs that specifically target senescent cells. Flavonoids such as quercetin and fisetin possess selective senolytic activities. This study aims to investigate if chalcones exhibit anti-senescence activities. Anti-senescence effect of 11 chalcone derivatives on the replicative senescence human aortic endothelial cells (HAEC) and human fetal lung fibroblasts (IMR90) was evaluated. Compound 2 (4-methoxychalcone) and compound 4 (4-bromo-4'-methoxychalcone) demonstrated increased cytotoxicity in senescent HAEC compared to young HAEC, with significant differences on IC50 values. Their anti-senescence effects on HAEC exceeded fisetin. Higher selectivity of compound 4 toward HAEC over IMR90 could be attributed to 4-methoxy (4-OMe) substitution at ring A (R1). Chalcone derivatives have potentials as senolytics in mitigating replicative senescence, warranting further research and development on chalcones as anti-senescent agent.


Subject(s)
Cellular Senescence , Chalcones , Endothelial Cells , Fibroblasts , Humans , Cellular Senescence/drug effects , Endothelial Cells/drug effects , Chalcones/pharmacology , Fibroblasts/drug effects , Cells, Cultured , Senotherapeutics/pharmacology , Inhibitory Concentration 50 , Aorta/drug effects , Aorta/cytology , Structure-Activity Relationship , Cell Line
11.
Psychiatry Investig ; 21(4): 380-386, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38695045

ABSTRACT

OBJECTIVE: Mental health promotion programs using virtual reality (VR) technology have been developed in various forms. This study aimed to investigate the subjective experience of a VR-assisted mental health promotion program for the community population, which was provided in the form of VR experience on a bus to increase accessibility. METHODS: Ninety-six people participated in this study. The relationship between the subjective experience and mental health states such as depression, anxiety, perceived stress, and quality of life was explored. The subjective experience on depression and stress before and after VR program treatment was compared using the Wilcoxon signed-rank test. The satisfaction with the VR-assisted mental health promotion program was examined after using the VR program. RESULTS: The VR-assisted mental health promotion program on a bus significantly improved subjective symptoms such as depression (p=0.036) and perceived stress (p=0.010) among all the participants. Among the high-risk group, this VR program significantly relieved subjective depressive feeling score (p=0.033), and subjective stressful feeling score (p=0.035). In contrast, there were no significant changes in subjective depressive feelings (p=0.182) and subjective stressful feelings (p=0.058) among the healthy group. Seventy-two percent of the participants reported a high level of satisfaction, scoring 80 points or more. CONCLUSION: The findings of this study suggest that the VR-assisted mental health promotion program may effectively improve the subjective depressive and stressful feelings. The use of VR programs on buses to increase of accessibility for the community could be a useful approach for promoting mental health among the population.

13.
J Am Soc Nephrol ; 23(5): 915-33, 2012 May.
Article in English | MEDLINE | ID: mdl-22383692

ABSTRACT

Mutations in two large multi-exon genes, PKD1 and PKD2, cause autosomal dominant polycystic kidney disease (ADPKD). The duplication of PKD1 exons 1-32 as six pseudogenes on chromosome 16, the high level of allelic heterogeneity, and the cost of Sanger sequencing complicate mutation analysis, which can aid diagnostics of ADPKD. We developed and validated a strategy to analyze both the PKD1 and PKD2 genes using next-generation sequencing by pooling long-range PCR amplicons and multiplexing bar-coded libraries. We used this approach to characterize a cohort of 230 patients with ADPKD. This process detected definitely and likely pathogenic variants in 115 (63%) of 183 patients with typical ADPKD. In addition, we identified atypical mutations, a gene conversion, and one missed mutation resulting from allele dropout, and we characterized the pattern of deep intronic variation for both genes. In summary, this strategy involving next-generation sequencing is a model for future genetic characterization of large ADPKD populations.


Subject(s)
Mutation , Polycystic Kidney, Autosomal Dominant/genetics , Sequence Analysis, DNA/methods , TRPP Cation Channels/genetics , Electronic Data Processing , Humans , Polymerase Chain Reaction
14.
Biomedicines ; 11(7)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37509669

ABSTRACT

2-(4-Benzyloxy-3-methoxyphenyl)-5-(carbethoxyethylene)-7-methoxy-benzofuran (BMBF), a benzofuran derivative, is an intermediate found in the process of total synthesis of ailanthoidol. Benzofuran derivatives are a class of compounds that possess various biological and pharmacological activities. The present study explored the anti-metastasis effects of BMBF in hepatocellular carcinoma (HCC). Our preliminary findings indicate that BMBF suppresses the proliferation and changes the morphology of Huh7-an HCC cell line with a mutated p53 gene (Y220C). According to a scratching motility assay, non-cytotoxic concentrations of BMBF significantly inhibited the motility and migration in Huh7 cells. BMBF upregulated the expression of E-cadherin and downregulated the expression of vimentin, Slug, and MMP9, which are associated with epithelial-mesenchymal transition (EMT) and metastasis in Huh7 cells. BMBF decreased the expression of integrin α7, deactivated its downstream signal FAK/AKT, and inhibited p53 protein levels. Cell transfection with p53 siRNA resulted in the prevention of cell invasion because of the reduction in integrin α7, Slug, and MMP-9 in Huh7 cells. BMBF had anti-metastatic effects in PLC/PRF/5-an HCC cell line with R249S, a mutated p53 gene. Our findings indicate that BMBF has anti-metastatic effects in downregulating p53 and mediating the suppression of integrin α7, EMT, and MMP-9 in HCC cells with a mutated p53 gene.

15.
Psychiatry Investig ; 20(5): 445-451, 2023 May.
Article in English | MEDLINE | ID: mdl-37253470

ABSTRACT

OBJECTIVE: It is necessary to identify the mental health types of young women considering the importance of the mental health during the peripartum period. This study aimed to classify the mental health types in a community sample of young women with pre-pregnancy, pregnancy, or the postpartum period. METHODS: A total of 293 young women during pre-pregnancy, pregnancy, or the postpartum period were included in this study. The clinical characteristics of depression, anxiety, perceived stress, and quality of life were assessed. The clinical characteristics of the subject were classified by cluster analysis and compared by analysis of variance. RESULTS: From the cluster analysis, the subjects were classified into three groups. Cluster 1 showed significantly lower depression and anxiety and higher quality of life than those of cluster 2 and 3. Cluster 2 demonstrated significantly higher depression and anxiety and lower quality of life than those of cluster 3 and 1. Cluster 3 represented the intermediate levels between cluster 2 and 1. CONCLUSION: This study suggested that young women during pre-pregnancy, pregnancy, or the postpartum period might be in a good mental health group, a high-risk group requiring active monitoring, or a group in need of treatment. By monitoring mental health, the groups with high risk or requiring treatment could be discovered and proper management for prevention or improvement of mental health and quality of life can be provided.

16.
Med Chem ; 19(9): 897-905, 2023.
Article in English | MEDLINE | ID: mdl-37046198

ABSTRACT

BACKGROUND: KRAS and p53 are two of the most common genetic alterations associated with colorectal cancer. New drug development targeting these mutated genes in colorectal cancer may serve as a potential treatment avenue to the current regimen. OBJECTIVE: The objective of the present study was to investigate the effects of alkoxy chain length and 1-hydroxy group on anticolorectal cancer activity of a series of 2-bromoalkoxyanthraquinones and corroborate it with their in silico properties. METHODS: In vitro anticancer activity of 2-bromoalkoxyanthraquinones was evaluated against HCT116, HT29, and CCD841 CoN cell lines, respectively. Molecular docking was performed to understand the interactions of these compounds with putative p53 and KRAS targets (7B4N and 6P0Z). RESULTS: 2-Bromoalkoxyanthraquinones with the 1-hydroxy group were proven to be more active than the corresponding counterparts in anticancer activity. Among the tested compounds, compound 6b with a C3 alkoxy chain exhibited the most promising antiproliferation activity against HCT116 cells (IC50 = 3.83 ± 0.05 µM) and showed high selectivity for HCT116 over CCD841 CoN cells (SI = 45.47). The molecular docking reveals additional hydrogen bonds between the 1-hydroxy group of 6b and the proteins. Compound 6b has adequate lipophilicity (cLogP = 3.27) and ligand efficiency metrics (LE = 0.34; LLE = 2.15) close to the proposed acceptable range for an initial hit. CONCLUSION: This work highlights the potential of the 1-hydroxy group and short alkoxy chain on anticolorectal cancer activity of 2-bromoalkoxyanthraquinones. Further optimisation may be warranted for compound 6b as a therapeutic agent against colorectal cancer.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Humans , Structure-Activity Relationship , Molecular Docking Simulation , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/pharmacology , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/pharmacology , Cell Proliferation , HCT116 Cells , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor , Cell Line, Tumor , Molecular Structure
17.
Small ; 8(19): 3028-34, 2012 Oct 08.
Article in English | MEDLINE | ID: mdl-22807340

ABSTRACT

Highly luminescent-paramagnetic nanophosphors have a seminal role in biotechnology and biomedical research due to their potential applications in biolabeling, bioimaging, and drug delivery. Herein, the synthesis of high-quality, ultrafine, europium-doped yttrium oxide nanophosphors (Y(1.9)O(3):Eu(0.1)(3+)) using a modified sol-gel technique is reported and in vitro fluorescence imaging studies are demonstrated in human breast cancer cells. These highly luminescent nanophosphors with an average particle size of ≈6 nm provide high-contrast optical imaging and decreased light scattering. In vitro cellular uptake is shown by fluorescence microscopy, which visualizes the characteristic intense hypersensitive red emission of Eu(3+) peaking at 610 nm ((5)D(0)-(7)F(2)) upon 246 nm UV light excitation. No apparent cytotoxicity is observed. Subsequently, time-resolved emission spectroscopy and SQUID magnetometry measurements demonstrate a photoluminescence decay time in milliseconds and paramagnetic behavior, which assure applications of the nanophosphors in biomedical studies.


Subject(s)
Breast Neoplasms/pathology , Europium/chemistry , Luminescent Agents/chemistry , Metal Nanoparticles/chemistry , Yttrium/chemistry , Cell Line, Tumor , Humans , Microscopy, Electron, Transmission , Optical Imaging , X-Ray Diffraction
18.
Front Cell Infect Microbiol ; 12: 944611, 2022.
Article in English | MEDLINE | ID: mdl-36237434

ABSTRACT

Candida albicans is a pathogenic yeast that causes candidiasis in immunocompromised patients. The overuse of antifungal drugs has led to the development of resistance to such drugs by this fungus, which is a major challenge in antifungal chemotherapy. One approach to this problem involves the utilization of new natural products as an alternative source of antifungals. Curcumin, one such natural product, has been widely studied as a drug candidate and is reported to exhibit antifungal activity against C. albicans. Although studies of the mechanism of curcumin against human cancer cells have shown that it inhibits heat shock protein 90 (Hsp90), little is known about its function against C. albicans. In this paper, using a doxycycline-mediated HSP90 strain and an HSP90-overexpressing strain of C. albicans, we demonstrated that the curcumin triggered a decrease in Hsp90 by affecting it at the post-transcriptional level. This also led to the downregulation of HOG1 and CDR1, resulting in a reduction of the stress response and efflux pump activity of C. albicans. However, the inhibition of HSP90 by curcumin was not due to the inhibition of transcription factors HSF1 or AHR1. We also found that curcumin can not only decrease the transcriptional expression of CDR1, but also inhibit the efflux pump activity of Cdr1. Hence, we conclude that disruption of HSP90 by curcumin could impair cell growth, stress responses and efflux pump activity of C. albicans.


Subject(s)
Biological Products , Curcumin , Antifungal Agents/pharmacology , Candida albicans/metabolism , Curcumin/pharmacology , Doxycycline , Drug Resistance, Fungal , Fungal Proteins/genetics , Fungal Proteins/metabolism , HSP90 Heat-Shock Proteins , Humans , Microbial Sensitivity Tests , Transcription Factors/genetics , Transcription Factors/metabolism
19.
PLoS One ; 17(7): e0270970, 2022.
Article in English | MEDLINE | ID: mdl-35819953

ABSTRACT

There is an increasing demand in developing new, effective, and affordable anti-cancer against colon and rectal. In this study, our aim is to identify the potential anthraquinone compounds from the root bark of Morinda citrifolia to be tested in vitro against colorectal cancer cell lines. Eight potential anthraquinone compounds were successfully isolated, purified and tested for both in-silico and in-vitro analyses. Based on the in-silico prediction, two anthraquinones, morindone and rubiadin, exhibit a comparable binding affinity towards multitargets of ß-catenin, MDM2-p53 and KRAS. Subsequently, we constructed a 2D interaction analysis based on the above results and it suggests that the predicted anthraquinones from Morinda citrifolia offer an attractive starting point for potential antiproliferative agents against colorectal cancer. In vitro analyses further indicated that morindone and damnacanthal have significant cytotoxicity effect and selectivity activity against colorectal cancer cell lines.


Subject(s)
Colorectal Neoplasms , Morinda , Anthraquinones/chemistry , Cell Line , Colorectal Neoplasms/drug therapy , Morinda/chemistry , Plant Roots/chemistry
20.
Blood ; 113(22): 5568-74, 2009 May 28.
Article in English | MEDLINE | ID: mdl-19336759

ABSTRACT

The molecular mechanism of autocrine regulation of vascular endothelial growth factor (VEGF) in chronic lymphocytic leukemia (CLL) B cells is unknown. Here, we report that CLL B cells express constitutive levels of HIF-1alpha under normoxia. We have examined the status of the von Hippel-Lindau gene product (pVHL) that is responsible for HIF-1alpha degradation and found it to be at a notably low level in CLL B cells compared with normal B cells. We demonstrate that the microRNA, miR-92-1, overexpressed in CLL B cells, can target the VHL transcript to repress its expression. We found that the stabilized HIF-1alpha can form an active complex with the transcriptional coactivator p300 and phosphorylated-STAT3 at the VEGF promoter and recruit RNA polymerase II. This is initial evidence that pVHL, without any genetic alteration, can be regulated by microRNA and explains the aberrant autocrine VEGF secretion in CLL.


Subject(s)
Hypoxia-Inducible Factor 1/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , MicroRNAs/physiology , Vascular Endothelial Growth Factor A/genetics , Von Hippel-Lindau Tumor Suppressor Protein/genetics , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Cell Culture Techniques , Cell Nucleus/metabolism , Cells, Cultured , Gene Expression Regulation, Leukemic , Humans , Hydroxylation/genetics , Hypoxia-Inducible Factor 1/metabolism , Hypoxia-Inducible Factor 1/physiology , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Mixed Function Oxygenases/metabolism , Protein Binding , Protein Processing, Post-Translational/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/physiology , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , p300-CBP Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL