Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Environ Manage ; 69(1): 154-168, 2022 01.
Article in English | MEDLINE | ID: mdl-34648068

ABSTRACT

Drained agricultural peatlands emit significantly higher amounts of greenhouse gas (GHG) emissions per hectare than mineral soils. GHG abatement costs for representative cereals (CF) and dairy (DF) farms in southwestern Finland were estimated by integrating an emission-based tax together with an option to invest in a subsidized adjustable drainage system on peat soils in a farm-level dynamic optimization model. With an average 10% share of peat soils from overall farm area, emissions tax rates over 15 (CF) and 19 (DF) €/tCO2e triggered adjustable drainage investments with a significant reduction in GHG emissions per ha, when assuming no crop-yield effect from the adjustable drainage. Abatement costs for emissions tax rates €12-50/tCO2e/ha were €16-44/tCO2e (CF) and €26-51/tCO2e (DF) for whole farm-soil emissions, depending on the share of peatlands on the farm, on the yield effects of adjustable drainage, and on crop prices. High emissions tax rates imply higher abatement costs since farms have a limited capability to adjust their production and land use. Thus, emissions reductions from peatlands can be achieved at reasonable costs when investing in adjustable drainage on peatlands. The income losses due to emissions tax, however, are high, but they can be compensated for farmers by lumpsum payments independent of their production decisions. Since existing agricultural policies such as the EU CAP system may have limited effectiveness on GHG emissions, the emissions tax and adjustable drainage on peatlands could promote GHG abatement significantly on farms and areas with abundant peatlands.


Subject(s)
Greenhouse Gases , Agriculture , Farms , Finland , Greenhouse Effect , Greenhouse Gases/analysis , Soil
2.
Environ Manage ; 67(5): 988-999, 2021 05.
Article in English | MEDLINE | ID: mdl-33566133

ABSTRACT

We explored how consumers value the ecological and socio-cultural benefits of diversified food production systems in Finland. We used a stated preference method and contingent valuation to quantify consumers' willingness to pay (WTP) for the benefits of increased farm and regional scale diversity of cultivation practices and crop rotations. Three valuation scenarios were presented to a representative sample of consumers: the first one focused on agroecosystem services on cropland, the second on wider socio-cultural effects and the third was a combination of them. The results suggest that consumers are willing to pay on the average €228 per household annually for the suggested diversification. This is equal to €245 per hectare of cultivated cropland. The results also indicate that 21% of consumers were not willing to pay anything to support more diverse cropping systems. The relatively high WTP for both agroecological and socio-cultural benefits provide important messages for actors in the food chain and for policy makers on future targeting of economic resources within agri-environmental schemes.


Subject(s)
Family Characteristics , Finland
3.
Glob Environ Change ; 65: 102159, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32982074

ABSTRACT

Scenarios describe plausible and internally consistent views of the future. They can be used by scientists, policymakers and entrepreneurs to explore the challenges of global environmental change given an appropriate level of spatial and sectoral detail and systematic development. We followed a nine-step protocol to extend and enrich a set of global scenarios - the Shared Socio-economic Pathways (SSPs) - providing regional and sectoral detail for European agriculture and food systems using a one-to-one nesting participatory approach. The resulting five Eur-Agri-SSPs are titled (1) Agriculture on sustainable paths, (2) Agriculture on established paths, (3) Agriculture on separated paths, (4) Agriculture on unequal paths, and (5) Agriculture on high-tech paths. They describe alternative plausible qualitative evolutions of multiple drivers of particular importance and high uncertainty for European agriculture and food systems. The added value of the protocol-based storyline development process lies in the conceptual and methodological transparency and rigor; the stakeholder driven selection of the storyline elements; and consistency checks within and between the storylines. Compared to the global SSPs, the five Eur-Agri-SSPs provide rich thematic and regional details and are thus a solid basis for integrated assessments of agriculture and food systems and their response to future socio-economic and environmental changes.

4.
J Environ Manage ; 252: 109701, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31629178

ABSTRACT

Moving towards a more sustainable future requires concerted actions, particularly in the context of global climate change. Integrated assessments of agricultural systems (IAAS) are considered valuable tools to provide sound information for policy and decision-making. IAAS use storylines to define socio-economic and environmental framework assumptions. While a set of qualitative global storylines, known as the Shared Socio-economic Pathways (SSPs), is available to inform integrated assessments at large scales, their spatial resolution and scope is insufficient for regional studies in agriculture. We present a protocol to operationalize the development of Shared Socio-economic Pathways for European agriculture - Eur-Agri-SSPs - to support IAAS. The proposed design of the storyline development process is based on six quality criteria: plausibility, vertical and horizontal consistency, salience, legitimacy, richness and creativity. Trade-offs between these criteria may occur. The process is science-driven and iterative to enhance plausibility and horizontal consistency. A nested approach is suggested to link storylines across scales while maintaining vertical consistency. Plausibility, legitimacy, salience, richness and creativity shall be stimulated in a participatory and interdisciplinary storyline development process. The quality criteria and process design requirements are combined in the protocol to increase conceptual and methodological transparency. The protocol specifies nine working steps. For each step, suitable methods are proposed and the intended level and format of stakeholder engagement are discussed. A key methodological challenge is to link global SSPs with regional perspectives provided by the stakeholders, while maintaining vertical consistency and stakeholder buy-in. We conclude that the protocol facilitates systematic development and evaluation of storylines, which can be transferred to other regions, sectors and scales and supports inter-comparisons of IAAS.


Subject(s)
Agriculture , Climate Change , Socioeconomic Factors
5.
Land Degrad Dev ; 29(8): 2378-2389, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30393451

ABSTRACT

Soils are vital for supporting food security and other ecosystem services. Climate change can affect soil functions both directly and indirectly. Direct effects include temperature, precipitation, and moisture regime changes. Indirect effects include those that are induced by adaptations such as irrigation, crop rotation changes, and tillage practices. Although extensive knowledge is available on the direct effects, an understanding of the indirect effects of agricultural adaptation options is less complete. A review of 20 agricultural adaptation case-studies across Europe was conducted to assess implications to soil threats and soil functions and the link to the Sustainable Development Goals (SDGs). The major findings are as follows: (a) adaptation options reflect local conditions; (b) reduced soil erosion threats and increased soil organic carbon are expected, although compaction may increase in some areas; (c) most adaptation options are anticipated to improve the soil functions of food and biomass production, soil organic carbon storage, and storing, filtering, transforming, and recycling capacities, whereas possible implications for soil biodiversity are largely unknown; and (d) the linkage between soil functions and the SDGs implies improvements to SDG 2 (achieving food security and promoting sustainable agriculture) and SDG 13 (taking action on climate change), whereas the relationship to SDG 15 (using terrestrial ecosystems sustainably) is largely unknown. The conclusion is drawn that agricultural adaptation options, even when focused on increasing yields, have the potential to outweigh the negative direct effects of climate change on soil degradation in many European regions.

7.
Sci Total Environ ; 912: 169272, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38141994

ABSTRACT

Crop diversification can enhance farm economic sustainability while reducing the negative impact on the environment and ecosystem services related. Despite the market and non-market benefits of crop diversification, monocropping is a widely used dominant practice in Europe. In this context, this works aims to assess the overall economic impact of several crop diversification systems across Europe and compared it to the monocropping system. For this purpose, an economic valuation by integrating market and non-market values for eight case studies distributed across three different European pedoclimatic regions (Southern Mediterranean, Northern Mediterranean and Boreal) is proposed. The economic valuation was conducted both in the short and medium-long term. For the short-term we conducted a social gross margin analysis, while for the medium-long term a cost-benefit analysis is developed. The results show an improvement in social gross margins for most of the diversification scenarios assessed when environmental and socio-cultural benefits are considered in the short-term. In the medium and long-term the transformation of cropping towards a more diversified agriculture is encouraged by greater economic benefits. These results provide a first insight in global economic performance of diversified cropping systems, whose main contribution relies on the integration of market and non-market values of ecosystem services from crop diversification. They are expected to be useful for guiding policy makers to promote crop diversification practices as a key instrument for building resilience in farming systems for an adaptive management to climate change.


Subject(s)
Crops, Agricultural , Ecosystem , Farms , Cost-Benefit Analysis , Agriculture/methods , Europe
8.
PLoS One ; 11(11): e0166403, 2016.
Article in English | MEDLINE | ID: mdl-27870865

ABSTRACT

Diversification of agriculture was one of the strengthened aims of the greening payment of European Agricultural Policy (CAP) as diversification provides numerous ecosystems services compared to cereal-intensive crop rotations. This study focuses on current minor crops in Finland that have potential for expanded production and considers changes in their cropping areas, yield trends, breeding gains, roles in crop rotations and potential for improving resilience. Long-term datasets of Natural Resources Institute Finland and farmers' land use data from the Agency of Rural Affairs were used to analyze the above-mentioned trends and changes. The role of minor crops in rotations declined when early and late CAP periods were compared and that of cereal monocultures strengthened. Genetic yield potentials of minor crops have increased as also genetic improvements in quality traits, although some typical trade-offs with improved yields have also appeared. However, the gap between potential and attained yields has expanded, depending on the minor crop, as national yield trends have either stagnated or declined. When comparing genetic improvements of minor crops to those of the emerging major crop, spring wheat, breeding achievements in minor crops were lower. It was evident that the current agricultural policies in the prevailing market and the price environment have not encouraged cultivation of minor crops but further strengthened the role of cereal monocultures. We suggest optimization of agricultural land use, which is a core element of sustainable intensification, as a future means to couple long-term environmental sustainability with better success in economic profitability and social acceptability. This calls for development of effective policy instruments to support farmer's diversification actions.


Subject(s)
Agriculture/methods , Crops, Agricultural/growth & development , Agriculture/legislation & jurisprudence , Conservation of Natural Resources , Crops, Agricultural/genetics , Ecosystem , Finland , Quantitative Trait Loci , Soil
9.
Ambio ; 44(6): 544-56, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25663562

ABSTRACT

The Finnish agri-environmental program (AEP) has been in operation for 20 years with >90 % farmer commitment. This study aimed to establish whether reduced nitrogen (N) and phosphorus (P) use has impacted spring cereal yields and quality based on comprehensive follow-up studies and long-term experiments. We found that the gap between genetic yield potential and attained yield has increased after the AEP was imposed. However, many contemporary changes in agricultural practices, driven by changes in prices and farm subsidies, also including the AEP, were likely reasons, together with reduced N, but not phosphorus use. Such overall changes in crop management coincided with stagnation or decline in yields and adverse changes in quality, but yield-removed N increased and residual N decreased. Further studies are needed to assess whether all the changes are environmentally, economically, and socially sustainable, and acceptable, in the long run. The concept of sustainable intensification is worth considering as a means to develop northern European agricultural systems to combine environmental benefits with productivity.


Subject(s)
Agriculture/methods , Conservation of Natural Resources , Nitrogen/analysis , Phosphorus/analysis
10.
Sci Total Environ ; 529: 168-81, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26011613

ABSTRACT

Climate change is expected to increase annual and especially winter runoff, shorten the snow cover period and therefore increase both nutrient leaching from agricultural areas and natural background leaching in the Baltic Sea catchment. We estimated the effects of climate change and possible future scenarios of agricultural changes on the phosphorus and nitrogen loading to the Baltic Sea from Finnish catchments. In the agricultural scenarios we assumed that the prices of agricultural products are among the primary drivers in the adaptation to climate change, as they affect the level of fertilization and the production intensity and volume and, hence, the modeled changes in gross nutrient loading from agricultural land. Optimal adaptation may increase production while supporting appropriate use of fertilization, resulting in low nutrient balance in the fields. However, a less optimal adaptation may result in higher nutrient balance and increased leaching. The changes in nutrient loading to the Baltic Sea were predicted by taking into account the agricultural scenarios in a nutrient loading model for Finnish catchments (VEMALA), which simulates runoff, nutrient processes, leaching and transport on land, in rivers and in lakes. We thus integrated the effects of climate change in the agricultural sector, nutrient loading in fields, natural background loading, hydrology and nutrient transport and retention processes.

SELECTION OF CITATIONS
SEARCH DETAIL