Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Breast Cancer Res ; 24(1): 8, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35078508

ABSTRACT

BACKGROUND: Triple-negative breast cancers (TNBC) have a relatively poor prognosis and responses to targeted therapies. Between 25 and 39% of TNBCs are claudin-low, a poorly differentiated subtype enriched for mesenchymal, stem cell and mitogen-activated signaling pathways. We investigated the role of the cell-surface co-receptor NRP1 in the biology of claudin-low TNBC. METHODS: The clinical prognostic value of NRP1 was determined by Kaplan-Meier analysis. GSVA analysis of METABRIC and Oslo2 transcriptomics datasets was used to correlate NRP1 expression with claudin-low gene signature scores. NRP1 siRNA knockdown was performed in MDA-MB-231, BT-549, SUM159 and Hs578T claudin-low cells and proliferation and viability measured by live cell imaging and DNA quantification. In SUM159 orthotopic xenograft models using NSG mice, NRP1 was suppressed by shRNA knockdown or systemic treatment with the NRP1-targeted monoclonal antibody Vesencumab. NRP1-mediated signaling pathways were interrogated by protein array and Western blotting. RESULTS: High NRP1 expression was associated with shorter relapse- and metastasis-free survival specifically in ER-negative BrCa cohorts. NRP1 was over-expressed specifically in claudin-low clinical samples and cell lines, and NRP1 knockdown reduced proliferation of claudin-low cells and prolonged survival in a claudin-low orthotopic xenograft model. NRP1 inhibition suppressed expression of the mesenchymal and stem cell markers ZEB1 and ITGA6, respectively, compromised spheroid-initiating capacity and exerted potent anti-tumor effects on claudin-low orthotopic xenografts (12.8-fold reduction in endpoint tumor volume). NRP1 was required to maintain maximal RAS/MAPK signaling via EGFR and PDGFR, a hallmark of claudin-low tumors. CONCLUSIONS: These data implicate NRP1 in the aggressive phenotype of claudin-low breast cancer and offer a novel targeted therapeutic approach to this poor prognosis subtype.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Animals , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Claudins/metabolism , Female , Humans , MAP Kinase Signaling System , Mice , Neoplasm Recurrence, Local , Neuropilin-1/genetics , Neuropilin-1/therapeutic use , Stem Cells/metabolism , Triple Negative Breast Neoplasms/pathology , ras Proteins
2.
J Pathol ; 236(3): 278-89, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25693838

ABSTRACT

Glutamine is conditionally essential in cancer cells, being utilized as a carbon and nitrogen source for macromolecule production, as well as for anaplerotic reactions fuelling the tricarboxylic acid (TCA) cycle. In this study, we demonstrated that the glutamine transporter ASCT2 (SLC1A5) is highly expressed in prostate cancer patient samples. Using LNCaP and PC-3 prostate cancer cell lines, we showed that chemical or shRNA-mediated inhibition of ASCT2 function in vitro decreases glutamine uptake, cell cycle progression through E2F transcription factors, mTORC1 pathway activation and cell growth. Chemical inhibition also reduces basal oxygen consumption and fatty acid synthesis, showing that downstream metabolic function is reliant on ASCT2-mediated glutamine uptake. Furthermore, shRNA knockdown of ASCT2 in PC-3 cell xenografts significantly inhibits tumour growth and metastasis in vivo, associated with the down-regulation of E2F cell cycle pathway proteins. In conclusion, ASCT2-mediated glutamine uptake is essential for multiple pathways regulating the cell cycle and cell growth, and is therefore a putative therapeutic target in prostate cancer.


Subject(s)
Amino Acid Transport System ASC/genetics , Gene Expression Regulation, Neoplastic , Glutamine/metabolism , Prostatic Neoplasms/genetics , Amino Acid Transport System ASC/antagonists & inhibitors , Amino Acid Transport System ASC/metabolism , Animals , Biological Transport , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Down-Regulation , Fatty Acids/metabolism , Gene Knockdown Techniques , Heterografts , Humans , Male , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Nude , Minor Histocompatibility Antigens , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Neoplasm Metastasis , Oxygen/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/prevention & control , RNA, Small Interfering , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
3.
BMC Genomics ; 16: 145, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25766521

ABSTRACT

BACKGROUND: Strand specific RNAseq data is now more common in RNAseq projects. Visualizing RNAseq data has become an important matter in Analysis of sequencing data. The most widely used visualization tool is the UCSC genome browser that introduced the custom track concept that enabled researchers to simultaneously visualize gene expression at a particular locus from multiple experiments. Our objective of the software tool is to provide friendly interface for visualization of RNAseq datasets. RESULTS: This paper introduces a visualization tool (RNASeqBrowser) that incorporates and extends the functionality of the UCSC genome browser. For example, RNASeqBrowser simultaneously displays read coverage, SNPs, InDels and raw read tracks with other BED and wiggle tracks -- all being dynamically built from the BAM file. Paired reads are also connected in the browser to enable easier identification of novel exon/intron borders and chimaeric transcripts. Strand specific RNAseq data is also supported by RNASeqBrowser that displays reads above (positive strand transcript) or below (negative strand transcripts) a central line. Finally, RNASeqBrowser was designed for ease of use for users with few bioinformatic skills, and incorporates the features of many genome browsers into one platform. CONCLUSIONS: The features of RNASeqBrowser: (1) RNASeqBrowser integrates UCSC genome browser and NGS visualization tools such as IGV. It extends the functionality of the UCSC genome browser by adding several new types of tracks to show NGS data such as individual raw reads, SNPs and InDels. (2) RNASeqBrowser can dynamically generate RNA secondary structure. It is useful for identifying non-coding RNA such as miRNA. (3) Overlaying NGS wiggle data is helpful in displaying differential expression and is simple to implement in RNASeqBrowser. (4) NGS data accumulates a lot of raw reads. Thus, RNASeqBrowser collapses exact duplicate reads to reduce visualization space. Normal PC's can show many windows of NGS individual raw reads without much delay. (5) Multiple popup windows of individual raw reads provide users with more viewing space. This avoids existing approaches (such as IGV) which squeeze all raw reads into one window. This will be helpful for visualizing multiple datasets simultaneously. RNASeqBrowser and its manual are freely available at http://www.australianprostatecentre.org/research/software/rnaseqbrowser or http://sourceforge.net/projects/rnaseqbrowser/.


Subject(s)
Databases, Genetic , Genome , Sequence Analysis, RNA/methods , Software , Computational Biology/methods , INDEL Mutation/genetics , Internet
4.
BMC Genomics ; 16: 1021, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26626734

ABSTRACT

BACKGROUND: Fusion transcripts are found in many tissues and have the potential to create novel functional products. Here, we investigate the genomic sequences around fusion junctions to better understand the transcriptional mechanisms mediating fusion transcription/splicing. We analyzed data from prostate (cancer) cells as previous studies have shown extensively that these cells readily undergo fusion transcription. RESULTS: We used the FusionMap program to identify high-confidence fusion transcripts from RNAseq data. The RNAseq datasets were from our (N = 8) and other (N = 14) clinical prostate tumors with adjacent non-cancer cells, and from the LNCaP prostate cancer cell line that were mock-, androgen- (DHT), and anti-androgen- (bicalutamide, enzalutamide) treated. In total, 185 fusion transcripts were identified from all RNAseq datasets. The majority (76%) of these fusion transcripts were 'read-through chimeras' derived from adjacent genes in the genome. Characterization of sequences at fusion loci were carried out using a combination of the FusionMap program, custom Perl scripts, and the RNAfold program. Our computational analysis indicated that most fusion junctions (76%) use the consensus GT-AG intron donor-acceptor splice site, and most fusion transcripts (85%) maintained the open reading frame. We assessed whether parental genes of fusion transcripts have the potential to form complementary base pairing between parental genes which might bring them into physical proximity. Our computational analysis of sequences flanking fusion junctions at parental loci indicate that these loci have a similar propensity as non-fusion loci to hybridize. The abundance of repetitive sequences at fusion and non-fusion loci was also investigated given that SINE repeats are involved in aberrant gene transcription. We found few instances of repetitive sequences at both fusion and non-fusion junctions. Finally, RT-qPCR was performed on RNA from both clinical prostate tumors and adjacent non-cancer cells (N = 7), and LNCaP cells treated as above to validate the expression of seven fusion transcripts and their respective parental genes. We reveal that fusion transcript expression is similar to the expression of parental genes. CONCLUSIONS: Fusion transcripts maintain the open reading frame, and likely use the same transcriptional machinery as non-fusion transcripts as they share many genomic features at splice/fusion junctions.


Subject(s)
Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/genetics , Quantitative Trait Loci , RNA Splicing , Transcription, Genetic , Androgens/pharmacology , Antineoplastic Agents, Hormonal/pharmacology , Computational Biology/methods , Conserved Sequence , Datasets as Topic , Gene Expression Regulation, Neoplastic/drug effects , High-Throughput Nucleotide Sequencing , Humans , Male , Nucleotide Motifs , RNA Splice Sites , Repetitive Sequences, Nucleic Acid
5.
Nucleic Acids Res ; 41(2): 727-37, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23221645

ABSTRACT

miRDeep and its varieties are widely used to quantify known and novel micro RNA (miRNA) from small RNA sequencing (RNAseq). This article describes miRDeep*, our integrated miRNA identification tool, which is modeled off miRDeep, but the precision of detecting novel miRNAs is improved by introducing new strategies to identify precursor miRNAs. miRDeep* has a user-friendly graphic interface and accepts raw data in FastQ and Sequence Alignment Map (SAM) or the binary equivalent (BAM) format. Known and novel miRNA expression levels, as measured by the number of reads, are displayed in an interface, which shows each RNAseq read relative to the pre-miRNA hairpin. The secondary pre-miRNA structure and read locations for each predicted miRNA are shown and kept in a separate figure file. Moreover, the target genes of known and novel miRNAs are predicted using the TargetScan algorithm, and the targets are ranked according to the confidence score. miRDeep* is an integrated standalone application where sequence alignment, pre-miRNA secondary structure calculation and graphical display are purely Java coded. This application tool can be executed using a normal personal computer with 1.5 GB of memory. Further, we show that miRDeep* outperformed existing miRNA prediction tools using our LNCaP and other small RNAseq datasets. miRDeep* is freely available online at http://www.australianprostatecentre.org/research/software/mirdeep-star.


Subject(s)
Gene Expression Profiling , High-Throughput Nucleotide Sequencing , MicroRNAs/chemistry , Sequence Analysis, RNA , Software , Cell Line, Tumor , Humans , Male , MicroRNAs/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism
6.
BMC Bioinformatics ; 15: 275, 2014 Aug 12.
Article in English | MEDLINE | ID: mdl-25117656

ABSTRACT

BACKGROUND: Small RNA sequencing is commonly used to identify novel miRNAs and to determine their expression levels in plants. There are several miRNA identification tools for animals such as miRDeep, miRDeep2 and miRDeep*. miRDeep-P was developed to identify plant miRNA using miRDeep's probabilistic model of miRNA biogenesis, but it depends on several third party tools and lacks a user-friendly interface. The objective of our miRPlant program is to predict novel plant miRNA, while providing a user-friendly interface with improved accuracy of prediction. RESULT: We have developed a user-friendly plant miRNA prediction tool called miRPlant. We show using 16 plant miRNA datasets from four different plant species that miRPlant has at least a 10% improvement in accuracy compared to miRDeep-P, which is the most popular plant miRNA prediction tool. Furthermore, miRPlant uses a Graphical User Interface for data input and output, and identified miRNA are shown with all RNAseq reads in a hairpin diagram. CONCLUSIONS: We have developed miRPlant which extends miRDeep* to various plant species by adopting suitable strategies to identify hairpin excision regions and hairpin structure filtering for plants. miRPlant does not require any third party tools such as mapping or RNA secondary structure prediction tools. miRPlant is also the first plant miRNA prediction tool that dynamically plots miRNA hairpin structure with small reads for identified novel miRNAs. This feature will enable biologists to visualize novel pre-miRNA structure and the location of small RNA reads relative to the hairpin. Moreover, miRPlant can be easily used by biologists with limited bioinformatics skills.miRPlant and its manual are freely available at http://www.australianprostatecentre.org/research/software/mirplant or http://sourceforge.net/projects/mirplant/.


Subject(s)
Computational Biology/methods , MicroRNAs/genetics , Plants/genetics , RNA, Plant/genetics , Sequence Analysis, RNA , Software , Base Sequence
7.
Biol Chem ; 395(9): 1127-32, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25153393

ABSTRACT

We assessed whether alternative transcripts (using KLK2, KLK3 and KLK4 as models) are differentially regulated by androgens and anti-androgens as an indicator of prostate cancers as they acquire treatment resistance. Using RNAseq of LNCaP cells treated with dihydrotestosterone, bicalutamide and enzalutamide, we show that the expression of variant KLK transcripts is markedly different to other variant transcripts at those loci. We also reveal that KLK variants are also over 2-fold more highly expressed in prostate cancers compared to their corresponding normal prostate. We propose that androgens and anti-androgens can activate specific variant transcripts of critical prostate cancer genes during treatment resistance.


Subject(s)
Alternative Splicing/genetics , Androgen Antagonists/pharmacology , Androgens/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Kallikreins/genetics , Prostatic Neoplasms/genetics , Alternative Splicing/drug effects , Cell Line, Tumor , Humans , Kallikreins/metabolism , Male , Prostate-Specific Antigen/genetics , Prostate-Specific Antigen/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
8.
Res Sq ; 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-38076926

ABSTRACT

Genome-wide association studies have linked Iroquois-Homeobox 4 (IRX4) as a robust expression quantitative-trait locus associated with prostate cancer (PCa) risk. However, the intricate mechanism and regulatory factors governing IRX4 expression in PCa remain poorly understood. Here, we unveil enrichment of androgen-responsive gene signatures in metastatic prostate tumors exhibiting heightened IRX4 expression. Furthermore, we uncover a novel interaction between IRX4 and the androgen receptor (AR) co-factor, FOXA1, suggesting that IRX4 modulates PCa cell behavior through AR cistrome alteration. Remarkably, we identified a distinctive short insertion-deletion polymorphism (INDEL), upstream of the IRX4 gene that differentially regulates IRX4 expression through the disruption of AR binding. This INDEL emerges as the most significant PCa risk-associated variant within the 5p15 locus, in a genetic analysis involving 82,591 PCa cases and 61,213 controls and was associated with PCa survival in patients undergoing androgen-deprivation therapy. These studies suggest the potential of this INDEL as a prognostic biomarker for androgen therapy in PCa and IRX4 as a potential therapeutic target in combination with current clinical management.

9.
Carcinogenesis ; 33(12): 2558-67, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23027626

ABSTRACT

Approximately half of prostate cancers (PCa) carry TMPRSS2-ERG translocations; however, the clinical impact of this genomic alteration remains enigmatic. Expression of v-ets erythroblastosis virus E26 oncogene like (avian) gene (ERG) promotes prostatic epithelial dysplasia in transgenic mice and acquisition of epithelial-to-mesenchymal transition (EMT) characteristics in human prostatic epithelial cells (PrECs). To explore whether ERG-induced EMT in PrECs was associated with therapeutically targetable transformation characteristics, we established stable populations of BPH-1, PNT1B and RWPE-1 immortalized human PrEC lines that constitutively express flag-tagged ERG3 (fERG). All fERG-expressing populations exhibited characteristics of in vitro and in vivo transformation. Microarray analysis revealed >2000 commonly dysregulated genes in the fERG-PrEC lines. Functional analysis revealed evidence that fERG cells underwent EMT and acquired invasive characteristics. The fERG-induced EMT transcript signature was exemplified by suppressed expression of E-cadherin and keratins 5, 8, 14 and 18; elevated expression of N-cadherin, N-cadherin 2 and vimentin, and of the EMT transcriptional regulators Snail, Zeb1 and Zeb2, and lymphoid enhancer-binding factor-1 (LEF-1). In BPH-1 and RWPE-1-fERG cells, fERG expression is correlated with increased expression of integrin-linked kinase (ILK) and its downstream effectors Snail and LEF-1. Interfering RNA suppression of ERG decreased expression of ILK, Snail and LEF-1, whereas small interfering RNA suppression of ILK did not alter fERG expression. Interfering RNA suppression of ERG or ILK impaired fERG-PrEC Matrigel invasion. Treating fERG-BPH-1 cells with the small molecule ILK inhibitor, QLT-0267, resulted in dose-dependent suppression of Snail and LEF-1 expression, Matrigel invasion and reversion of anchorage-independent growth. These results suggest that ILK is a therapeutically targetable mediator of ERG-induced EMT and transformation in PCa.


Subject(s)
Prostatic Neoplasms/pathology , Protein Serine-Threonine Kinases/physiology , Trans-Activators/physiology , Animals , Azo Compounds/pharmacology , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Humans , Lymphoid Enhancer-Binding Factor 1/physiology , Male , Mice , Neoplasm Invasiveness , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrazoles/pharmacology , Snail Family Transcription Factors , Transcription Factors/physiology , Transcriptional Regulator ERG
10.
RNA ; 16(6): 1156-66, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20406994

ABSTRACT

In humans, more than 30,000 chimeric transcripts originating from 23,686 genes have been identified. The mechanisms and association of chimeric transcripts arising from chromosomal rearrangements with cancer are well established, but much remains unknown regarding the biogenesis and importance of other chimeric transcripts that arise from nongenomic alterations. Recently, a SLC45A3-ELK4 chimera has been shown to be androgen-regulated, and is overexpressed in metastatic or high-grade prostate tumors relative to local prostate cancers. Here, we characterize the expression of a KLK4 cis sense-antisense chimeric transcript, and show other examples in prostate cancer. Using non-protein-coding microarray analyses, we initially identified an androgen-regulated antisense transcript within the 3' untranslated region of the KLK4 gene in LNCaP cells. The KLK4 cis-NAT was validated by strand-specific linker-mediated RT-PCR and Northern blotting. Characterization of the KLK4 cis-NAT by 5' and 3' rapid amplification of cDNA ends (RACE) revealed that this transcript forms multiple fusions with the KLK4 sense transcript. Lack of KLK4 antisense promoter activity using reporter assays suggests that these transcripts are unlikely to arise from a trans-splicing mechanism. 5' RACE and analyses of deep sequencing data from LNCaP cells treated +/-androgens revealed six high-confidence sense-antisense chimeras of which three were supported by the cDNA databases. In this study, we have shown complex gene expression at the KLK4 locus that might be a hallmark of cis sense-antisense chimeric transcription.


Subject(s)
DNA, Antisense/genetics , Genetic Variation , Kallikreins/genetics , Prostatic Neoplasms/genetics , Transcription, Genetic , Antigens, Neoplasm/genetics , Chimera/genetics , Chromosome Mapping , DNA, Neoplasm/genetics , Exons , Gene Rearrangement , Genome-Wide Association Study , Humans , Male , Membrane Transport Proteins/genetics , Prostatic Neoplasms/pathology , ets-Domain Protein Elk-4/genetics
11.
Nat Commun ; 13(1): 5680, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36167836

ABSTRACT

Inter and intra-tumoral heterogeneity are major stumbling blocks in the treatment of cancer and are responsible for imparting differential drug responses in cancer patients. Recently, the availability of high-throughput screening datasets has paved the way for machine learning based personalized therapy recommendations using the molecular profiles of cancer specimens. In this study, we introduce Precily, a predictive modeling approach to infer treatment response in cancers using gene expression data. In this context, we demonstrate the benefits of considering pathway activity estimates in tandem with drug descriptors as features. We apply Precily on single-cell and bulk RNA sequencing data associated with hundreds of cancer cell lines. We then assess the predictability of treatment outcomes using our in-house prostate cancer cell line and xenografts datasets exposed to differential treatment conditions. Further, we demonstrate the applicability of our approach on patient drug response data from The Cancer Genome Atlas and an independent clinical study describing the treatment journey of three melanoma patients. Our findings highlight the importance of chemo-transcriptomics approaches in cancer treatment selection.


Subject(s)
Antineoplastic Agents , Melanoma , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Gene Expression , Humans , Machine Learning , Male , Melanoma/drug therapy , Melanoma/genetics , Sequence Analysis, RNA
13.
Endocr Relat Cancer ; 28(5): 353-375, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33794502

ABSTRACT

Hyperleptinaemia is a well-established therapeutic side effect of drugs inhibiting the androgen axis in prostate cancer (PCa), including main stay androgen deprivation therapy (ADT) and androgen targeted therapies (ATT). Given significant crossover between the adipokine hormone signalling of leptin and multiple cancer-promoting hallmark pathways, including growth, proliferation, migration, angiogenesis, metabolism and inflammation, targeting the leptin axis is therapeutically appealing, especially in advanced PCa where current therapies fail to be curative. In this study, we uncover leptin as a novel universal target in PCa and are the first to highlight increased intratumoural leptin and leptin receptor (LEPR) expression in PCa cells and patients' tumours exposed to androgen deprivation, as is observed in patients' tumours of metastatic and castrate resistant (CRPC) PCa. We also reveal the world-first preclinical evidence that demonstrates marked efficacy of targeted leptin-signalling blockade, using Allo-aca, a potent, specific, and safe LEPR peptide antagonist. Allo-aca-suppressed tumour growth and delayed progression to CRPC in mice bearing LNCaP xenografts, with reduced tumour vascularity and altered pathways of apoptosis, transcription/translation, and energetics in tumours determined as potential mechanisms underpinning anti-tumour efficacy. We highlight LEPR blockade in combination with androgen axis inhibition represents a promising new therapeutic strategy vital in advanced PCa treatment.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Androgen Antagonists/therapeutic use , Androgens/metabolism , Animals , Cell Line, Tumor , Heterografts , Humans , Leptin , Male , Mice , Prostatic Neoplasms/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism
14.
Prostate ; 70(10): 1134-45, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20503398

ABSTRACT

BACKGROUND: Relaxin, a potent peptide hormone of the insulin-like family normally produced and secreted by the human prostate, is upregulated in castrate resistant prostate cancer progression. In various tissues, relaxin increases angiogenesis and cell motility through upregulation of vascular endothelial growth factor, matrix metalloproteases, and nitric oxide, and therefore maybe an attractive target for cancer therapeutics. METHODS: To examine the role of relaxin in prostate cancer progression, LNCaP cells stably transfected with relaxin (LNCaP(RLN)) were used to form xenograft tumors, and microarray expression analysis was subsequently performed to determine novel pathways regulated by relaxin. Prostate cancer tissue microarrays from patient samples were stained by immunohistochemistry for further validation and correlation of the findings. RESULTS: Expression analysis identified novel relaxin regulated pathways, including the ProtocadherinY (PCDHY)/Wnt pathway. PCDHY, which upregulates Wnt11, has previously been shown to stabilize beta-catenin, causing beta-catenin to translocate from the cytoplasmic membrane to the nucleus and initiate TCF-mediated signaling. LNCaP(RLN) xenografts exhibit increased PCDHY expression and increased cytoplasmic localization of beta-catenin, suggesting relaxin directs Wnt11 overexpression through PCDHY upregulation. Similarly, prostate cancer samples from patients who have undergone androgen ablation have increased Wnt11 expression, which is further upregulated in castrate resistant tissues. Like relaxin, Wnt11, and PCDHY are negatively regulated by androgens, and further analysis indicated that the overexpression of relaxin results in dysregulation of androgen-regulated genes. CONCLUSIONS: These data suggest that prostate cancer cell motility and altered androgen receptor activity attributed to relaxin may be mediated in part by Wnt11.


Subject(s)
Cadherins/metabolism , Neoplasms, Hormone-Dependent/metabolism , Prostatic Neoplasms/metabolism , Relaxin/metabolism , Animals , Blotting, Northern , Cadherins/genetics , Cell Line, Tumor , Humans , Immunohistochemistry , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms, Hormone-Dependent/genetics , Oligonucleotide Array Sequence Analysis , Prostatic Neoplasms/genetics , RNA/chemistry , RNA/genetics , Receptors, G-Protein-Coupled/biosynthesis , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/biosynthesis , Receptors, Peptide/genetics , Receptors, Peptide/metabolism , Relaxin/biosynthesis , Relaxin/genetics , Signal Transduction , Statistics, Nonparametric , Transfection , Transplantation, Heterologous , Up-Regulation , Wnt1 Protein/genetics , Wnt1 Protein/metabolism , beta Catenin/metabolism
15.
Prostate ; 70(3): 239-51, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-19790237

ABSTRACT

BACKGROUND: De novo androgen synthesis and subsequent androgen receptor (AR) activation has recently been shown to contribute to castration-resistant prostate cancer (CRPC) progression. Herein we provide evidence that fatty acids (FA) can trigger androgen synthesis within steroid starved prostate cancer (CaP) tumor cells. METHODS: Tumoral FA and steroid levels were assessed by GC-MS and LC-MS, respectively. Profiles of genes and proteins involved in FA activation of steroidogenesis were assessed by fluorescence microscopy, immunohistochemistry, microarray expression profiling and Western blot analysis. RESULTS: In human CaP tissues the levels of proteins responsible for FA activation of steroid synthesis were observed to be altered during progression to CRPC. Further investigating this mechanism in LNCaP cells, we demonstrate that specific FA, arachidonic acid, is synthesized in an androgen-dependent and AR-mediated manner. Arachidonic acid is known to induce steroidogenic acute regulatory protein (StAR) in steroidogenic cells. When bound to hormone sensitive lipase (HSL), StAR shuttles free cholesterol into the mitochondria for downstream conversion into androgens. We show that arachidonic acid induces androgen production in steroid starved LNCaP cells coincidently in the same conditions that HSL and StAR are predominantly localized in the mitochondria. Furthermore, their activities are verified by a functional increase in mitochondrial uptake of cholesterol in this steroid starved environment. CONCLUSIONS: We propose that this characterized arachidonic acid induced steroidogenesis mechanism significantly contributes to the activation of AR in CRPC progression and therefore recommend that fatty acid pathways be targeted therapeutically in progressing CaP.


Subject(s)
Androgen Antagonists/therapeutic use , Antineoplastic Agents, Hormonal/therapeutic use , Arachidonic Acid/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Receptors, Androgen/metabolism , Steroids/biosynthesis , Androgens/deficiency , Androgens/metabolism , Animals , Arachidonic Acid/pharmacology , Cell Line, Tumor , Cholesterol/pharmacokinetics , Disease Progression , Drug Resistance , Humans , Male , Mice , Mice, Nude , Mitochondria/metabolism , Neoplasm Proteins/metabolism , Neoplasm Transplantation , Phosphoproteins/metabolism , Prostatic Neoplasms/drug therapy , Sterol Esterase/metabolism , Tissue Distribution , Transplantation, Heterologous , Up-Regulation
16.
Endocr Relat Cancer ; 27(12): 711-729, 2020 12.
Article in English | MEDLINE | ID: mdl-33112829

ABSTRACT

Adiponectin is an adipokine originally identified as dysregulated in obesity, with a key role in insulin sensitisation and in maintaining systemic energy balance. However, adiponectin is progressively emerging as having aberrant signalling in multiple disease states, including prostate cancer (PCa). Circulating adiponectin is lower in patients with PCa than in non-malignant disease, and inversely correlates with cancer severity. More severe hypoadiponectinemia is observed in advanced PCa than in organ-confined disease. Given the crossover between adiponectin signalling and several cancer hallmark pathways that influence PCa growth and progression, we hypothesised that targeting dysregulated adiponectin signalling may inhibit tumour growth and progression. We, therefore, aimed to test the efficacy of correcting the hypoadiponectinemia and dysregulated adiponectin signalling observed in PCa, a world-first PCa therapeutic approach, using peptide adiponectin receptor (ADIPOR) agonist ADP355 in mice bearing subcutaneous LNCaP xenografts. We demonstrate significant evidence for PCa growth inhibition by ADP355, which slowed tumour growth and delayed progression of serum PCa biomarker, prostate-specific antigen (PSA), compared to vehicle. ADP355 conferred a significant advantage by increasing time on treatment with a delayed ethical endpoint. mRNA sequencing and protein expression analyses of tumours revealed ADP355 PCa growth inhibition may be through altered cellular energetics, cellular stress and protein synthesis, which may culminate in apoptosis, as evidenced by the increased apoptotic marker in ADP355-treated tumours. Our findings highlight the efficacy of ADP355 in targeting classical adiponectin-associated signalling pathways in vivo and provide insights into the promising future for modulating adiponectin signalling through ADIPOR agonism as a novel anti-tumour treatment modality.


Subject(s)
Prostatic Neoplasms/therapy , Receptors, Adiponectin/therapeutic use , Animals , Disease Models, Animal , Humans , Male , Mice , Mice, Nude
17.
Cancer Metab ; 8: 11, 2020.
Article in English | MEDLINE | ID: mdl-32577235

ABSTRACT

BACKGROUND: Metabolic reprograming, non-mutational epigenetic changes, increased cell plasticity, and multidrug tolerance are early hallmarks of therapy resistance in cancer. In this temporary, therapy-tolerant state, cancer cells are highly sensitive to ferroptosis, a form of regulated cell death that is caused by oxidative stress through excess levels of iron-dependent peroxidation of polyunsaturated fatty acids (PUFA). However, mechanisms underpinning therapy-induced ferroptosis hypersensitivity remain to be elucidated. METHODS: We used quantitative single-cell imaging of fluorescent metabolic probes, transcriptomics, proteomics, and lipidomics to perform a longitudinal analysis of the adaptive response to androgen receptor-targeted therapies (androgen deprivation and enzalutamide) in prostate cancer (PCa). RESULTS: We discovered that cessation of cell proliferation and a robust reduction in bioenergetic processes were associated with multidrug tolerance and a strong accumulation of lipids. The gain in lipid biomass was fueled by enhanced lipid uptake through cargo non-selective (macropinocytosis, tunneling nanotubes) and cargo-selective mechanisms (lipid transporters), whereas de novo lipid synthesis was strongly reduced. Enzalutamide induced extensive lipid remodeling of all major phospholipid classes at the expense of storage lipids, leading to increased desaturation and acyl chain length of membrane lipids. The rise in membrane PUFA levels enhanced membrane fluidity and lipid peroxidation, causing hypersensitivity to glutathione peroxidase (GPX4) inhibition and ferroptosis. Combination treatments against AR and fatty acid desaturation, lipase activities, or growth medium supplementation with antioxidants or PUFAs altered GPX4 dependence. CONCLUSIONS: Our work provides mechanistic insight into processes of lipid metabolism that underpin the acquisition of therapy-induced GPX4 dependence and ferroptosis hypersensitivity to standard of care therapies in PCa. It demonstrates novel strategies to suppress the therapy-tolerant state that may have potential to delay and combat resistance to androgen receptor-targeted therapies, a currently unmet clinical challenge of advanced PCa. Since enhanced GPX4 dependence is an adaptive phenotype shared by several types of cancer in response to different therapies, our work might have universal implications for our understanding of metabolic events that underpin resistance to cancer therapies.

18.
Mol Oncol ; 14(1): 105-128, 2020 01.
Article in English | MEDLINE | ID: mdl-31630475

ABSTRACT

Kallikrein-related peptidase 14 (KLK14) is one of the several secreted KLK serine proteases involved in prostate cancer (PCa) pathogenesis. While relatively understudied, recent reports have identified KLK14 as overexpressed during PCa development. However, the modulation of KLK14 expression during PCa progression and the molecular and biological functions of this protease in the prostate tumor microenvironment remain unknown. To determine the modulation of KLK14 expression during PCa progression, we analyzed the expression levels of KLK14 in patient samples using publicly available databases and immunohistochemistry. In order to delineate the molecular mechanisms involving KLK14 in PCa progression, we integrated proteomic, transcriptomic, and in vitro assays with the goal to identify substrates, related-signaling pathways, and functional roles of this protease. We showed that KLK14 expression is elevated in advanced PCa, and particularly in metastasis. Additionally, KLK14 levels were found to be decreased in PCa tissues from patients responsive to neoadjuvant therapy compared to untreated patients. Furthermore, we also identified that KLK14 expression reoccurred in patients who developed castrate-resistant PCa. The combination of proteomic and transcriptomic analysis as well as functional assays revealed several new KLK14 substrates (agrin, desmoglein 2, vitronectin, laminins) and KLK14-regulated genes (Interleukin 32, midkine, SRY-Box 9), particularly an involvement of the mitogen-activated protein kinase 1 and interleukin 1 receptor pathways, and an involvement of KLK14 in the regulation of cellular migration, supporting its involvement in aggressive features of PCa progression. In conclusion, our work showed that KLK14 expression is associated with the development of aggressive PCa suggesting that targeting this protease could offer a novel route to limit the progression of prostate tumors. Additional work is necessary to determine the benefits and implications of targeting/cotargeting KLK14 in PCa as well as to determine the potential use of KLK14 expression as a predictor of PCa aggressiveness or response to treatment.


Subject(s)
Cell Movement/genetics , Gene Expression Regulation, Neoplastic/genetics , Kallikreins/metabolism , Neoplasm Metastasis/genetics , Prostatic Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Chromatography, High Pressure Liquid , Databases, Genetic , Down-Regulation , Humans , Immunohistochemistry , Kallikreins/genetics , Male , Neoadjuvant Therapy , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Proteomics , Signal Transduction/genetics , Tandem Mass Spectrometry , Transcriptome , Tumor Microenvironment/genetics , Up-Regulation
19.
Article in English | MEDLINE | ID: mdl-31379747

ABSTRACT

Androgen deprivation therapy (ADT) is the standard treatment for advanced prostate cancer (PCa), yet many patients relapse with lethal metastatic disease. With this loss of androgens, increased cell plasticity has been observed as an adaptive response to ADT. This includes gain of invasive and migratory capabilities, which may contribute to PCa metastasis. Hyperinsulinemia, which develops as a side-effect of ADT, has been associated with increased tumor aggressiveness and faster treatment failure. We investigated the direct effects of insulin in PCa cells that may contribute to this progression. We measured cell migration and invasion induced by insulin using wound healing and transwell assays in a range of PCa cell lines of variable androgen dependency (LNCaP, 22RV1, DuCaP, and DU145 cell lines). To determine the molecular events driving insulin-induced invasion we used transcriptomics, quantitative real time-PCR, and immunoblotting in three PCa cell lines. Insulin increased invasiveness of PCa cells, upregulating Forkhead Box Protein C2 (FOXC2), and activating key PCa cell plasticity mechanisms including gene changes consistent with epithelial-to-mesenchymal transition (EMT) and a neuroendocrine phenotype. Additionally, analysis of publicly available clinical PCa tumor data showed metastatic prostate tumors demonstrate a positive correlation between insulin receptor expression and the EMT transcription factor FOXC2. The insulin receptor is not suitable to target clinically however, our data shows that actions of insulin in PCa cells may be suppressed by inhibiting downstream signaling molecules, PI3K and ERK1/2. This study identifies for the first time, a mechanism for insulin-driven cancer cell motility and supports the concept that targeting insulin signaling at the level of the PCa tumor may extend the therapeutic efficacy of ADT.

20.
Mol Cancer Res ; 17(5): 1166-1179, 2019 05.
Article in English | MEDLINE | ID: mdl-30808729

ABSTRACT

De novo lipogenesis is a well-described androgen receptor (AR)-regulated metabolic pathway that supports prostate cancer tumor growth by providing fuel, membrane material, and steroid hormone precursor. In contrast, our current understanding of lipid supply from uptake of exogenous lipids and its regulation by AR is limited, and exogenous lipids may play a much more significant role in prostate cancer and disease progression than previously thought. By applying advanced automated quantitative fluorescence microscopy, we provide the most comprehensive functional analysis of lipid uptake in cancer cells to date and demonstrate that treatment of AR-positive prostate cancer cell lines with androgens results in significantly increased cellular uptake of fatty acids, cholesterol, and low-density lipoprotein particles. Consistent with a direct, regulatory role of AR in this process, androgen-enhanced lipid uptake can be blocked by the AR-antagonist enzalutamide, but is independent of proliferation and cell-cycle progression. This work for the first time comprehensively delineates the lipid transporter landscape in prostate cancer cell lines and patient samples by analysis of transcriptomics and proteomics data, including the plasma membrane proteome. We show that androgen exposure or deprivation regulates the expression of multiple lipid transporters in prostate cancer cell lines and tumor xenografts and that mRNA and protein expression of lipid transporters is enhanced in bone metastatic disease when compared with primary, localized prostate cancer. Our findings provide a strong rationale to investigate lipid uptake as a therapeutic cotarget in the fight against advanced prostate cancer in combination with inhibitors of lipogenesis to delay disease progression and metastasis. IMPLICATIONS: Prostate cancer exhibits metabolic plasticity in acquiring lipids from uptake and lipogenesis at different disease stages, indicating potential therapeutic benefit by cotargeting lipid supply.


Subject(s)
Androgens/pharmacology , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Lipid Metabolism/drug effects , Prostatic Neoplasms/metabolism , Bone Neoplasms/genetics , Cell Line, Tumor , Cholesterol/metabolism , Disease Progression , Fatty Acids/metabolism , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks/drug effects , Humans , Lipoproteins, LDL/metabolism , Male , Microscopy, Fluorescence , Prostatic Neoplasms/genetics , Receptors, Androgen/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL