Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Plants (Basel) ; 13(16)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39204649

ABSTRACT

The causal agent of tomato leaf mold, Cladosporium fulvum, is prevalent in greenhouses worldwide, especially under high humidity conditions. Despite its economic impact, studies on antifungal agents targeting C. fulvum remain limited. This study evaluates biocontrol agents (BCAs) as alternatives to chemical controls for managing this disease, alongside the strobilurin fungicide azoxystrobin. From a Moroccan collection of potential BCAs, five bacterial isolates (Alcaligenes faecalis ACBC1, Pantoea agglomerans ACBC2, ACBP1, ACBP2, and Bacillus amyloliquefaciens SF14) and three fungal isolates (Trichoderma spp. OT1, AT2, and BT3) were selected and tested. The in vitro results demonstrated that P. agglomerans isolates reduced mycelial growth by over 60% at 12 days post-inoculation (dpi), while Trichoderma isolates achieved 100% inhibition in just 5 dpi. All bacterial isolates produced volatile organic compounds (VOCs) with mycelial inhibition rates ranging from 38.8% to 57.4%. Likewise, bacterial cell-free filtrates significantly inhibited the pathogen's mycelial growth. Greenhouse tests validated these findings, showing that all the tested isolates were effective in reducing disease incidence and severity. Azoxystrobin effectively impeded C. fulvum growth, particularly in protective treatments. Fourier transform infrared spectroscopy (FTIR) analysis revealed significant biochemical changes in the treated plants, indicating fungal activity. This study provides valuable insights into the efficacy of these BCAs and azoxystrobin, contributing to integrated management strategies for tomato leaf mold disease.

2.
Pathogens ; 13(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39338943

ABSTRACT

Apple scab, caused by the pathogenic fungus Venturia inaequalis, can result in significant economic losses. The frequent use of fungicidal products has led to the emergence of isolates resistant to commonly used active substances. Therefore, biological control offers a sustainable alternative for managing apple scab. In this study, eight Trichoderma isolates were evaluated against five different isolates of V. inaequalis isolated from the Fes-Meknes region. The biocontrol potential of these Trichoderma isolates had previously been demonstrated against other pathogens. The results indicated that the inhibition rate of mycelial growth of V. inaequalis obtained with Trichoderma spp. isolates ranged from 50% to 81%, with significant differences observed among the pathogenic isolates after 5 and 12 days of incubation. In addition, the in vitro tests with Trichoderma cell-free filtrates showed inhibition rates ranging from 2% to 79%, while inhibition rates ranged from 5% to 78% for volatile compound tests. Interestingly, the inhibition of spore germination and elongation was approximately 40-50%, suggesting the involvement of antifungal metabolites in their biocontrol activities. The in vivo bioassay on detached apple leaves confirmed the biocontrol potential of these Trichoderma isolates and demonstrated their ability to preventively control apple scab disease. However, their efficacies were still lower than those of the fungicidal product difenoconazole. These findings could contribute to the development of an effective biofungicide based on these Trichoderma isolates for reliable and efficient apple scab control.

3.
J Fungi (Basel) ; 9(7)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37504750

ABSTRACT

A set of commonly used food additives was evaluated for their antifungal activity against the brown rot disease of fruits caused by the fungal pathogen Monilinia fructigena, which is one of the most economically important agents, causing important damage to pome fruits, such as pears and apples. The radial mycelial growth of the fungal pathogen was assessed in PDA amended with different concentrations (0.5, 2, 2.5, and 5%) of each additive. The results underlined that most of the additives displayed a significant inhibition of mycelial growth, with the extent of inhibition varying depending on the specific additive and concentration used. Five food additives showed high inhibition rates (above 88%), of which sodium bicarbonate, sodium carbonate, copper sulphate, and sodium hydroxide were the most effective, whereas ammonium carbonate, magnesium chlorite, and citric acid were the least effective. Interestingly, the coatings containing sodium bicarbonate, copper sulphate, and ammonium bicarbonate significantly reduced the incidence of brown rot disease in apples, but other additives were not effective, such as ammonium carbonate and magnesium sulphate. The anhydrous sodium sulphate used at a concentration of 2%, was found to be one of the least effective additives, with a reduction rate of 20%. Subsequently, food additives showing good growth inhibition rates and reduction in disease severity were then tested in semi-commercial trials at temperatures of 4 °C and 22 °C. The results indicated that these additives demonstrate effectiveness in controlling M. fructigena at specific concentrations, and lower temperatures (4 °C) can improve the efficiency of the control measures. In addition, the selected food additives exhibited significant antimicrobial activity against M. fructigena, suggesting their application as a promising alternative for managing brown rot disease in apple fruits.

4.
Plants (Basel) ; 12(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38140489

ABSTRACT

Cereal production plays a major role in both animal and human diets throughout the world. However, cereal crops are vulnerable to attacks by fungal pathogens on the foliage, disrupting their biological cycle and photosynthesis, which can reduce yields by 15-20% or even 60%. Consumers are concerned about the excessive use of synthetic pesticides given their harmful effects on human health and the environment. As a result, the search for alternative solutions to protect crops has attracted the interest of scientists around the world. Among these solutions, biological control using beneficial microorganisms has taken on considerable importance, and several biological control agents (BCAs) have been studied, including species belonging to the genera Bacillus, Pseudomonas, Streptomyces, Trichoderma, Cladosporium, and Epicoccum, most of which include plants of growth-promoting rhizobacteria (PGPRs). Bacillus has proved to be a broad-spectrum agent against these leaf cereal diseases. Interaction between plant and beneficial agents occurs as direct mycoparasitism or hyperparasitism by a mixed pathway via the secretion of lytic enzymes, growth enzymes, and antibiotics, or by an indirect interaction involving competition for nutrients or space and the induction of host resistance (systemic acquired resistance (SAR) or induced systemic resistance (ISR) pathway). We mainly demonstrate the role of BCAs in the defense against fungal diseases of cereal leaves. To enhance a solution-based crop protection approach, it is also important to understand the mechanism of action of BCAs/molecules/plants. Research in the field of preventing cereal diseases is still ongoing.

5.
J Fungi (Basel) ; 8(6)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35736119

ABSTRACT

Simultaneous treatment with antagonistic bacteria Bacillus amylolquefaciens (SF14), Alcaligenes faecalis (ACBC1), and the food additive sodium bicarbonate (SBC) to control post-harvest brown rot disease caused by Monilinia fructigena, and their effect on the post-harvest quality of nectarines were evaluated. Four concentrations of SBC (0.5, 2, 3.5, and 5%) were tested. Results showed that bacterial antagonists displayed remarkable compatibility with different concentrations of SBC and that their viability was not affected. The results obtained in vitro and in vivo bioassays showed a strong inhibitory effect of all treatments. The combination of each bacterial antagonist with SBC revealed a significant improvement in their biocontrol efficacies. The inhibition rates of mycelial growth ranged from 60.97 to 100%. These results also indicated that bacterial antagonists (SF14 or ACBC1) used at 1 × 108 CFU/ mL in combination with 2, 3.5, or 5% SBC significantly improved the control of M. fructigina by inhibiting the germination of spores. Interestingly, disease incidence and lesion diameter in fruits treated with SF14, ACBC1 alone, or in combination with SBC were significantly lower than those in the untreated fruits. In vivo results showed a significant reduction in disease severity ranging from 9.27 to 64.83% compared to the untreated control, while maintaining the appearance, firmness, total soluble solids (TSS), and titratable acidity (TA) of fruits. These results suggested that the improved disease control by the two antagonistic bacteria was more likely due to the additional inhibitory effects of SBC on the mycelial growth and spore germination of the pathogenic fungus. Overall, the combination of both bacteria with SBC provided better control of brown rot disease. Therefore, a mixture of different management strategies can effectively control brown rot decay on fruits.

6.
Microorganisms ; 10(8)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36014053

ABSTRACT

Several diseases affect the productivity of olive trees, including root rot disease caused by Pythium genera. Chemical fungicides, which are often used to manage this disease, have harmful side effects on humans as well as environmental components. Biological management is a promising control approach that has shown its great potential as an efficient eco-friendly alternative to treating root rot diseases. In the present study, the antagonistic activity of ten bacterial isolates was tested both in vitro and in planta against Pythium schmitthenneri, the causal agent of olive root rot disease. These bacterial isolates belonging to the genera Alcaligenes, Pantoea, Bacillus, Sphingobacterium, and Stenotrophomonas were chosen for their potential antimicrobial effects against many pathogens. Results of the in vitro confrontation bioassay revealed a high reduction of mycelial growth exceeding 80%. The antifungal effect of the volatile organic compounds (VOCs) was observed for all the isolates, with mycelial inhibition rates ranging from 28.37 to 70.32%. Likewise, the bacterial cell-free filtrates showed important inhibition of the mycelial growth of the pathogen. Overall, their efficacy was substantially affected by the nature of the bacterial strains and their modes of action. A greenhouse test was then carried out to validate the in vitro results. Interestingly, two bacterial isolates, Alcaligenes faecalis ACBC1 and Bacillus amyloliquefaciens SF14, were the most successful in managing the disease. Our findings suggested that these two antagonistic bacterial isolates have promising potential as biocontrol agents of olive root rot disease.

SELECTION OF CITATIONS
SEARCH DETAIL