ABSTRACT
Soft building blocks, such as micelles, cells or soap bubbles, tend to adopt near-spherical geometry when densely packed together. As a result, their packing structures do not extend beyond those discovered in metallic glasses, quasicrystals and crystals. Here we report the emergence of two Frank-Kasper phases from the self-assembly of five-fold symmetric molecular pentagons. The µ phase, an important intermediate in superalloys, is indexed in soft matter, whereas the Ï phase exhibits a structure distinct from known Frank-Kasper phases in metallic systems. We find a broad size and shape distribution of self-assembled mesoatoms formed by molecular pentagons while approaching equilibrium that contribute to the unique packing structures. This work provides insight into the manipulation of soft building blocks that deviate from the typical spherical geometry and opens avenues for the fabrication of 'soft alloy' structures that were previously unattainable in metal alloys.
ABSTRACT
The quasiperiodic structures in metal alloys have been known to depend on the existence of icosahedral order in the melt. Among different phases observed in intermetallics, decagonal quasicrystal (DQC) structures have been identified in many glass-forming alloys yet remain inaccessible in bulk-state condensed soft matters. Via annealing the mixture of two giant molecules, the binary system assemblies into an axial DQC superlattice, which is identified comprehensively with meso-atomic accuracy. Analysis indicates that the DQC superlattice is composed of mesoatoms with an unusually broad volume distribution. The interplays of submesoatomic (molecular) and mesoatomic (supramolecular) local packings are found to play a crucial role in not only the formation of the metastable DQC superlattice but also its transition to dodecagonal quasicrystal and Frank-Kasper σ superlattices.
ABSTRACT
Photoluminescence is one of the most meticulous ways to manipulate light energy. Typical photoluminescent emitters are mostly stable substances with a pure photophysical process of spontaneous photon-emission from their excited states. Intermediate emitters are elusive attributing to their synchronous energy transfer process including photophysical and incomplete photochemical pathways. An intermediate emitter containing radicals is more difficult to be observed due to its inherent chemical reactivity. Here, these challenges are overcome by spontaneously formed space limitations in polymer crosslinking networks meanwhile chemically active intermediates are captured. These doublet intermediates exhibit unique long-wavelength emissions under chemically crosslinking confinement conditions, and their luminous mechanism provides a novel perspective for designing intermediate emitters with liquid-crystal character and photoresponsive features towards spatiotemporal encryption, promising for the detection of photochemical reactions and the development of fascinating luminescent systems.
ABSTRACT
In expanding our research activities of superlattice engineering, designing new giant molecules is the necessary first step. One attempt is to use inorganic transition metal clusters as building blocks. Efficient functionalization of chemically precise transition metal clusters, however, remains a great challenge to material scientists. Herein, we report an efficient thiol-Michael addition approach for the modifications of cyclic titanium-oxo cluster (CTOC). Several advantages, including high efficiency, mild reaction condition, capability of complete addition, high atom economy, as well as high functional group tolerance were demonstrated. This approach can afford high yields of fully functionalized CTOCs, which provides a powerful platform for achieving versatile functionalization of precise transition metal clusters and further applications.
ABSTRACT
The emerging ferroelectric nematic liquid crystals have been attracting broader interests in new liquid crystal physics and their unique material properties. One big challenge for the ferroelectric nematic research is to enrich the material choice, which is now limited to RM734 and DIO families as representatives, in sharp contrast to the enormously diverse variety of the traditional apolar nematic liquid crystals. Here, we report a design of novel ferroelectric nematic materials with highly fluorinated and rigid mesogens. Noteworthily, they show distinct chemical structural features compared with previous aromatic ester-based molecules. The ferroelectric nematic phase was identified and confirmed through rigorous experiments. The bulk polarization was found to become purely along the long axis director, creating giant dielectric anisotropy. This work demonstrates a great potential for expanding ferroelectric nematic material diversity and will accelerate the corresponding application research and technology innovation.
ABSTRACT
The hierarchical self-assembly process opens up great potential for the construction of nanostructural superlattices. Precise regulation of self-assembled superlattices, however, remains a challenge. Even when the primary molecules are precise, the supramolecular motifs (or secondary building blocks) can vary dramatically. In the present work, we propose the concept of unimolecular nanoparticles (UMNPs). The UMNPs act as the supramolecular motif and directly pack into the superlattices. A highly branched giant molecule is presented. We systematically explore its conformations and the superlattice of this giant molecule. Moreover, intriguing complex phases are discovered when blending this UMNP with other conventional giant molecules. These binary mixtures provide direct evidence to support our previously proposed self-sorting process in the self-assembly of "soft alloys". The concept of UMNPs offers a unique approach toward more precise regulation of self-assembled superlattices in soft matter.
ABSTRACT
The packing structures of spherical motifs affect the properties of resultant condensed materials such as in metal alloys. Inspired by the classic metallurgy, developing complex alloy-like packing phases in soft matter (also called "soft alloys") is promising for the next-generation superlattice engineering. Nevertheless, the formation of many alloy-like phases in single-component soft matter is usually thermodynamically unfavourable and technically challenging. Here, we utilize a novel self-sorting assembly approach to tackle this challenge in binary blends of soft matter. Two types of giant shape amphiphiles self-sort to form their discrete spherical motifs, which further simultaneously pack into alloy-like phases. Three unconventional spherical packing phases have been observed in these binary systems, including MgZn2 , NaZn13 , and CaCu5 phases. It's the first time that the CaCu5 phase is experimentally observed in soft matter. This work demonstrates a general approach to constructing unconventional spherical packing phases and other complex superlattices in soft matter.
ABSTRACT
The emerging ferroelectric nematic (NF) liquid crystal is a novel 3D-ordered liquid exhibiting macroscopic electric polarization. The combination of the ultrahigh dielectric constant, strong nonlinear optical signal, and high sensitivity to the electric field makes NF materials promising for the development of advanced liquid crystal electroopic devices. Previously, all studies focused on the rod-shaped small molecules with limited length (l) range and dipole moment (µ) values. Here, through the precision synthesis, we extend the aromatic rod-shaped mesogen to oligomer/polymer (repeat unit up to 12 with monodisperse molecular-weight dispersion) and increase the µ value over 30 Debye (D). The NF phase has a widespread existence far beyond our expectation and could be observed in all the oligomer/polymer length range. Notably, the NF phase experiences a nontrivial evolution pathway with the traditional apolar nematic phase completely suppressed, i.e., the NF phase nucleates directly from the isotropic liquid phase. The discovery of thte ferroelectric packing of oligomer/polymer rods not only offers the concept of extending the NF state to oligomers/polymers but also provides some previously overlooked insights in oxybenzoate-based liquid crystal polymer materials.
ABSTRACT
Molecular solar thermal fuels (MOSTs), especially azobenzene-based MOSTs (Azo-MOSTs), have been considered as ideal energy-storage and conversion systems in outer or confined space because of their "closed loop" properties. However, there are two main obstacles existing in practical applications of Azo-MOSTs: the solvent-assistant charging process and the high molar extinction coefficient of chromophores, which are both closely related to the π-π stacking. Here, we report one efficient strategy to improve the energy density by introducing a supramolecular "cation-π" interaction into one phase-changeable Azo-MOST system. The energy density is increased by 24.7% (from 164.3 to 204.9 J/g) in Azo-MOST with a small loading amount of cation (2.0 mol %). Upon light triggering, the cation-π-enhanced Azo-MOST demonstrates one gravimetric energy density of about 56.9 W h/kg and a temperature increase of 8 °C in ambient conditions. Then the enhanced mechanism is revealed in both molecular and crystalline scales. This work demonstrates the huge potential of supramolecular interaction in the development of Azo-MOST systems, which could not only provide a universal method for enhancing the energy density of solar energy storage but also balance the conflicts between molecular design and the condensed state for phase-changeable materials.
ABSTRACT
The emerging matter category of liquid-matter ferroelectrics, i.e., ferroelectric nematics, demonstrates an unprecedented combination of fluidity and spontaneous polarization. However, unlike traditional ferroelectrics, the field-switched polarization at zero-field cannot be conserved, so the memory effect remains challenging. Here we report another new type of ferroelectric liquid crystal state, dubbed the ferroelectric smectic A phase, where the polarization is longitudinally coupled to the smectic quasi-layer order. With higher packing density, the phase exhibits higher values of refractive anisotropy and spontaneous polarization compared to the ferroelectric nematics. A delicate balance between the liquid crystal elasticity and flow viscosity enables both the switching and memory of the polarization field, thus opening the door toward realizing liquid-matter ferroelectric memory devices.
ABSTRACT
Previous studies have revealed that negative emotion may influence participants' cognitive processing. However, the neural mechanism of the impact of negative emotion on dynamic task like Multiple Object Tracking (MOT) is still unknown. This present study used electrophysiological (Event-Related Potentials, ERP) measures to investigate the effect of negative emotion on MOT tasks. Participants were required to complete MOT tasks while detecting the probe dots that would appear on targets, distractors or the space between them during tracking. Results of N2 amplitude showed that the distractor inhibition effect existed only in the neutral emotional picture condition. The P3 amplitude in the parietal area was also modulated by the emotion condition. P3 amplitude in the occipital area showed a target enhancement effect for both the neutral and negative emotion condition. The present study indicates that negative emotion could affect attention resource allocation during MOT.